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ABSTRACT 

 

Objectives: To evaluate the marginal chipping of anterior veneers made with CAD/CAM by 

calculating the chipping factor, to evaluate the failure load of different veneering materials and 

thicknesses under static loading and cyclic loading. 

Materials and methods: An ivorine central incisor was prepared to receive a traditional veneer. 

Using epoxy resin, 120 replication dies were made of the prepared tooth. Four ceramic materials 

were used; IPS Empress CAD, IPS e.max CAD, VITA ENAMIC and Lava Ultimate. Veneers 

were milled using a Sirona InLab MCXL at three different thicknesses, 0.4mm, 0.7mm and 

1.0mm, n=10 for each group. Veneers were inspected under the light microscope to calculate the 

chipping factor (CF). All veneers were cemented to their tooth replicas using Variolink Veneer 

resin cement. Five specimens/group were loaded under compression using an Instron universal 

testing machine at a rate of 0.5 mm/minute until fracture. Another five specimens were subjected 

to cyclic loading at 30% of the mean fracture load for 30,000 cycles at frequency rate of 1 Hz, 

and then were loaded under compression to fracture. Modes of failure were recorded after each 

test. 
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Results: IPS Empress CAD 0.4mm CF was higher than all other groups, and VITA ENAMIC 

and Lava Ultimate 1.0mm CF were the lowest. There was a significant difference in the failure 

load of the IPS Empress CAD and IPS e.max CAD groups under static loading but not in VITA 

EANMIC and Lava Ultimate groups. Cyclic fatigue had no significant effect on the failure load 

of different veneering materials and thicknesses. 

Conclusions: Chipping factor decreases as the material thickness increases and can be used as an 

indicator of material machinability. IPS e.max CAD at 1.0mm had the highest static failure load 

value when compared to other materials. Cyclic fatigue did not affect the failure load values 

within the groups tested.  
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INTRODUCTION 
 

 
Dental ceramic is an inorganic nonmetallic material composed of oxygen and one or 

more metallic or semi-metallic elements that is usually processed by firing at high temperature. 

Dental ceramics consist mainly of glasses, porcelain, glass ceramics or highly crystalline 

structures. They are strong, temperature resistant, have excellent flexural strength and fracture 

toughness. However, these materials are brittle and can fracture if flexed or when quickly heated 

and cooled.1 

Dental ceramics mainly have three classes: predominantly glassy; particle-filled glasses; 

and polycrystalline ceramics.2 They also can be classified according to: 1) their indication 

(crowns, veneers, posts and cores); 2) fabrication technique (casting, hot pressing and computer 

aided design/computer aided manufacturing); 3) firing temperature (low fusing, medium fusing 

and high fusing); 4) translucency (opaque, translucent and transparent); 5) fracture resistance.1,2 

Understanding the different classes of ceramics allows the clinician to choose the best ceramic 

material for a particular clinical situation.1 

Mclean and Hughes in 1965 added aluminous porcelain to conventional feldspathic 

ceramic to strength it but due to its brittleness, it was only suitable in the anterior area. Magne 

and Belser in 1997 developed a more stable glass-infiltrated alumina. However, the high amount 

of crystals has led to high opacity which means it can be used only as a core material. Recently, 

dense sintered high strength ceramics with excellent mechanical characteristics were developed 

such as zirconia which is considered the most stable of these ceramics.3 

Metal-ceramic restorations were popular because of their excellent mechanical properties, 

durability, marginal adaptation and low cost.4 However, these restorations hardly reproduce 
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natural esthetics especially in situations with limited space for reconstruction.3 The combination 

of strength and reasonable esthetics in metal-ceramic restorations made them the gold standard in 

prosthetic dentistry but the patient need for superior esthetics has driven the development of 

ceramics for use in dental restorations.5 

The increased demand for esthetic, more durable material, combined with concerns about 

metallic restorations has stimulated research for metal-free, tooth colored restorations.6 All-

ceramic restorations are considered the most esthetically pleasing restorations. They produce 

life-like appearance and allow natural light to pass through them due to the lack of metal 

substructure.7 They are becoming more popular because of their biocompatibility, color stability, 

esthetic properties and wear resistance.5,6 All-ceramic restorations have been widely used in 

recent years because of their excellent gingival response, high esthetic quality and marginal 

accuracies comparable to traditional metal-based restorations.8  On the other hand, they cause 

excessive wear to opposing dentition8, are technique sensitive,6 and they easily fracture.6,9 

Failure usually begins with microscopic damage from the interaction of previous defects with 

applied loads. It also can occur due to subcritical crack growth which is usually increased in an 

aqueous atmosphere.6 

Porcelain laminate veneers bonded to enamel were first introduced in the early 1980s.10 

Advances in dental materials and techniques in the last few decades, along with more adhesive 

technologies have led to a huge interest in Minimally Invasive Dentistry.7,10 Its major advantage 

is preservation of sound tooth structure and maintenance of the vitality of the restored teeth.7 The 

clinical success of porcelain veneers depends on careful case selection, treatment planning, 

accurate tooth preparation,10,11 and a strong bond between two materials of similar elastic 

moduli, enamel and porcelain.12  The use of porcelain veneers for anterior teeth has increased 
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recently to correct problems such as discolored composite restorations, fractured teeth and incisal 

wear.13  The most common failure associated with porcelain veneers are fracture or debonding.14 

Most of the fractures associated with veneers are the result of adhesive failure at the 

veneer/cement interface leading to fracture or complete debonding of the veneer.15 During 

polymerization shrinkage of the resin cement, porcelain veneer does not deform thereby creating 

residual stress at the interface.12,14 

Chunling et al. measured the influence of porcelain veneer thickness and enamel 

thickness on the loads needed to cause initial fracture and catastrophic failure of porcelain 

veneers. Thirty model discoid porcelain veneer specimens of different thickness were bonded to 

incisors, artificially aged by thermal cycling, and loaded to failure using an Instron machine. 

They concluded that increased enamel thickness, increased porcelain thickness and increase of 

combined thicknesses all raised the failure load needed to cause catastrophic failure.12 

In 2011, Schmidt et al. evaluated the effect of preparation design and the amount of 

existing tooth structure on the fracture resistance of ceramic laminate veneers. Thirty-two 

maxillary central incisors were tested for the effect of preparation design and the amount of tooth 

structure remaining after preparation.  After cementation with veneers, specimens were loaded to 

failure in a universal testing machine. Preparation design and the existing amount of tooth 

structure had a significant effect on load to failure for ceramic veneers.16 

The use of computer aided design/computer aided manufacturing (CAD/CAM) these 

days continues to grow worldwide, because they offer the delivery of accurate, esthetic 

restorations rapidly to patients. The materials used must be able to be milled quickly, resist 

machining damage and finished and polished before placement.17 CAD/CAM materials have 
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many advantages.  They are safe, esthetically pleasing, durable and quickly fabricated, which 

will benefit the patient and dental lobaratory.18  

Chair-side milling systems are able to fabricate full-contour restorations from different 

blocks. This includes feldspathic porcelain and resin composite blocks. These blocks are 

fabricated continuously in the same manner, which results in a high quality dense material. There 

is no porosity in these prefabricate blocks whereas several pores can be found in pressed and 

hand-built restorations. Laboratory-based CAD/CAM systems are used to fabricate multiple-unit 

restorations with high-strength ceramic materials such as: zirconia, lithium disilicate glass 

ceramic and alumina. Some of these systems can be used to mill metals, for example titanium, 

base metal, and even custom implant abutments. 17,18 

Prefabricated reinforced glass ceramic blocks which are available for milling using 

CAD/CAM have mechanical properties similar or superior to those of tooth enamel. These 

materials are useful and not considered technique sensitive. Moreover, conventional finishing 

such as staining and glazing are available. They have also excellent fit and esthetics, are quickly 

fabricated and exhibit strong durability with adhesive resin cements.18 

A successful dental restoration is determined by three main factors, which are esthetics, 

resistance to fracture, and marginal adaptation. Misfit of a restoration could contribute to cement 

dissolution, plaque accumulation, secondary caries and endodontic inflammation.19 Ceramic 

laminate veneers are usually bonded with adhesive resin cements which produce a chemical 

bond between the veneer and the tooth structure. The adhesive resin cement undergoes thermal 

cycling, dynamic loading and is subjected to the hydrolytic effect of water in the mouth. 

Proximity between the margin of the veneer and the tooth structure protects the adhesive resin 
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cement from dissolution which could result in microleakage, discoloration and fracture of the 

veneers.20  

It was reported in a previous study that CEREC systems (Sirona Dental Systems Gmbh, 

Bensheim, Germany) can fabricate restorations with clinically acceptable marginal gaps. 

