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A B S T R A C T

A gradual buildup of electrical potential over motor areas precedes self-initiated movements. Recently, such
“readiness potentials” (RPs) were attributed to stochastic fluctuations in neural activity. We developed a new
experimental paradigm that operationalized self-initiated actions as endogenous ‘skip’ responses while waiting for
target stimuli in a perceptual decision task. We compared these to a block of trials where participants could not
choose when to skip, but were instead instructed to skip. Frequency and timing of motor action were therefore
balanced across blocks, so that conditions differed only in how the timing of skip decisions was generated. We
reasoned that across-trial variability of EEG could carry as much information about the source of skip decisions as
the mean RP. EEG variability decreased more markedly prior to self-initiated compared to externally-triggered
skip actions. This convergence suggests a consistent preparatory process prior to self-initiated action. A leaky
stochastic accumulator model could reproduce this convergence given the additional assumption of a systematic
decrease in input noise prior to self-initiated actions. Our results may provide a novel neurophysiological
perspective on the topical debate regarding whether self-initiated actions arise from a deterministic neuro-
cognitive process, or from neural stochasticity. We suggest that the key precursor of self-initiated action may
manifest as a reduction in neural noise.

Introduction

Functional and neuroanatomical evidence has been used to distin-
guish between two broad classes of human actions: self-initiated actions
that happen endogenously, in the absence of any specific stimulus
(Haggard, 2008; Passingham et al., 2010), and reactions to external cues.
Endogenous actions are distinctive in several ways. First, they depend on
an internal decision to act and are not triggered by external stimuli. In
other words, the agent decides internally what to do, or when to do it,
without any external cue specifying the action (Passingham et al., 2010).
Second, we often deliberate and consider reasons before choosing and
performing one course of action rather than an alternative. Thus,
endogenous actions should be responsive to reasons (Anscombe, 2000).

Many neuroscientific studies of self-initiated action lack this reasons-
responsive quality. They often involve the paradoxical instruction to ‘act
freely’ e.g., “press a key when you feel the urge to do so” (Cunnington
et al., 2002; Jahanshahi et al., 1995; Libet et al., 1983; Wiese et al.,

2004). However, this instruction has been justifiably criticised (Nachev
and Hacker, 2014). Here, we adapted for humans a paradigm previously
used in animal research (Murakami et al., 2014), which embeds endog-
enous actions within the broader framework of decision-making. Par-
ticipants responded to the direction of unpredictably-occurring dot
motion stimuli by pressing left or right arrow keys (Gold and Shadlen,
2007). Importantly, they could also choose to skip waiting for the stimuli
to appear, by pressing both keys simultaneously whenever they wished.
The skip response thus reflects a purely endogenous decision to act,
without any direct external stimulus, and provides an operational defi-
nition of a self-initiated action. Self-initiated ‘skip’ responses were
compared to a block where participants made the same bilateral ‘skip’
actions in response to an unpredictable change in the fixation
point (Fig. 1).

Controversies regarding precursor processes have been central to
neuroscientific debates about volition (Dennett, 2015; Libet et al., 1983).
The classical neural precursor is the readiness potential (RP: (Kornhuber
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and Deecke, 1965)). The RP is taken to be “the electro-physiological sign
of planning, preparation, and initiation of volitional acts” (Kornhuber
and Deecke, 1990) and was considered a pre-requisite of the conscious
intention to act (Libet et al., 1983; Sinnott-Armstrong and Nadel, 2010).

Classical studies explicitly or implicitly assume that the RP reflects a
putative ‘internal volitional signal’, with a constant, characteristic ramp-
like form, necessarily preceding action initiation - although this signal is
heavily masked by noise on any individual trial (Dirnberger et al., 2008).
However, the idea that the RP reflects a specific precursor process has
been recently challenged. Instead, the time of crossing a threshold for
movement could depend in part on stochastic fluctuations in neural ac-
tivity (Murakami et al., 2014; Schurger et al., 2012). Crucially, averaging
such fluctuations time-locked to action initiation reproduced the
“build-up” pattern of the mean RP, suggesting that the classical inter-
pretation of RP as a stable precursor of voluntary action could be
deceptive. On this account, RP is not a specific, goal-directed process that
triggers action, but is rather an artefact of biased sampling and averaging
of neural noise (Murakami et al., 2014; Schurger et al., 2012).

