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User-centric Distributed Solutions for Privacy-preserving Analytics
How can cryptography empower users with sensitive data to access
large-scale computing platforms in a privacy-preserving manner?

Azer Bestavros, Andrei Lapets, and Mayank Varia (Boston University)

For over a year, a high-profile initiative spear-
headed by the City of Boston and the Boston
Women’s Workforce Council (BWWC) strived
to identify salary inequities across various em-
ployee gender and ethnic demographics at dif-
ferent levels of employment, from executive to
entry-level positions [1]. While the effort was
supported by a diverse set of more than 100
employer organizations in the city — includ-
ing major corporations, small businesses, and
public/non-profit organizations — it was stalled
by concerns about the confidentiality of the data
to be collected in order to calculate aggregate
metrics [5].

A key enabling technology that allowed this
effort to move forward was a web-based applica-
tion (which can be seen at 100talent.org) that
we designed and implemented at Boston Uni-
versity to support the aggregation of sensitive
salary data using secure multi-party computa-
tion (MPC) [10]. This application was used in a
first-of-its-kind collaborative effort to compute
aggregate payroll analytics without revealing the
individual data sets of contributing organizations.
This deployment of MPC, which received signifi-
cant media attention [3,5], finally enabled the
BWWC to conduct their analysis.

MPC privately shards users’ sensitive data
across multiple servers in such a way that analyt-
ics may be jointly computed and released while
ensuring that (small collections of) servers can-
not learn any user’s data. Theoretical constructs
for MPC have been known for 35 years, with
several existing software frameworks designed
over the past 10 years [9,11].

MPC techniques can possess substantial so-
cial value: they enable society to benefit from

collective data aggregation and analysis in con-
texts where the raw data are encumbered by
legal and corporate policy restrictions on data
sharing. Other examples of deploying MPC for
social good include tax fraud detection [6] and
disease surveillance [7]. Additionally, because
MPC decouples computing and networking re-
sources from data, users can leverage the bene-
fits of large data centers without ceding control
over their sensitive data.

However, MPC’s social benefits cannot be
realized unless we empower participating orga-
nizations (i.e., their executives, directors, and le-
gal advisors) with a clear, confident understand-
ing of exactly how MPC protects their sensitive
data and mathematically guarantees compliance
with data sharing restrictions. The design and
implementation of our own unique MPC plat-
form was informed by nearly two years’ worth
of discussions with non-technical personnel (in-
cluding CIOs, CTOs, HR executives, and lawyers
from key participating organizations), social sci-
entists, and members of the city council that
commissioned the study [2]. These discussions
had to take place in meetings and teleconfer-
ences where the only aids were whiteboards and
slideshows; they involved both describing secret
sharing in a concrete, hands-on way as well as
providing details of the implementation and how
it realized the capabilities and guarantees of this
technique. Ultimately, these exchanges were
necessary to demystify MPC for decision makers
and, more generally, to help us understand and
mitigate what we have come to realize are the
hurdles that face real-world MPC deployments.

The systems community has grappled re-
cently with the realization that its significant
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body of work on scalable platforms did not ad-
equately consider the question of what mini-
mum distributed computing configuration out-
performs a single thread (COST) [12]. Analo-
gously, in this article we argue that the exten-
sive body of MPC research to date has not ade-
quately considered the needs and circumstances
of the ultimate users of MPC. Our own experi-
ence echoes and confirms thoughts expressed by
other researchers in the community [15]: ”Se-
cure computation is a general scheme; in reality
one has to choose an application, starting from
a very real business need, and build the solution
from the problem itself choosing the right tools,
tuning protocol ideas into a reasonable solution,
balancing security and privacy needs vs. other
constraints: legal, system setting, etc.” We draw
from our experience to advocate for the design
of platforms that address concerns along Usabil-
ity, Scalability, Entrustment, and Risk (USER)
dimensions.

Usability

To meet the needs of our users, we rejected the
most algorithmically expressive MPC solutions
available in the literature [9]. Instead, we found
that what we needed was the simplest of proto-
cols: just expressive enough for the application
at hand while being comprehensible enough to
fuel adoption among corporate officers, legal
representatives, and rank and file employees.
We also found that participants’ software plat-
form and IT infrastructure inflexibilities and lim-
itations (legacy systems, restrictive policies, fire-
walls, and so on) required the most lightweight
solution: a simple browser-based application
that could accommodate the familiar look and
feel of a spreadsheet, with transparent open-
source code to enable outside auditing. Finally,
our MPC protocol needed to accept contributors’
data asynchronously to simplify coordination and
idempotently to allow contributors to fix errors.

Usable MPC is an enabling technology with
substantial potential for social good, but only
if enough participants are willing to contribute

toward the analysis. In the pay equity scenario,
the usability of both the protocol and its im-
plementation helped decision-makers – after
only a few conversations – gain confidence in
their understanding of the technology, appre-
ciate that it would impose no significant bur-
dens on their staff and infrastructure, and as-
sured that features such as idempotence and
asynchrony would make deployment logistically
feasible and likely to produce meaningful results.
This, in turn, increased the willingness of partic-
ipants to contribute their sensitive data.