Marginal integrity is considered an important factor for the longevity of a restoration. 21 External 

marginal adaptation of ceramic veneer is the vertical distance between the prepared tooth finish 

line and the margins of the veneer.22 With the abrasive machining process (grinding and milling) 

of CAD/CAM systems, there is a possibility for generation of machining-induced damage that 

could decrease the integrity of the final restoration.21 Despite the superior machinability and 

physical properties of prefabricated ceramic blocks, all available CAD/CAM materials that are 

machined with diamond grinding burs are subjected to chipping defects, microcracks and surface 

flaws. These chipping defects can reduce the accuracy of fit of a restoration and may eventually 

reduce the mechanical strength with time.21,23   

The machinability of a material can be easily measured qualitatively as the ease with 

which a material is cut. On the other hand, quantitative measurement is difficult.24 Tsitrou in 

2007 introduced the concept of chipping factor (CF) which is an estimation of the degree of 

marginal chipping. It is calculated by estimating the ratio of overall marginal chipping over the 

total marginal circumference of the restoration multiplied by 100 using the equation  

CF= 𝑳
	𝑷

 *100 
Where L is the amount of marginal chipping and P is the marginal circumference of the 

restoration.21 

Flanders et al. in 2003 tested the scratch hardness and the amount of edge chipping of 
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five different machinable dental ceramics with respect to the effect of the cutting environment. 

The authors calculated the degree of chipping by measuring the lengths that chipped out along a 

scratch that is made on the material. They concluded that environmental effects on chipping were 

minimal and its more dependent on tool interactions rather than material-specific properties.25 

Souza et al. evaluated the marginal discrepancy of ceramic crowns manufactured by a 

CAD/CAM system with different finish lines (tilted chamfer, large chamfer, rounded shoulder). 

The crowns were fixed on their respective metallic dies using a metallic fixation device and the 

marginal fit between the crown and the preparation margins was evaluated with 3D optical 

microscope. It was concluded that the rounded shoulder finish line had marginal discrepancy 

values significantly lower than the other two finish lines.26 

Veneer restorations aim to avoid the extensive crown preparations as well as to reinforce 

the residual tooth structure. However, fracture strength is considered the main concern and the 

investigation of fracture resistance of ceramic and composite veneers is necessary for the long 

term stability of these restorations.27 Lately, minimally invasive veneer preparations have 

become more popular. These include less tooth reduction and minimal porcelain thickness. 

Minimally invasive veneers have been reported to be 0.3 mm in thickness, whereas conventional 

porcelain veneers generally range from 0.3-1.0 mm in thickness. There is limited research on the 

outcomes of minimally invasive veneers. On the other hand, excellent clinical outcomes and high 

survival rates for conventional porcelain veneers.12 

All ceramic restorations are subjected clinically to masticatory forces under dry and wet 

conditions, therefore, these conditions must be considered during in vitro testing. Cyclic loading 

fatigue significantly reduces the fracture load of all ceramic crown systems. Limited information 
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is available regarding the effect of cyclic fatigue loading on the fracture load of composite and 

all ceramic CAD/CAM restorations.28,29 

Johnson et al. investigated the effect of restoration thickness and material type on the 

fracture strength of posterior occlusal veneers. Sixty maxillary occlusal veneers were milled with 

CAD/CAM fabricated from Paradigm MZ100 and Lava Ultimate at minimal occlusal 

thicknesses of 0.3, 0.6 and 1.0 mm. Occlusal veneers were adhesively bonded and subjected to 

vertical load to fracture using a universal testing machine. Restoration thickness in this study had 

no statistical difference on the fracture strength. However, material type affected the fracture 

strength and those fabricated with Lava Ultimate fractured at higher loads than Paradigm MZ100 

veneers.30 

A similar study by Egbert et al. compared the fracture strength and failure modes of 

ultrathin occlusal veneers (0.3 mm). Sixty maxillary occlusal veneers were milled with 

CAD/CAM from a composite material (Paradigm MZ100), a resin nanoceramic (Lava Ultimate) 

and a hybrid ceramic (Vita Enamic) at 0.3 mm thickness. Veneers were cemented and vertically 

loaded to determine the fracture strength. Occlusal veneers made from Lava Ultimate had the 

highest fracture strength, whereas, Paradigm MZ100 and Vita Enamic veneers were not 

significantly different.31 

Magne et al. evaluated the fatigue resistance of ceramic and composite posterior occlusal 

veneers. Thirty extracted molars received a traditional preparation simulating advanced occlusal 

erosion. Veneers were milled at 1.2 mm thickness with CAD/CAM fabricated from leucite-

reinforced and lithium disilicate ceramics (IPS Empress CAD and IPS e.max CAD, respectively) 

and a composite resin (Paradigm MZ100). Restorations were all bonded with preheated luting 
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material and subjected to cyclic loading starting with 200 N for 5000 cycles followed by stages 

of 400, 600, 800, 1000, 1200 and 1400 N at a maximum of 30,000 cycles each. IPS Empress 

CAD failed at 900 N without reaching all 185,000 cycles. However, IPS e.max CAD and 

Paradigm MZ100 survival rates were 30% and 100% respectively.32 

Alghazzawi et al. studied the effect of material and preparation design on the failure load 

of anterior veneers and its mode of fracture. A typodont lateral incisor received an incisal 

overlapped preparation (IOP) and a three-quarter preparation (TQP) and they were used to 

fabricate the composite resin abutments. Ten veneers for each preparation design were fabricated 

from yttria-stabilized zirconia covered with porcelain (VITA VM9), lithium disilicate glass 

ceramics (IPS e.max CAD) and feldspathic porcelain (Super porcelain EX-3). Zirconia and glass 

ceramic veneers were milled with CAD/CAM. Veneers were cemented to the abutments at an 

angle of 135 degrees and loaded under a universal testing machine until failure. The preparation 

design did not affect the failure load of veneer materials. However, zirconia veneers had a higher 

load before fracture than the other materials used.14 

A study by Lin et al. evaluated the marginal discrepancy and fracture resistance of two 

veneering materials (ProCad, Ivoclar Vivadent, Amherst NY) milled by CAD/CAM and 

conventional sintered feldspathic porcelain using two preparation designs (full and traditional). 

Forty-eight specimens cemented on composite resin dies were used in the study. The fracture 

resistance of the veneers was measured with a universal testing machine. It was found that there 

was no correlation between the thickness and the marginal discrepancy of veneers. Traditional 

veneer preparation with conventional sintered feldspathic porcelain and full preparation design 

with ceramic material such as ProCad were the most favorable combinations in terms of 

marginal discrepancy and fracture resistance.10   



9 
 

OBJECTIVES 

The objectives of this study were: 

1) To evaluate and compare the marginal chipping of anterior veneers made with 

different ceramic materials using computer aided design/computer aided 

manufacturing (CAD/CAM) by calculating the chipping factor (CF). 

2) To evaluate and compare the failure load of different veneering materials and 

thicknesses under static loading 

3) To evaluate the effect of cyclic loading on the failure load of different 

veneering materials and thicknesses. 

4) To evaluate failure modes (cohesive, adhesive or catastrophic failure) among 

different veneering materials and thicknesses.  
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HYPOTHESES 

1) There is no significant difference in the marginal chipping of anterior veneers 

made with different ceramic materials using the computer aided design/ 

computer aided manufacturing (CAD/CAM) by calculating the chipping 

factor (CF). 

2) There is no significant difference in the failure load of different veneering 

materials and thicknesses under static loading. 

3) There is no significant difference in the failure load of different veneering 

materials and thicknesses under cyclic loading. 

4) Cyclic fatigue has no significant effect on the failure load of different 

veneering materials and thicknesses. 
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MATERIALS AND METHODS 
 

 
An ivorine typodont right central incisor (Model #D95SDP-200; Kilgore International, 

Inc., Coldwater, MI) was selected to receive a traditional veneer preparation. The tooth was 

prepared with a diamond rotary cutting instrument from a veneer preparation set (Brasseler 

USA® Dental, Savannah, GA). The typodont tooth was sprayed with IPS lab side contrast spray 

(Ivoclar Vivadent, Liechtenstein) and scanned using an inEos Blue scanning camera (Sirona, 

Bensheim Germany). Ceramic veneers were designed using Sirona InLab 3D software SW4 

4.2.5 then milled into three different thicknesses (0.4 mm, 0.7 mm and 1.0 mm) using a Sirona 

InLab MCXL milling machine. Four different ceramic materials were used in this study. Table 1 

summarizes types and compositions of materials used. Milled veneers were inspected under the 

optical light microscope (IVS FSF Metallurgical Microscope, Zeiss, Germany) to determine the 

marginal chipping by taking a series of images of the perimeter of the veneer. Eight samples per 

group were inspected under the light microscope. The prepared ivorine incisor was used as the 

master die to fabricate 120 prepared tooth replicas using a highly filled epoxy adhesive resin. All 

veneers were cemented to their tooth replicas using Variolink veneer resin cement (Ivoclar 