However, classical and stochastic models offer different explanations
for the variability of EEG signals prior to self-initiated action. On the
stochastic model, neural activity eventually and necessarily converges
because stochastic fluctuations must approach the motor threshold from
below. The degree to which the EEG signal converges prior to action and
the timing of that convergence should depend only on the parameters of
the accumulator, and the temporal structure of the noise input to the
accumulator. In contrast, classical models would attribute the conver-
gence of single trial RPs to consistent precursor processes of action
preparation that reliably precede self-initiated action. While variability
of RP activity has rarely been studied previously (but see (Dirnberger

et al., 2008)), several studies of externally-triggered processing have used
variability of neural responses to identify neural codes. For example,
variability goes down in the interval between a go-cue and movement
onset (Churchland et al., 2006), and during perceptual processing (He,
2013; Schurger et al., 2015). We thus compared EEG variability prior to
self-initiated skip actions with variability prior to externally-triggered
actions occurring at a similar time. We used a systematic modelling
approach to show that a stochastic accumulator framework could indeed
explain the pattern of EEG variability, but only by assuming an additional
process modulating the level of neural noise.

Materials and methods

Participants

24 healthy volunteers, aged 18–35 years of age (9 male, mean
age ¼ 23 years), were recruited from the Institute of Cognitive Neuro-
science subject data pool. Two participants were excluded before data
analysis (they provided insufficient EEG data because of excessive
blinking). All participants were right handed, had normal or corrected to
normal vision, had no history or family history of seizure, epilepsy or any
neurologic or psychiatric disorder. Participants affirmed that they had
not participated in any brain stimulation experiment in the last 48 h, nor
had consumed alcohol in the last 24 h. Participants were paid an
institution-approved amount for participating in the experiment. Exper-
imental design and procedure were approved by the UCL research ethics
committee, and followed the principles of the Declaration of Helsinki.

Fig. 1. Timeline of an experimental trial. Participants responded to the direction of dot-motion with left and right keypresses. Dot-motion could begin unpredictably, after a delay drawn
from an exponential distribution. A. In the ‘self-initiated’ blocks participants waited for an unpredictably occurring dot-motion stimulus, and were rewarded for correct left-right responses
to motion direction. They could decide to skip long waits for the motion stimulus, by making a bilateral keypress. They thus decided between waiting, which lost time but brought a large
reward, and ‘skipping’, which saved time but brought smaller rewards. The colour of the fixation cross changed continuously during the trial, but was irrelevant to the decision task. B. In
the ‘externally-triggered’ blocks, participants were instructed to make bilateral skip keypresses when the fixation cross became red, and not otherwise.
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Behavioural task and procedure