Usability also extends to the specification of
policies governing proper uses of data. Existing
MPC frameworks neglect to address privacy poli-
cies, in part because the policy may not be ex-
pressible by either the original data contributor
(who may lack expertise in privacy-related mat-
ters) or the analyst (who doesn’t know the users’
preferences or other uses of the data). Existing
techniques from the programming languages re-
search and formal methods communities such
as policy-agnostic programming (in which the
policies that govern inputs are specified inde-
pendently from the data flows and logic of the
algorithm), as well as static analysis (to automat-
ically derive policies from algorithms and com-
pare them to user-specified policies) can play a
significant role in validating whether an analytic
is compatible with a specified privacy policy.

Scalability

Typically, MPC frameworks are evaluated based
on their computational efficiency for simple an-
alytics over relatively small datasets. This is a
situation in which all modern frameworks per-
form rather well (i.e., seconds to minutes) [4].

However, human time dominates computing
time in scenarios involving small-scale data such
as the pay equity effort, in which a window span-
ning multiple days may be required to collect
salary data from a large number of contributors
operating according to incompatible schedules,
rendering the computing time negligible by com-
parison. In this case, MPC frameworks should
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prioritize software development and IT infras-
tructure design over the speed of computing
the analytic. At the other extreme, when aggre-
gating large-scale datasets, an MPC framework
should optimize the computation that can be
performed locally so as to minimize the costs
incurred due to MPC.

To resolve both challenges, we have inte-
grated existing MPC frameworks into the Mus-
keteer big data workflow manager [8]. Whereas
prior MPC frameworks require that software en-
gineers design analytics in a domain-specific lan-
guage, we permit rapid development in the well-
known SQL and MapReduce paradigms, with
automated generation of code to execute in
existing back-end distributed frameworks like
Hadoop, Spark, or Naiad so that developers and
administrators can “focus on the what rather
than the how of security” [13]. Additionally,
our framework automatically infers when sen-
sitive data crosses trust boundaries in order to
minimize usage of MPC. We tested this system
to compute a market concentration metric over
160 GB of public NYC taxi trips’ fare information
with just 8.3% overhead over the corresponding
insecure computation [14].

Entrustment

At its heart, MPC permits federation of trust
among several computing entities such that each
user only needs to trust that any one of them
(or a small fraction) is honest. Most existing
MPC research papers and software frameworks
envision homogeneous entities. By contrast, we
design a more flexible MPC framework that al-
lows contributors to entrust entities with differ-
ent responsibilities.

Along these lines, we provide a taxonomy
of roles for entities that participate in MPC: a
large, potentially a priori unknown number of
contributors with private data; an analyzer who
specifies an analytic; a publicly accessible ser-
vice provider who collects encoded data from the

contributors without requiring them to be online
simultaneously and who also participates in the
distributed computation; additional servers who
participate in the distributed computation; one
or more repositories that host the secure comput-
ing software; and the recipients of the analysis.
Behind the scenes, there may also be privacy ex-
perts and software engineers who assemble one
or more of the components in this ecosystem. In
practice, parties using MPC may take on several
of these roles simultaneously.1 MPC provides the
recipients with the results of the analytic over
the contributors’ data, and it provably guaran-
tees that nobody learns anything else.

Just as each entity has different assignments,
so too might they have different levels of trust
in one another. For brevity, we focus here on the
service provider, who must connect to all other
entities and may require immense computing
power. When both of these characteristics si-
multaneously apply, the service provider (1) has
a large attack surface and (2) is well-suited to
being run within a cloud computing datacenter.

Our pay equity software enables the most
powerful computing entity also to be the least
trusted. Our service provider runs on Amazon
Web Services to collect and store encoded data;
however, contributors can choose instead to en-
trust the BWWC to protect the confidentiality of
their data. We envision a future in which cloud
providers offer ‘secure computing-as-a-service’
deployments of MPC that decouple control over
data from computing power.

Risk

MPC research studies four types of adversaries:
semi-honest entities who execute software as
provided but may attempt to glean information
along the way, covert adversaries who cheat only
if they’re unlikely to be caught, rational adver-
saries who cheat as long as the expected payout
is larger than the expected penalty if caught,
and fully malicious entities who perform any ac-

1Some readers may be familiar with a related technology: fully homomorphic encryption (FHE). Abstractly, FHE can
be viewed as a specialization of MPC to the 2-party outsourcing setting in which the contributor, analyzer, and recipient
are the same party and in which the service provider’s computation doesn’t require interaction [4,9].
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tion necessary to breach the confidentiality or
integrity of honest users.

We advocate for the MPC community to
match cryptographic models of adversarial be-
havior with the economic (e.g., reputation-based)
and legal incentives that real-world users face.
A more accurate and fine-grained characteriza-
tion of risks can result in a faster, simpler MPC
protocol that satisfies users’ needs. Our pay eq-
uity project exposed delicate economic and legal
concerns whose impact upon risk models should
be explored further.