Vivadent, Liechtenstein). Ten specimens per group were made. Five specimens from each group 

were loaded under compression using an Instron universal testing machine at a rate of 0.5 

mm/minute until fracture. The mean fracture load was calculated. The other five specimens were 

subjected to cyclic loading at 30% of the mean fracture load for 30,000 cycles at frequency rate 

of 1 Hz, and then were loaded under compression to fracture.  
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Test Groups: 

I. IPS e.max CAD 0.4 mm thickness 

II. IPS e.max CAD 0.7 mm thickness 

III. IPS e.max CAD 1.0 mm thickness 

IV. IPS Empress CAD 0.4 mm thickness 

V. IPS Empress CAD 0.7 mm thickness 

VI. IPS Empress CAD 1.0 mm thickness 

VII. VITA ENAMIC 0.4 mm thickness 

VIII. VITA ENAMIC 0.7 mm thickness 

IX. VITA ENAMIC 1.0 mm thickness 

X. Lava Ultimate 0.4 mm thickness 

XI. Lava Ultimate 0.7 mm thickness 

XII. Lava Ultimate 1.0 mm thickness  
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Table 1: Materials used in this study 
 

Material Composition wt% 

IPS Empress CAD  

(Ivoclar Vivadent, 
Liechtenstein) 

Luecite-reinforced glass ceramic 

SiO2:60.0-65.0%, Al2O3:16.0-20.0%, K2O:10.0-14.0%, 

Na2O: 3.5-6.5%, other oxides 0.5-7.0%, pigments 0.2-1.0% 

IPS e. max CAD 

(Ivoclar Vivadent, 
Liechtenstein). 

Lithium disilicate glass-ceramic 

SiO2 57.0-80.0%, Li2O 11.0-19.0%, K2O 0.0-13.0%, 

P2O5 0.0-11.0%, ZrO2 0.0-8.0 %, ZnO 0.0-8.0%, Al2O3 

0.0-5.0%, MgO 0.0-5.0%, Coloring oxides 0.0-0.8% 

VITA ENAMIC 
(Vita Zahnfabrik, 
Germany) 

Interpenetrated phase ceramic 

SiO2 58.0-63.0%, Al2O3 20.0-23.0%, Na2O 6.0-11.0%, 

K2O 4.0-6.0%, B2O3 0.5-2.0%, CaO<1, TiO2<1 

Lava Ultimate 
(3M ESPE, USA) 
 

Resin composite 

Nano ceramic silica and zirconia particles 80.0% 

embedded in a highly cross-linked polymer matrix 
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Variolink Veneer 

(Ivoclar Vivadent, 
Liechtenstein) 

 

Light curing resin cement 

Urethane dimethacrylate, inorganic fillers, Ytterbium 

trifluoride, initiators, stabilizers, pigments 

 

ExciTE F DSC 

A dual cure, fluoride releasing adhesive 

Adhesive Wt% 

Phosphonic acid acrylate, dimethacrylates,                                

Hydroxyethyl methacrylate 

Highly dispersed silicone dioxide 

Ethanol 

Catalysts, stabilizers, fluoride 

 

Applicator                     

 coated with initiators 

 

 

72.0% 

0.5% 

24.5% 

3.0% 

 

Wt% 

 

72.0% 

0.5% 

24.5% 

3.0% 

Monobond Plus 

Ethanol 50-100%, Trimethoxysilylpropyl methacrylate ≤ 

2.5% 

Methacrylated phosphoric acid ester ≤ 2.5% 

3M epoxy resin 
DP100 FR 

Epoxy adhesive 

Polyurethane, acrylic, cyanoacrylate and others 
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Table 2: Physical properties of materials used in the study 
 

 

 

 

 

 

 

 

 

 

 

  

Material 

Coefficient of 
Thermal 

expansion 
(10-6 · K-1) 

Flexural 
Strength 

(MPa) 

Fracture 
Toughness 
(MPa·m1/2) 

Modulus of 
Elasticity 

(GPa) 

IPS Empress 
CAD 

100-400°C 
16.6 

100-500°C 
17.5 

160 1.3 62 

IPS e. max CAD 

100-400°C 
10.2 

100-500°C 
10.5 

360 - 400 2.25 95 

VITA ENAMIC  150-160 1.5 30 

Lava Ultimate  204 2.02 12.77 
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Graph 1: Study design, IPS Empress CAD 
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10 veneers with 0.4 
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1.0 mm thickness
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loading

5 veneers on cyclic 
loading
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Graph 2: Study design, IPS e.max CAD  
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Graph 3: Study design, VITA ENAMIC 
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loading
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Graph 4: Study design, Lava Ultimate 
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loading

5 veneers on cyclic 
loading
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Preparation of Anterior Veneers: 

An ivorine typodont right central incisor (Model #D95SDP-200; Kilgore International, 

Inc., Coldwater, MI) (Figure 1) was selected to receive a veneer preparation. The tooth was 

prepared with a diamond rotary cutting instrument from a veneer preparation set (Brasseler 

USA® Dental, Savannah, GA). It was prepared with an incisal overlap preparation (IOP) having 

0.5 mm depth reduction at the middle and incisal thirds and 0.3 mm chamfer margin placed 1.0 

mm above the CEJ. The incisal edge was reduced 2.0 mm with a palatal chamfer and the 

interproximal finish line was located facially to the proximal contacts.  All specimens were done 

by the same operator.  The typodont tooth was sprayed with IPS contrast spray lab side (Ivoclar 

Vivadent, Liechtenstein) and scanned using an inEos Blue scanning camera (Sirona, Bensheim 

Germany) (Figure 2). Ceramic veneers were designed using Sirona InLab 3D software SW4 

4.2.5 (Figures 3,4) and the designs were saved and used for all successive veneers. Four different 

ceramic materials were selected for the study; namely IPS Empress CAD (Ivoclar  Vivadent, 

Liechtenstein), IPS e.max CAD (Ivoclar  Vivadent, Liechtenstein), VITA ENAMIC (Vita 

Zahnfabrik, Germany) and Lava Ultimate (3M ESPE,USA) (Figures 5-8). Veneers were milled 

into three different thicknesses (0.4 mm, 0.7 mm and 1.0 mm) using a Sirona InLab MCXL 

milling machine. At the conclusion of the milling process, veneers were thoroughly cleaned and 

dried (Figure 9). Specimens were cut from their respective blocks using a diamond disc. Veneers 

from IPS e.max CAD were subjected to crystallization firing using a Programat P300/G2, 

(Ivoclar Vivadent, Liechtenstein) (Figure 10) following manufacturer’s instructions (Table 3).   
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Figure 1: Right central incisor veneer preparation 
 

 

 

Figure 2: Sirona InLab Milling Machine and InEos Blue Scanner  
(Sirona, Bensheim Germany) 
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Figure 3: Typodont tooth scanned 
 
  
 
 

   
 
Figure 4: Veneer restoration design 
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Figure 5: IPS Empress CAD block 
 
 

 
Figure 6: IPS e.max CAD block  
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Figure 7:VITA ENAMIC block 
 

 

Figure 8: Lava Ultimate block  
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Figure 9: Milled veneer 
 

 

 

 

Figure 10: Programat CS furnace  
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Table 3: Crystallization firing steps for IPS e.max CAD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Stand-
by 

temp. 
°C/°F 

Closing 
Time 
min. 

Heating 
rate 

°C/°F 
/min 

Firing 
temp. 
°C/°F 

Holding 
Time 
min. 

Heating 
rate 

°C/°F 
/min 

Firing 
temp. 
°C/°F 

Holding 
time 
min. 

Vacuum 1 
11 °C/°F 
12 °C/°F 

Vacuum 2 
21 °C/°F 
22 °C/°F 

Long 
term 

cooling 
°C/°F 

Cooling 
rate 

°C/°F 
/min 

403/757 6.00 90/162 820/1508 0:10 30/54 840/1544 7:00 550/820 
1022/1508 

820/840 
1508/1540 700/1292 

0 



27 
 

Marginal Chipping Measurement: 

Milled veneers were inspected under the light microscope (IVS FSF Metallurgical 

Microscope, Zeiss, Germany) (Figure 11) by taking a series of images of the perimeter of the 

veneer to determine the marginal chipping. The chipping factor (CF) is an estimation of the 

degree of marginal chipping, which can be calculated by estimating the ratio of overall marginal 

chipping over the total marginal circumference of the restoration multiplied by 100 to give the 

percentage of chipping using the equation:  

𝐂𝐅 = 𝐋
𝐏

x100 

Where, L is the amount of marginal chipping and P is the marginal circumference of the 

restoration. 