Participants were placed in an electrically shielded chamber, 55 cm in
front of a computer screen (60 Hz refresh rate). After signing the consent
form, the experimental procedure was explained and the EEG cap was set
up. The behavioural task was as follows: participants were instructed to
look at a fixation cross in the middle of the screen. The colour of the
fixation cross changed slowly and continuously throughout the trial. This
colour always started from ‘black’ and then gradually changed to other
colours in a randomised order. The fixation cross changed colour grad-
ually (e.g., from green to pink), taking 2.57 s. The fixation cross was
initially black, but the sequence of colours thereafter was random. At the
same time, participants waited for a display of randomly moving dots
(displayed within a circular aperture of 7� of diameter with a density of
14.28 dots/degree), initially moving with 0% coherence with a speed of
2�/s (Desantis et al., 2016a, 2016b), to move coherently (step change to
100% coherence) towards the left or right. They responded with the left
or right hand by pressing a left or right arrow key on a keyboard,
accordingly. The change in dot motion coherence happened abruptly.
Correct responses were rewarded (2p). Conversely, participants lost
money (-1p) for giving a wrong answer (responding with the left hand
when dots were moving to right or vice versa), for responding before dots
start moving, or not responding within 2 s after dot motion. The trial was
interrupted while such error feedback was given. Importantly, the time of
coherent movement onset was drawn unpredictably from an exponential
distribution (min ¼ 2 s, max ¼ 60 s, mean ¼ 12 s), so waiting was
sometimes extremely long. However, this wait could be avoided by a
‘skip’ response (see later). Participants could lose time by waiting, but
receive a big reward (2p) if they responded correctly, or could save time
by ‘skipping’ but collect a smaller reward (1p) (Fig. 1A). The experiment
was limited to one hour, so using the skip response required a general
understanding of the trade-off between time and money. Participants
were carefully informed in advance of the rewards for responses to dot
motion, and for skip responses, and were clearly informed that the
experiment had a fixed duration of one hour.

There were two blocked conditions, which differed only in the origin
of the skip response. In the ‘self-initiated’ condition blocks, participants
could skip waiting if they chose to, by pressing the left and right response
keys simultaneously. The skip response saved time, but produced a
smaller reward (1p) than a response to dot motion. Each block consisted
of 10 trials. To ensure consistent visual attention, participants were
required to monitor the colour of the fixation cross, which cycled through
an unpredictable sequence of colours. At the end of each block they were
asked to classify the number of times the fixation cross turned ‘yellow’,
according to the following categories: never, less than 50%, 50%, more
than 50%. They lost money (-1p) for giving a wrong answer. At the end of
each block, participants received feedback of total reward values, total
elapsed time, and number of skips. They could use this feedback to adjust
their behaviour and maximise earnings, by regulating the number of
endogenous ‘skip’ responses.

In the ‘externally-triggered’ condition blocks, participants could not
choose for themselves when to skip. Instead, they were instructed to skip
only in response to an external signal. The external signal was an un-
predictable change in the colour of the fixation cross to ‘red’ (Fig. 1B).
Participants were instructed to make the skip response as soon as they
detected the change. The time of the red colour appearance was yoked to
the time of the participant's own previous skip responses in the imme-
diately preceding self-initiated block, in a randomised order. For par-
ticipants who started with the externally-triggered block, the timing of
the red colour appearance in the first block only was yoked to the time of
the previous participant's last self-initiated block. The colour cycle of the
fixation cross had a random sequence, so that the onset of a red fixation
could not be predicted. The fixation cross ramped to ‘red’ from its pre-
vious colour in 300 ms. Again, a small reward (1p) was given for skip-
ping. The trial finished and the participant lost money (-1p) if s/he did
not skip within 2.5 s from beginning of the ramping colour of the fixation

cross. The ‘red’ colour was left out of the colour cycle in the self-initiated
blocks. To control for any confounding effect of attending to the fixation
cross, participants were also required to attend to the fixation cross in the
self-initiated blocks and to roughly estimate the number of times the
fixation cross turned ‘yellow’ (see previous). Each externally-triggered
block had 10 trials, and after each block feedback was displayed. Each
self-initiated block was interleaved with an externally-triggered block,
and the order of the blocks was counterbalanced between the partici-
pants. The behavioural task was designed in Psychophysics Toolbox
Version 3 (Brainard, 1997).

EEG recording

While participants were performing the behavioural task in a shielded
chamber, EEG signals were recorded and amplified using an ActiveTwo
Biosemi system (BioSemi, Amsterdam, The Netherlands). Participants
wore a 64-channel EEG cap. To shorten the preparation time, we recor-
ded from a subset of electrodes that mainly covers central and visual
areas: F3, Fz, F4, FC1, FCz, FC2, C3, C1, Cz, C2, C4, CP1, CPz, CP2, P3, Pz,
P4, O1, Oz, O2. Bipolar channels placed on the outer canthi of each eye
and below and above the right eye were used to record horizontal and
vertical electro-oculogram (EOG), respectively. The Biosemi Active
electrode has an output impedance of less than 1 Ohm. EEG signals were
recorded at a sampling rate of 2048 Hz.