First, the existing risk models fail to capture
the subtlety of reputation-based economic incen-
tives. In the pay equity scenario, the analyzer
and repository have the capacity to alter the soft-
ware to leak secrets; however, they should not
execute this capability due to the long-term dam-
age to their reputation and economic viability.
Analogously to the differences between the one-
shot and iterated prisoner’s dilemma games, the
rational model of MPC provides an incomplete
view because it focuses on a single execution.

Second, MPC has a complex interconnection
with the law. In our pay equity scenario, even
if the BWWC could somehow learn the contrib-
utors’ data by cheating, it has a strong legal in-
centive not to acquire this data because it could
then be exposed to lawsuits. Indeed, one of the
major hurdles that faced BWWC prior to their
use of our solution was the unwillingness of any
single entity (including a major local university,
originally enlisted to perform the study) to as-
sume the liability in case of leakage or loss of
data entrusted to them. Moreover, following
MPC honestly may provide BWWC legal protec-
tions afforded by following best practices or by
restricting data sharing. Hence, the BWWC has
a strong legal incentive to act in a semi-honest
manner. Conversely, appropriately-written legal
contracts can enshrine MPC’s constraints (e.g.,
operating in the best interest of another entity,
or forbidding collusion between entities) with
enforceable civil penalties. We propose a greater
examination of the implications of the law upon
MPC and vice-versa.

Conclusion

We are convinced that the empowering and en-
abling aspects of MPC will make substantial
contributions to data-driven analysis and policy-
making by enabling individuals and organiza-
tions at all levels to derive insights about their
collective data without requiring that they share
that data, but only if the technology is accessible
both conceptually and technologically to a broad
audience. In this article, we proposed a four-
pronged research agenda to make MPC more
usable along a variety of dimensions, increase its
scalability for humans and computers alike, as-
sign responsibilities that align with existing trust
relationships, and systematically understand the
legal and economic risks when trust is violated.
These recommendations are informed by our
prior work deploying MPC to aggregate wage
data and compute pay equity metrics — work
that is, in the words of BWWC co-chair Evelyn
Murphy, “beginning to show how to use sophisti-
cated computer science research for public pro-
grams” [3].
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Meril Vaht. How the Estonian Tax and Customs Board
Evaluated a Tax Fraud Detection System Based on
Secure Multi-party Computation, pages 227–234.
Springer Berlin Heidelberg, Berlin, Heidelberg,
2015.

[7] Khaled El Emam, Jun Hu, Jay Mercer, Liam Peyton,
Murat Kantarcioglu, Bradley Malin, David
Buckeridge, Saeed Samet, and Craig Earle. A secure
protocol for protecting the identity of providers
when disclosing data for disease surveillance.
Journal of the American Medical Informatics
Association : JAMIA, 18(3):212—217, May 2011.

[8] Ionel Gog, Malte Schwarzkopf, Natacha Crooks,
Matthew P. Grosvenor, Allen Clement, and Steven
Hand. Musketeer: all for one, one for all in data
processing systems. In Proceedings of the Tenth
European Conference on Computer Systems (EuroSys),
pages 2:1–2:16, 2015.

[9] Ariel Hamlin, Nabil Schear, Emily Shen, Mayank
Varia, Sophia Yakoubov, and Arkady Yerukhimovich.
Cryptography for Big Data Security. In Fei Hu, editor,
Chapter in Big Data: Storage, Sharing, and Security.
CRC Press, May 2016.

[10] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros,
Frederick Jansen, and Mayank Varia. Secure
Multi-Party Computation for Analytics Deployed as a

Lightweight Web Application. Technical Report
BUCS-TR-2016-008, CS Dept., Boston University,
July 2016.

[11] Yehuda Lindell and Benny Pinkas. Secure Multiparty
Computation for Privacy-Preserving Data Mining.
The Journal of Privacy and Confidentiality,
1(1):59–98, 2009.

[12] Frank McSherry, Michael Isard, and Derek G. Murray.
Scalability! But at what COST? In 15th Workshop on
Hot Topics in Operating Systems (HotOS XV),
Kartause Ittingen, Switzerland, May 2015. USENIX
Association.

[13] Emily Shen, Mayank Varia, Robert K. Cunningham,
and W. Konrad Vesey. Cryptographically Secure
Computation. IEEE Computer, 48(4):78–81, 2015.

[14] Nikolaj Volgushev, Malte Schwarzkopf, Andrei
Lapets, Mayank Varia, and Azer Bestavros. DEMO:
Integrating MPC in Big Data Workflows. In
Proceedings of CCS 2016: The 23rd ACM SIGSAC
Conference on Computer and Communications
Security, 2016.

[15] Moti Yung. From mental poker to core business:
Why and how to deploy secure computation
protocols? In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications
Security, CCS ’15, pages 1–2, New York, NY, USA,
2015. ACM.

5