 Eight samples from each group were inspected under the optical light microscope. The 

edge of each veneer was divided into four sections so that when the distance between two points 

was measured axially it would be a straight line. The samples were viewed with 10X 

magnification. The lengths of the chipped margins (L) of the veneers were measured with the x 

axis by calculating the mean of the chips for each veneer (Figures 12-15). The maximum veneer 

margin periphery (P) was measured and the chipping factor (CF) for each veneer was calculated 

using the equation above.  
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Figure 11: IVS FSF metallurgical light microscope 
 

 

 

 

Figure 12: Measuring the length of the chipped margin of IPS Empress CAD 0.4mm 
thickness  
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Figure 13: Measuring the length of the chipped margin of IPS e.max CAD 0.4mm thickness 
 

 

 

Figure 14: Measuring the length of the chipped margin of VITA ENAMIC 0.4mm 
thickness 

 

 

Figure 15: Measuring the length of the chipped margin of Lava Ultimate 0.4mm thickness  
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Fabrication of Abutments: 

The prepared ivorine central incisor was used as the master tooth to fabricate 120 

prepared tooth replicas using highly filled epoxy resin (3M™ Scotch-Weld™ Epoxy Adhesive 

100FR, 3M ESPE, USA) (Figure 16). This material has a modulus of elasticity of 75 GPa which 

is similar to human enamel. An impression of the prepared tooth was made according to the 

manufacturer’s instructions (Aquasil Ultra LV wash material regular set and Aquasil Ultra rigid 

tray material regular set, Dentsply Caulk, Milford, DE) (Figure 17). Epoxy resin was poured in 

the impression to fabricate the master die which was used to fabricate all 120 tooth replicas. The 

master die was fixed at a 125° angle between the long axis of the abutment and the horizontal 

plane of the abutment holder (Figure 18) to simulate the position at which forces are applied on a 

central incisor in the patient’s mouth. Molds of the epoxy resin master die were fabricated using 

(PlatSil® 73-25 Silicone Rubber, Polytek Development Corp., Easton, PA) (Figure 19) (Table 4). 

After the molds were cured, epoxy resin was injected in the mold and left for 24 hours to reach 

its full cure (Figure 20-21). Each mold was used to fabricate four tooth replicas which result in 

30 molds in total.  

 

 

Table 4: Specifications of PlatSil® 73-25 Silicone Rubber Material 
 
Mix Ratio Shore 

Hardness 

Pour Time Cured 

Color 

Mixed 

Viscosity 

Specific 

Volume 

Demold 

Time 

1A:1B A25 15 min. Green 6,000 cP 24.3 in³/lb 4-5 hr. 
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Figure 16: Highly filled epoxy resin adhesive 
 

 

Figure 17: Impression of the prepared tooth using Aquasil ultra LV and heavy material 
 

 

 
Figure 18: Epoxy resin master die fixed at 125° angle  
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Figure 19: PlatSil® 73-25 silicone rubber material 
 

 

Figure 20: Silicone rubber material mold after curing 
 

 

Figure 21: Cured epoxy resin abutment  
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Cementation of Veneers: 

The internal surfaces of the veneers were etched with 5% hydrofluoric acid etching gel 

(IPS Ceramic Etch Gel, Ivoclar Vivadent, Liechtenstein) for 60 seconds. After that, the etched 

surfaces were rinsed with water spray for 60 seconds (Figure 22), cleaned in ultrasonic cleaner 

for 5 minutes then dried with compressed oil-free air for 20 seconds. Monobond plus was applied 

to the pre-treated surfaces with a brush and left to react for 60 seconds. Then it was dispersed 

with a strong stream of air. A thin layer of luting composite resin cement (Variolink Veneer, 

Ivoclar Vivadent, Liechtenstein) (Figure 23) was applied on the inner surfaces of the veneers and 

then seated on their respective epoxy resin replicas with finger pressure. A small area of the 

veneer was light-cured for a few seconds to tack the restoration in place and the excess cement 

was removed. Last, the veneer was cured from all areas for 40 seconds to complete the cure.   
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Figure 22: 5% hydrofluoric acid, IPS Ceramic etching gel 
 

 

Figure 23: Luting composite resin cement, Variolink Veneer  
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Mechanical Testing: 

Five specimens per group were loaded under compression with a 6mm diameter stainless 

steel ball using an Instron universal testing machine (Model 5566A, Instron Co., Canton, MA) at 

0.5 mm/minute rate until fracture (Figures 24-25). The Instron machine was connected to a 

computer with a specifically designed program (BlueHill 3 software, Instron, Norwood, MA). 

This software controlled the testing machine and recorded the breakage load of the veneer.  

Failure was defined as occurrence of visible cracks, porcelain chipping, or audible events 

accompanied by a drop in the load by 20%. 

Another five specimens were subjected to cyclic loading by pneumatic powered cylinder 

and an electronic control device (Pober Industries, Waban MA) (Figures 26-28). The peak load 

applied on each specimen represented 30% of the mean fracture load of each material for 30,000 

cycles at a frequency of 1 Hz. The load was applied perpendicular to and at the center of the 

veneers by 6mm stainless steel balls. After cyclic loading was completed, the remaining samples 

were loaded in the universal testing machine under compression at 0.5mm/ minute until fracture 

occurred. Failure loads in Newtons were determined and compared. Failure modes; cohesive 

failure (veneer chipping), adhesive failure (veneer delamination) or catastrophic fracture (total 

fracture extending through the veneer and abutment) were observed and recorded after each test.  
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Figure 24: Universal testing machine with BlueHill software 
 

 

Figure 25: Testing setup at the universal testing machine  
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Figure 26: Plastic specimen holder for the cyclic loading 
 

 

Figure 27: Cyclic loading apparatus, Pober Industries, Waban MA 
 

 

Figure 28: Testing setup at the cyclic loading machine  
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Microscopic Examination: 

Optical Microscope: 

Two specimens were randomly selected from each group, cleaned in ultrasonic cleaner for 5 

minutes then then dried with compressed oil-free air for 20 seconds. Samples were examined 

under a light microscope (Ultra Swift Lite Illumination system, Carlsbad, CA) at different 

magnifications (Figure 29). 

 

 

Figure 29: Ultra Swift Light microscope  
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Statistical Analysis: 

Mean, standard deviation, and coefficient of variation for each group were calculated 

using Microsoft Excel software 2016 for Mac. The JMP Statistical Discovery from SAS software 

(SAS Campus Drive. Cary, NC, USA) was used for statistical analysis. 

The failure load was analyzed with one-way ANOVA with material thickness as an 

independent variable while controlling other variables (fatigue and material type), comparisons 

for all pairs was done using Tukey-Kramer HSD. A significance level of 0.05 was used.  
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RESULTS 

 

1. Chipping Factor: 

The chipping factor (CF) of four different materials with three different thicknesses (0.4mm, 

0.7mm and 1.0mm) were tested in the study. The mean chipping factor (CF) and standard 

deviations (SD) of each material are given in (Table 5).  The IPS Empress CAD 0.4mm marginal 

chipping was significantly greater than that of all other groups. Conversely, VITA ENAMIC 

0.7mm and Lava Ultimate 0.7mm marginal chipping were significantly less than IPS Empress 

CAD 0.7mm and IPS e.max CAD 0.7mm. There was no significant difference between materials 

at 1.0mm thickness. (Graph 5-7). The null hypothesis, that there is no significant difference in 

the marginal chipping of veneers made with different ceramic materials by calculating the 

chipping factor (CF), was rejected. Levels not connected with same letter were significantly 

different (Table 6). 
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Table 5: Descriptive statistics of chipping factor (CF) of different veneer materials 
 

Material/Thickness  Mean CF (%) Standard Deviation COV 
IPS Empress CAD 0.4mm 20.15 5.42 26.90 
IPS Empress CAD 0.7mm 6 1.29 21.50 
IPS Empress CAD 1.0mm 3.29 0.54 16.41 
IPS e.max CAD 0.4mm 8.69 2.01 23.13 
IPS e.max CAD 0.7mm 6.37 1.02 16.01 
IPS e.max CAD 1.0mm 2.93 0.72 24.57 
VITA ENAMIC 0.4mm 6.92 1.59 22.98 
VITA ENAMIC 0.7mm 3.09 0.51 16.50 
VITA ENAMIC 1.0mm 2.07 0.18 8.70 
Lava Ultimate 0.4mm 3.9 0.7 17.95 
Lava Ultimate 0.7mm 3.07 0.89 28.99 
Lava Ultimate 1.0mm 1.86 0.29 15.59 
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Graph 5: Mean values of chipping factor(CF) of different veneer materials at 0.4 mm 
thickness 

 
 

 

Graph 6: Mean values of chipping factor(CF) of different veneer materials at 0.7 mm 
thickness 
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Graph 7: Mean values of chipping factor(CF) of different veneer materials at 1.0 mm 
thickness 

   

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IPS Empress CAD IPS e.max CAD VITA ENAMIC Lava Ultimate 

C
hi

pp
in

g 
Fa

ct
or

 (%
)

Material



44 
 

Table 6: Comparison of chipping factor of all materials using Tukey-Kramer HSD 
 
Level Significant Difference Mean CF (%) 
IPS Empress CAD 0.4mm                    A 20.15 
IPS e.max CAD 0.4mm                                               B 6 
VITA ENAMIC 0.4mm                                                 B      C 3.29 
IPS e.max CAD 0.7mm                                               B      C     D 8.69 
IPS empress CAD 0.7mm                                           B      C     D    E 6.37 
Lava Ultimate 0.4mm                                                               C    D     E    F 2.93 
IPS Empress CAD 1.0mm                                                                      D     E    F 6.92 
VITA ENAMIC 0.7mm                                                                                    E    F 3.09 

Lava Ultimate 0.7mm                                                                                   E    F 2.07 
IPS e.max CAD 1.0mm                                                                                 E    F 3.9 
VITA ENAMIC 1.0mm                                                                                                 F 3.07 
Lava Ultimate 1.0mm                                                                                                F 1.86 
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2. Mechanical Testing: 

 Four different CAD/CAM materials milled at three different thicknesses (0.4 mm, 0.7 mm, 

1.0 mm) and subjected to static and cyclic loading were used in this study. Failure loads in 

Newtons and failure modes were registered. 

IPS Empress CAD 
The mean failure load (with standard deviation) values for IPS Empress CAD at different 

thicknesses (0.4mm, 0.7mm, 1.0mm) under static loading were as follows: 435.43(112.42), 

740.51(105.69), 656.60 (85.83). There was a significant difference between 0.4mm thickness and 

0.7mm thickness and between 0.4mm thickness and 1.0mm thickness. The null hypothesis, that 

there is no significant difference in the failure load of different veneering materials and 

thicknesses under static loading, was rejected. 

 

The mean failure load (with standard deviation) values for IPS Empress CAD at different 

thicknesses (0.4mm, 0.7mm, 1.0mm) under cyclic loading were as follows: 487.04 (110.93), 

704.68 (219.83), 741.11 (126.71). There was no significant difference in the cyclic fatigue of IPS 

Empress CAD at different thicknesses. The null hypothesis, that there is no significant difference 

in the failure load of different veneering materials and thicknesses under cyclic loading, was 

accepted. 

20% of IPS Empress CAD at 0.4 mm and 60% at 0.7 mm were cracked or fractured 

during cyclic loading. 

Descriptive statistics for all groups are available in Table 7.  
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Table 7: Descriptive statistics of failure loads of different thicknesses of IPS Empress CAD 
under static and cyclic loading 

Material Loading 
Type 

Mean Failure 
load 

(Newton) 

Standard 
Deviation 

Coefficient of 
Variation 

IPS Empress 
CAD 0.4mm 

Static 
Loading 

435.43 112.42 25.81 

cyclic 
fatigue 

487.04 110.93 22.77 

IPS Empress 
CAD 0.7mm 

Static 
Loading 

740.51 105.69 14.27 

cyclic 
fatigue 

704.68 219.68 31.19 

IPS Empress 
CAD 1.0mm 

Static 
Loading 656.60 85.83 13.07 

cyclic 
fatigue 

741.11 126.71 17.09 
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Graph 8: Mean values of failure loads of different IPS Empress CAD thickness under static 
and cyclic loading 

 

 

 

Comparing the data of static and cyclic fatigue within the same group, there is no 

significant difference between static and cyclic fatigue. The null hypothesis, that cyclic fatigue 

has no significant effect on the failure load of different veneering materials and thicknesses, was 

accepted.  However, comparing the data between groups, there is a significant difference 
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Table 8: Comparison of all IPS Empress CAD thicknesses under static and cyclic loading 
using Tukey-Kramer HSD 

Level Mean 
IPS Empress CAD  1.0mmC  A 741.11 
IPS Empress CAD 0.7mm      A 740.51 
IPS Empress CAD 0.7mmC   A  B 704.68 
IPS Empress CAD 1.0mm      A  B 656.6 
IPS Empress CAD 0.4mmC        B 487.04 
IPS Empress CAD 0.4mm           B 435.43 
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IPS e.max CAD  
The mean failure load (with standard deviation) values for IPS e.max CAD at different 

thicknesses (0.4mm, 0.7mm, 1.0mm) under static loading were as follows: 676.66 (152.83), 

854.65 (142.87), 905.33 (101.56). There was a significant difference between 0.4mm thickness 

and 1.0 thickness and there were no significant differences between 0.4 mm and 0.7 mm 

thickness or between 0.7 and 1.0 mm thickness. The null hypothesis, that there is no significant 

difference in the failure load of different veneering materials and thicknesses under static 

loading, was rejected. 

 

The mean failure load (with standard deviation) values for IPS e.max CAD at different 

thicknesses (0.4mm, 0.7mm, 1.0mm) under cyclic loading were as follows: 571.90 (84.18), 

828.07 (148.57), 911.97 (92.10). There was a significant difference between 0.4 mm and 0.7 mm 

thickness and between 0.4 mm and 1.0 mm thickness after cyclic fatigue whereas there was no 

significant difference between 0.7 mm and 1.0 mm thickness. The null hypothesis, that there is 

no significant difference in the failure load of different veneering materials and thicknesses 

under cyclic loading, was rejected. 

Descriptive statistics for all groups are available in Table 9.  
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Table 9: Descriptive statistics of failure loads of different thicknesses of IPS e.max CAD 
under static and cyclic loading 

Material Loading 
Type 

Mean Failure 
load 

(Newton) 

Standard 
Deviation 

Coefficient of 
Variation 

IPS e.max CAD 
0.4mm 

Static 
Loading 

676.66 152.83 22.58 

cyclic 
fatigue 

571.07 84.18 14.71 

IPS e.max CAD 
0.7mm 

Static 
Loading 

854.65 142.87 14.15 

cyclic 
fatigue 

828.07 148.57 17.51 

IPS e.max CAD 
1.0mm 

Static 
Loading 905.33 101.56 11.21 

cyclic 
fatigue 

911.97 92.10 10.09 
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Graph 9: Mean values of failure loads of different IPS e.max CAD thickness under static 
and cyclic loading 
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Table 10: Comparison of all IPS e.max CAD thicknesses under static and cyclic loading 
using Tukey-Kramer HSD 

Level                               Mean 
IPS e.max CAD 1.0mmC   A 911.97 
IPS e.max CAD 1.0mm     A 905.33 
IPS e.max CAD 0.7mm     A 854.65 
IPS e.max CAD 0.7mmC   A 828.07 
IPS e.max CAD 0.4mm     A  B 676.66 
IPS e.max CAD 0.4mmC       B 571.9 
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VITA ENAMIC 
The mean failure load (with standard deviation) values for VITA ENAMIC at different 

thicknesses (0.4mm, 0.7mm, 1.0mm) under static loading were as follows: 734.67 (43.07), 

672.88 (118.43), 759.26(149.94). There was no significant difference in the static fatigue of 

VITA ENAMIC at the different thicknesses. The null hypothesis, that there is no significant 

difference in the failure load of different veneering materials and thicknesses under static 

loading, was accepted. 

 

 

The mean failure load (standard deviation) values for VITA ENAMIC at different 

thicknesses (0.4mm, 0.7mm, 1.0mm) under cyclic loading were as follows: 608.06 (3.66). 

790.68 (139.35), 692.62 (183.99). There was no significant difference in the cyclic fatigue of 

VITA ENAMIC at the different thicknesses. The null hypothesis, that there is no significant 

difference in the failure load of different veneering materials and thicknesses under cyclic 

loading, was accepted. 

 

40% of VITA ENAMIC at 1.0 mm were cracked or fractured during cyclic loading. 

Descriptive statistics for all groups are available in Table 11.  
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Table 11: Descriptive statistics of failure loads of different thicknesses of VITA ENAMIC 
under static and cyclic loading 

Material Loading 
Type 

Mean Failure 
load 

(Newton) 

Standard 
Deviation 

Coefficient of 
Variation 

VITA ENAMIC 
0.4mm 

Static 
Loading 

734.67 43.07 32.4 

cyclic 
fatigue 

608.06 3.66 0.69 

VITA ENAMIC 
0.7mm 

Static 
Loading 

672.88 118.43 17.6 

cyclic 
fatigue 

790.68 139.35 17.62 

VITA ENAMIC 
1.0mm 

Static 
Loading 759.26 149.94 19.74 

cyclic 
fatigue 

692.62 183.99 26.56 
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Graph 10: Mean values of failure loads of different VITA ENAMIC thickness under static 
and cyclic loading 

 

 

Comparing the data of static and cyclic fatigue of VITA ENAMIC show that cyclic 

loading had no statistically significant effect on the material (Graph 8). The null hypothesis, that 

cyclic fatigue has no significant effect on the failure load of different veneering materials and 

thicknesses, was accepted. Levels not connected by same letter are significantly different (Table 

12).  
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Table 12: Comparison of all VITA ENAMIC thicknesses under static and cyclic loading 
using Tukey-Kramer HSD 

Level Mean 
VITA ENAMIC 0.7mmC   A 790.68 
VITA ENAMIC 1.0mm     A 759.26 
VITA ENAMIC 0.4mm     A 734.67 
VITA ENAMIC 1.0mmC  A 692.62 
VITA ENAMIC 0.7mm    A 672.88 
VITA ENAMIC 0.4mmC  A 608.06 
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Lava Ultimate  
The mean failure load (with standard deviation) values for Lava Ultimate at different 

thicknesses (0.4mm, 0.7mm, 1.0mm) under static loading were as follows: 489.25(66.18), 

565.86(83.95), 546.26(92.51). There was no significant difference in the static fatigue values of 

Lava Ultimate at different thicknesses. The null hypothesis, that there is no significant difference 

in the failure load of different veneering materials and thicknesses under static loading, was 

accepted. 

 

 

The mean failure load (with standard deviation) values for Lava Ultimate at different 

thicknesses (0.4mm, 0.7mm, 1.0mm) under cyclic loading were as follows: 556.21(143.97), 

420.15(35.98), 565.0(89.29). There was no significant difference in the cyclic fatigue 

measurements of Lava Ultimate at different thicknesses. The null hypothesis, that there is no 

significant difference in the failure load of different veneering materials and thicknesses under 

cyclic loading, was accepted. 

 

20% of Lava Ultimate at 0.4 mm, 0.7 mm and 1.0 mm thicknesses were cracked or 

fractured during cyclic loading. 

Descriptive statistics for all groups are available in Table 13.  
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Table 13: Descriptive statistics of failure loads of different thicknesses of Lava Ultimate 
under static and cyclic loading 

Material Loading 
Type 

Mean Failure 
load 

(Newton) 

Standard 
Deviation 

Coefficient of 
Variation 

LAVA 
ULTIMATE 

0.4mm 

Static 
Loading 

489.25 66.18 13.52 

cyclic 
fatigue 

556.21 143.97 11.41 

LAVA 
ULTIMATE 

0.7mm 

Static 
Loading 

565.86 83.95 14.83 

cyclic 
fatigue 

420.15 35.98 8.56 

LAVA 
ULTIMATE 

1.0mm 

Static 
Loading 546.26 92.51 16.93 

cyclic 
fatigue 

565.00 89.29 15.8 
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Graph 11: Mean values of failure loads of different Lava Ultimate thickness under static 
and cyclic loading 

 

 

Comparing the data of static and cyclic fatigue of Lava Ultimate shows that cyclic 

loading had no statistically significant effect on the material (Graph 9). The null hypothesis, that 

cyclic fatigue has no significant effect on the failure load of different veneering materials and 

thicknesses, was accepted.  Levels not connected by same letter are significantly different (Table 

14).  
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Table 14: Comparison of all Lava Ultimate thicknesses under static and cyclic loading 
using Tukey-Kramer HSD 

Level Mean 
Lava Ultimate 0.7mm       A 565.86 
Lava Ultimate 1.0mmC    A 565 
Lava Ultimate 0.4mmC    A 556.21 
Lava Ultimate 1.0mm       A 546.26 
Lava Ultimate 0.4mm       A 489.25 
Lava Ultimate 0.7mmC    A 420.15 
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A statistically significant difference was observed in the failure load between groups under static 

loading (Graph 10). Failure load of IPS e.max CAD and VITA ENAMIC was significantly 

higher than IPS Empress CAD and Lava Ultimate. Levels not connected by same letter are 

significantly different (Table 15). 

 

Graph 12: Mean values of failure load of different veneer materials of various thickness 
under static loading 
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Table 15: Comparison of all veneer materials and thicknesses under static loading using 
Tukey-Kramer HSD 

Level  
IPS e.max CAD 1.0mm           A 905.33 
IPS e.max CAD 0.7mm           A  B 854.65 
VITA ENAMIC 1.0mm          A  B  C 759.26 
IPS Empress CAD 0.7mm      A  B  C 740.51 
VITA ENAMIC 0.4mm          A  B  C 734.67 
IPS e.max CAD 0.4mm           A  B  C  D 676.66 
VITA ENAMIC 0.7mm          A  B  C  D  E 672.88 

IPS Empress CAD 1.0mm      A  B  C  D  E 656.6 
Lava Ultimate 0.7mm                       C  D  E 565.86 
Lava Ultimate 1.0mm                       C  D  E 546.26 
Lava Ultimate 0.4mm                           D   E 489.25 
IPS Empress CAD 0.4mm                          E 435.43 
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A statistically significant difference was observed in the failure load between groups under 

cyclic loading (Graph 11). Failure load of IPS e.max CAD, VITA ENAMIC and IPS 

Empress CAD was significantly higher than the load for Lava Ultimate. Levels not 

connected by same letter are significantly different (Table 16). 

Graph 13: Mean values of failure load of different veneer materials of various thickness 
under cyclic loading 

 

 

  

0

200

400

600

800

1000

1200

0.4mm 0.7mm 1.0mm 0.4mm 0.7mm 1.0mm 0.4mm 0.7mm 1.0mm 0.4mm 0.7mm 1.0mm

IPS Empress CAD IPS e.max CAD VITA ENAMIC Lava Ultimate 

Fa
ilu

re
 L

oa
d 

(N
ew

to
n)

Material Thickness

Cyclic Loading



64 
 

Table 16: Comparison of all veneer materials and thicknesses under cyclic loading using 
Tukey-Kramer HSD 

Level  
IPS e.max CAD 1.0mmC         A 911.97 
IPS e.max CAD 0.7mmC         A   B 828.07 
VITA ENAMIC 0.7mmC         A   B 790.68 
IPS Empress CAD 1.0mmC     A   B   C 741.11 
IPS Empress CAD 0.7mmC     A   B   C   D 704.68 
VITA ENAMIC 1.0mmC         A   B   C   D 692.62 
VITA ENAMIC 0.4mmC               B   C   D 608.06 
IPS e.max CAD 0.4mmC                B   C   D 571.9 
Lava Ultimate 1.0mmC                   B   C    D 565 
Lava Ultimate 0.4mmC                  B   C    D 556.21 
IPS Empress CAD 0.4mmC                 C    D 487.04 
Lava Ultimate 0.7mmC                               D 420.15 
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Comparison of all veneer materials of various thickness under static and cyclic loading was done 

with Tukey-Kramer HSD (Graph 12). Levels not connected by same letter are significantly 

different (Table 17). 

Graph 14: Mean values of different veneer materials of various thickness under static and 
cyclic loading 
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Table 17: Comparison of all veneer materials and thicknesses under static and cyclic 
loading using Tukey-Kramer HSD 

Level Mean 
IPS e.max CAD 1.0mmC        A 911.97 
IPS e.max CAD 1.0mm           A 905.33 

IPS e.max CAD 0.7mm           A    B 854.65 
IPS e.max CAD 0.7mmC        A    B   C 828.07 
VITA ENAMIC 0.7mmC        A   B    C    D 790.68 
VITA ENAMIC 1.0mm           A   B    C    D   E 759.26 
IPS Empress CAD 1.0mmC    A   B     C   D   E    F 741.11 
IPS Empress CAD 0.7mm       A   B     C   D   E    F 740.51 
VITA ENAMIC 0.4mm           A   B     C   D   E    F 734.67 
IPS Empress CAD 0.7mmC    A   B     C   D   E    F    G 704.68 
VITA ENAMIC 1.0mmC        A   B     C   D   E    F    G 692.62 
IPS e.max CAD 0.4mm           A    B     C    D  E    F    G 676.66 
VITA ENAMIC 0.7mm          A    B     C    D  E    F    G 672.88 
IPS Empress CAD 1.0mm      A    B     C    D  E    F    G 656.6 
VITA ENAMIC 0.4mmC              B     C    D  E    F     G 608.06 
IPS e.max CAD 0.4mmC                      C    D  E    F     G   571.9 
Lava Ultimate 0.7mm                           C    D  E    F     G 565.86 
Lava Ultimate 1.0mmC                        C    D  E    F     G 565 
Lava Ultimate 0.4mmC                        C    D  E    F     G 556.21 
Lava Ultimate 1.0mm                                  D  E    F     G 546.26 
Lava Ultimate 0.4mm                                             F     G 489.25 
IPS Empress CAD 0.4mmC                             E   F     G 487.04 
IPS Empress CAD 0.4mm                                             G 435.43 
Lava Ultimate 0.7mmC                                                 G 420.15 
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Failure Mode Evaluation: 

 
Regarding mode of failure, some materials failed adhesively (complete delamination of the 
veneer), cohesively (chipping of the veneer) or catastrophically which is fracture of both the 
veneer and the composite abutment (Table 18). 
 
Table 18: Mode of failure of materials used in the study 
 
Material Adhesive Cohesive Catastrophic 

IPS Empress CAD 0.4 mm  5 4 

IPS Empress CAD 0.7 mm  4 3 

IPS Empress CAD 1.0 mm  3 7 

IPS e.max CAD 0.4 mm 2  8 

IPS e.max CAD 0.7 mm 2  8 

IPS e.max CAD 1.0 mm 2  8 

VITA ENAMIC 0.4 mm  6 4 

VITA ENAMIC 0.7 mm 4 1 5 

VITA ENAMIC 1.0 mm 1 4 3 

Lava Ultimate 0.4 mm 6 2 1 

Lava Ultimate 0.7 mm 7 2  

Lava Ultimate 1.0 mm 8 1  
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IPS Empress CAD: (Figure 30-31) 

At 0.4mm thickness, some samples show a crack in the porcelain veneer with the epoxy resin die 

still covered with the porcelain veneer (cohesive failure, porcelain chipping).  Other 

samples show a crack that extends full depth of the porcelain veneer to the epoxy resin die. 

At the area of fracture, part of the epoxy resin die was attached to the porcelain veneer 

(catastrophic failure). 

At 0.7mm thickness, some samples show a crack in the porcelain veneer with the epoxy resin die 

still covered with the porcelain veneer (cohesive failure, porcelain chipping), and other 

samples show a crack that extend full depth of the porcelain veneer to the epoxy resin die. 

At the area of fracture, part of the epoxy resin die was attached to the porcelain veneer 

(catastrophic failure). 

At 1.0mm thickness, samples show a crack that extends the full depth of the porcelain veneer to 

the epoxy resin die. At the area of fracture, part of the epoxy resin die was attached to the 

porcelain veneer (catastrophic failure). 

 

IPS e.max CAD: (Figure 32-33) 

At 0.4mm thickness, samples show a crack that extends the full depth of the porcelain veneer to 

the epoxy resin die. At the area of fracture, part of the epoxy resin die was attached to the 

porcelain veneer (catastrophic failure). 

 

At 0.7mm thickness, samples show a crack that extends the full depth of the porcelain veneer to 



69 
 

the epoxy resin die. At the area of fracture, part of the epoxy resin die was attached to the 

porcelain veneer (catastrophic failure). 

At 1.0mm thickness, samples show a crack that extends the full depth of the porcelain veneer to 

the epoxy resin die. At the area of fracture, part of the epoxy resin die was attached to the 

porcelain veneer (catastrophic failure). 

 

VITA ENAMIC: (Figure 34-35) 

At 0.4mm thickness, samples show several cracks in the porcelain veneer with the epoxy resin 

die still covered with the porcelain veneer (cohesive failure, porcelain chipping). 

At 0.7mm thickness, most samples show a crack that extends the full depth of the porcelain 

veneer to the epoxy resin die. At the area of fracture, part of the epoxy resin die was 

attached to the porcelain veneer (catastrophic failure). 

At 1.0mm thickness, samples show several cracks in the porcelain veneer with the epoxy resin 

die still covered with the porcelain veneer (cohesive failure, porcelain chipping). 

 

Lava Ultimate: (Figure 36-37) 

At 0.4mm thickness, samples show a fracture in the porcelain veneer and the epoxy resin was 

completely exposed (adhesive failure). 

 

At 0.7mm thickness, samples show a fracture in the porcelain veneer and the epoxy resin was 
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completely exposed (adhesive failure). 

At 1.0mm thickness, samples show a fracture in the porcelain veneer and the epoxy resin was 

completely exposed (adhesive failure).  
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Figure 30: Mode of failure of IPS Empress CAD at 0.4mm and 0.7mm, Cohesive failure 
 

 

Figure 31: IPS Empress CAD under light microscope 15X 
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Figure 32: Mode of failure of IPS e.max CAD at 0.4mm, 0.7mm and 1.0mm, Catastrophic 
failure 
 

 

 

Figure 33: IPS e.max CAD under light microscope 15X 
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Figure 34: Mode of failure of VITA ENAMIC at 0.4mm, 0.7mm and 1.0mm, Cohesive 
failure 

 

 

Figure 35: VITA ENAMIC under light microscope 15X 
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Figure 36: Mode of failure of Lava Ultimate at 0.4mm, 0.7mm and 1.0mm, Adhesive failure 
 

 

 

Figure 37: Lava Ultimate under light microscope X15  
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DISCUSSION 

 Load to failure laboratory tests usually investigate variables that are thought to affect the 

clinical success of restorations, and to evaluate new materials or designs under controlled 

conditions.33 Using extracted natural teeth optimally represents clinical conditions more closely 

than artificial abutments.14,27 However, standardization of human teeth is difficult because of 

their large variations in size, shape, anatomy, storage time after extraction and fracture during 

loading due to elastic modulus changes in the extracted teeth.14,27 Free hand preparation may 

result in variable depths of preparation with different veneer dimensions and the possibility of 

dentin exposure than can affect the restoration bonding. Therefore, using artificial teeth as 

abutments means that the material can be easily standardized.14 In the current study, highly filled 

epoxy resin abutments (3M™ Scotch-Weld™ Epoxy Adhesive 100FR, 3M ESPE, USA) were 

used instead of natural teeth because of their closer elastic modulus (E=75 GPa) to enamel-dentin 

junction (E<70 GPa). Cuy et al. reported that the range of enamel elastic modulus is (E>115 

GPa) and it significantly decreases when going from the enamel surface towards dentin as seen 

in (Figure 38).34  

 Regarding veneer preparation design, an even reduction of 0.5mm enables sufficient space 

for porcelain veneers to be fabricated without bulk and with excellent color. Excessive reduction 

will increase the dependence on the bonding agent system to seal and retain the restoration.35 

Highton et al. stated that incisal overlap preparation distributes the incisal load and eventually 

lowers stress concentration on the veneer restoration.36 Furthermore, some authors found better 

results with incisal edge coverage as it enhances veneer survival, esthetics, adequate seating of 

the restoration and provides the veneer with greater bulk of porcelain, which can reduce the 
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incidence of fractures on the palatal surface.37  



77 
 

Figure 38: Mechanical properties variation between the enamel surface and the enamel-
dentin junction. Average values of E that have been reported by other authors are included 
for comparison 
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1) Chipping Factor (CF) 

CAD/CAM ceramic materials specifically available for machining potentially suffer from 

chipping defects. Many parameters can be considered to measure machinability of ceramic 

materials including tool wear, surface roughness, cutting force, cutting energy, drilling rates, 

etc.21 Boccaccini proposed the brittleness index as another parameter for estimating 

machinability. Brittleness is the measure of a material susceptibility to deformation and fracture, 

involving hardness (H) which quantifies resistance to deformation, and toughness (KIc) which 

quantifies resistance to fracture.24 However, it is hard to find a way for measuring machining of 

ceramic materials other than direct experimentation. 

In the present study, chipping factor (CF) was the method used to measure marginal chipping 

of the materials. The results showed that the chipping factor (CF) varies according to the material 

used. It was found that the nano ceramic material (Lava Ultimate) and the hybrid ceramic (VITA 

ENAMIC) had the lowest chipping factor while the leucite-reinforced glass ceramic (IPS 

Empress CAD) had the highest chipping factor. These results were consistent with a previous 

study done by Tsitrou et al. that showed the composite material (Paradigm MZ100) had the 

lowest chipping factor when compared with the other ceramic materials used. They also 

concluded that there was a positive correlation between the chipping factor and the brittleness 

index of the material. Their results showed that the composite material had the lowest brittleness 

index and  that it has better machinability compared to ceramic materials.21 

Additionally, marginal discrepancy may arise from software limitations in designing 

restorations such as veneers, and hardware limitations of the camera, scanning equipment and 

milling systems could generate errors in the CAD/CAM technique especially during milling the 
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fine details like the finish lines of the restoration.20 Moreover, marginal chipping may result from 

overgrinding of the bur which may be of a larger diameter than some parts of the tooth 

preparation, by the brittle nature of the material used, and by milling vibration.10,20 

Giannetopoulos et al. showed that CEREC inEOS system uses an abrading procedure (milling) to 

fabricate restorations. This procedure is called the “subtractive method” because the material is 

usually subtracted from a block to produce the desired shaped restoration, and that can possibly 

affect the quality of the margins.38 

The present study showed that the chipping factor (CF) varies with the thickness of the 

material used. As the thickness of a material increases, the chipping factor decreases. Veneers 

fabricated at 1.0mm thickness had marginal defects less than those fabricated at 0.4mm 

thickness. 

To the best of our knowledge, there are limited studies in the literature that test the marginal 

chipping of CAD/CAM fabricated veneers. Applying minimally invasive procedures with 

CAD/CAM is relatively new and not many studies have been found in the literature examining 

the performance of these types of restorations.38  
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2) Mechanical Testing 

Fracture strength is considered one of the main criteria for the long-term success of 

restorations. The values that are reported in the previous studies about fracture strength of all 

ceramic systems are extremely variable. Fracture strength depends on the modulus of elasticity 

of the die structure, type of luting agent used, design of tooth preparation and restoration 

thickness.39 

The recommendations described by Kelly for clinically relevant in vitro load to failure tests 

for all ceramic restorations were followed in the current study. This included the type of die 

material used, preparing teeth according to clinical guidelines and utilizing a commonly used 

luting agent.33 

In the present study, there was a significant difference between 0.4 mm, 0.7 mm, and 1.0 mm 

thickness in IPS Empress CAD and IPS e.max CAD but not in VITA ENAMIC and Lava 

Ultimate under static loading. A study by Johnson et al. compared the effect of different 

thicknesses, 0.3, 0.6, and 1.0mm, on the fracture strength of posterior occlusal veneers. They 

found that restoration thickness had no significant effect on the fracture strength and suggested 

that restorations as thin as 0.3mm can be used in areas subjected to masticatory forces.30 The 

mean failure load of IPS Empress CAD and IPS e.max CAD veneers at 0.4mm thickness were 

significantly lower than in 0.7mm and 1.0mm thickness. The null hypothesis that different 

thickness has no significant effect on the fracture load of different veneers materials is rejected. 

These results coincide with Chunling et al. who concluded that increasing the porcelain thickness 

significantly raised the failure loads needed to cause catastrophic failure of bonded porcelain 

veneers.12 
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Regarding material type, flexural strengths of IPS e.max CAD and VITA ENAMIC were 

significantly higher than those of IPS Empress CAD and Lava Ultimate. A study by Stawarczyk 

et al. revealed that lithium disilicate (IPS e.max CAD) had the highest flexural strength values 

when compared to CAD/CAM composites, VITA ENAMIC and IPS Empress CAD. Lithium 

disilicate materials show high initial flexural strength but can succumb to spontaneous fracture 

due to the brittle behavior of dental ceramics.40 

VITA ENAMIC is a hybrid dental ceramic that includes both properties of ceramics and 

composites. It has high flexural strength as well as better elastic properties than ceramics. VITA 

ENAMIC has elastic modulus values close to human tooth structure and its considered to be a 

very homogenous material with very good reliability.40 Presence of polymer in the 

microstructure of VITA ENAMIC has added some plasticity to the material and subsequently 

has made this material resistant to crack propagation and prevents it from unexpected brittle 

fracture.41 

All of the composite resin abutments were fabricated 125° to the long axis and fixed in place 

in the Instron machine to load all specimens in the same direction as the occlusal forces directed 

against maxillary anterior dentition. 14,42 

Static loading to fracture is a test that is commonly used to give an indication whether a 

material or a type of restoration can be considered a feasible option clinically. However, this test 

can also show the strength of the restoration immediately after bonding and show values of 

fracture resistance that do not indicate long-term success of a restoration.  On the other hand, 

restorations in the oral cavity are loaded in their lifetime with many cycles which can result in a 

major reduction of the material’s strength due to fatigue.7 
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During chewing simulation, several tested veneers from IPS Empress CAD, VITA ENAMIC 

and Lava Ultimate were cracked or fractured. Veneers fabricated from IPS e.max CAD survived 

cyclic fatigue with no fracture. Failure load of the veneers that survived artificial aging were not 

significantly affected by cyclic loading. Several factors can affect the variations in the fracture 

strength of ceramic restorations such as: restoration thickness, tooth preparation and luting agent. 

A more important factor than contributes to failure of ceramic restorations is the environment.43 

In the present study, specimens were fatigued under dry conditions and that might explain why 

there was no significant difference between static and cyclic loading of the specimens. Kelly et 

al. have shown that dental ceramics are sensitive to water under static and cyclic loading. It has 

been found that water can decrease the strength of ceramics by acting chemically at the crack 

tips. Cyclic loading under dry conditions do not seem to lead to any cementation surface damage 

and cannot be used alone to cause failure.33 Moreover, water in the current study decreased the 

strength of the epoxy resin abutments which could affect the veneer load to failure. Sobrinho et 

al. stated that there was a decrease in strength of In-Ceram, optimal pressable ceramic (OPC) and 

IPS Empress when tested under wet conditions.43 

In the present study, there was a significant difference between groups of IPS Empress CAD 

and IPS e.max CAD 0.4mm and (0.7 and 1.0mm) thicknesses but not in VITA ENAMIC and 

Lava Ultimate. That might be due to their low elastic moduli which allow more absorption of 

functional stresses through deformation.44 Additionally, the presence of polymer in their 

composition adds plasticity to the materials which makes them resistant to crack propagation.41  

 The ability of ceramic restorations to survive chewing forces is compromised by the 

presence of surface cracks, defects on the surface as a result of machining and grinding.7 Several 

veneers fractured during masticatory stimulation in this study.  This can be influenced by 
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materials thickness and machining defects. Generally, some fractured specimens involved the 

veneer material only and others extended to involve the epoxy resin abutment as well. This may 

be explained by the difference in the elastic modulus of ceramic materials, resin cement, and 

epoxy resin abutments. Tensile stresses usually develop at the cement interface in ceramic 

materials. Theses stresses are more sensitive to the variation in the elastic moduli of ceramic 

veneer, cement and composite abutment than to the thickness of the material.10,27 

To the author’s knowledge, data from previous studies regarding fracture tests of anterior 

CAD/CAM veneers using epoxy resin as abutments cannot be compared to this study due to 

different test conditions, including the die material used, ceramic materials, load direction and 

preparation design. Additionally, the mean failure load values in the present study ranged from 

420 to 912 N, reaching higher levels than the average masticatory forces in the anterior dentition 

(20 to 160 N).10  

Increasing the veneer failure strength may be usually considered as a favorable outcome. 

However, if such increase is accompanied by increasing the incidence of tooth damage during 

failure, then achieving those high veneer strengths may not be worth it. In this study, the failures 

of anterior veneers were mostly within the restorative material and did not cause damage to the 

composite abutment, which coincides with previous studies that the main cause of failure of 

facial veneers is chipping or fracture of the veneer.31 

In this study, fracture loads after cyclic loading for some groups were slightly higher than 

their counterpart with no cyclic fatigue but are not significantly different. There might be two 

explanations of this result. First, the higher failure load is an effect of the small sample size. 

Second, wearing during cyclic fatigue at the contact points adjusted the fit of the stainless steel 

ball in the consequent ultimate load testing. 
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According to the mode of failure in this study, a majority of IPS Empress CAD and IPS 

e.max CAD samples fractured at the veneer with the abutment (Catastrophic failure). Total 

fractures might be due to the high modulus of elasticity in IPS Empress CAD and IPS e.max 

CAD (62,95 GPa) respectively. Additionally, IPS e.max CAD has a high flexural strength (360-

400 MPa), and that may explain the catastrophic failure in these samples. A few samples failed 

within the veneer material only (cohesive failure). 

Cohesive failure was seen in VITA ENAMIC samples which may indicate the existence of a 

good interfacial bond between the veneer and the underlying die structure.45  A majority of Lava 

Ultimate samples showed adhesive failure and that may be due the weak bonding of Lava 

Ultimate. The manufacturer removed the crown indication for this material because crowns are 

debonded at a higher than expected rate.  
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CONCLUSIONS: 

From this in vitro study, the following conclusions were drawn within the scope of current test 

conditions: 

1) The chipping factor decreases as the material thickness increases and can be used as an 

indicator of a material’s machinability. 

2) IPS Empress CAD had the highest chipping factor when compared to other materials 

used. 

3) IPS e.max CAD at 1.0mm thickness showed the highest failure load values under static 

loading. 

4) Cyclic loading had no significant effect on the failure load of the veneers tested. 

5) When comparing static and cyclic fatigue of the same material, IPS Empress CAD and 

IPS e.max CAD at 0.4mm were significantly lower than in 0.7mm and 1.0mm thickness. 

6) IPS e.max CAD and VITA ENAMIC showed the highest failure load values when 

compared to other materials used. 

7) Considering mode of failure, the majority of IPS Empress CAD and IPS e.max CAD 

specimens showed catastrophic failure. VITA ENAMIC showed cohesive failure while 

Lava Ultimate showed adhesive failure.   
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