EEG preprocessing

EEG data preprocessing was performed in Matlab (MathWorks, MA,
USA) with the help of EEGLAB toolbox (Delorme and Makeig, 2004).
Data were downsampled to 250 Hz and low-pass filtered at 30 Hz. No
high-pass filtering and no detrending were applied, to preserve slow
fluctuations. All electrodes were referenced to the average of both mas-
toid electrodes. Separate data epochs of 4 s duration were extracted for
self-initiated and externally-triggered skip actions. Data epochs started
from 3 s before to 1 s after the action. To avoid EEG epochs overlapping
each other any trial in which participants skipped earlier than 3 s from
trial initiation was removed. On average, 5% and 4% of trials were
removed from the self-initiated and externally-triggered conditions,
respectively.

RP recordings are conventionally baseline-corrected by subtracting
the average signal value during a window from, for example, 2.5 until 2 s
before action. This involves the implicit assumption that RPs begin only
in the 2 s before action onset (Shibasaki and Hallett, 2006), but this
assumption is rarely articulated explicitly, and is in fact questionable
(Verbaarschot et al., 2015). We instead took a baseline from �5 ms to
þ5 ms with respect to action onset. This choice avoids making any
assumption about how or when the RP starts. To ensure this choice of
baseline did not capitalize on chance, we performed parallel analyses on
demeaned data (effectively taking the entire epoch as baseline), with
consistent results (see Fig. S3). Finally, to reject non-ocular artefacts, data
epochs from EEG channels (not including EOG) with values exceeding a
threshold of ±150 μv were removed. On average 7% and 8% of trials
were rejected from self-initiated and externally-triggered conditions,
respectively. In the next step, Independent Component Analysis (ICA)
was used to remove ocular artefacts from the data. Ocular ICA compo-
nents were identified by visual inspection. Trials with artefacts remaining
after this procedure were excluded by visual inspection.

EEG analysis

Preliminary inspection showed a typical RP-shaped negative-going
slow component that was generally maximal at FCz. Therefore, data from
FCz was chosen for subsequent analysis. Time series analysis was per-
formed in Matlab (MathWorks) with the help of the FieldTrip toolbox
(Oostenveld et al., 2010). We measured two dependent variables as
precursors of both self-initiated and externally-triggered skip actions: (1)
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mean RP amplitude across trials and (2) variability of RP amplitudes
across and within trials, measured by standard deviation (SD). To
compare across-trials SD between the two conditions, data epochs were
divided into four 500 ms windows, starting 2 s before action onset: [�2,
�1.5 s], [�1.5, �1 s], [�1, �0.5 s], [�0.5, 0 s]. All p-values were Bon-
ferroni corrected for four comparisons. To get a precise estimate of the
standard error of the difference between conditions, paired-samples
t-tests were performed on jack-knifed data (Efron and Stein, 1981; Kie-
sel et al., 2008). Unlike the traditional methods, this technique compares
variation of interest across subsets of the total sample rather than across
individuals, by temporarily leaving each subject out of the calculation. In
addition, we also performed cluster-based permutation tests on SD (Maris
and Oostenveld, 2007). These involve a priori identification of a set of
electrodes and a time-window of interest, and incorporate appropriate
corrections for multiple comparisons. Importantly, they avoid further
arbitrary assumptions associated with selecting specific sub-elements of
the data of interest, such as individual electrodes, time-bins or ERP
components. The cluster-based tests were performed using the following
parameters: time interval ¼ [�2–0 s relative to action], minimum
number of neighbouring electrodes required ¼ 2, number of draws from
the permutation distribution ¼ 1000.

To measure variability of RP amplitudes within each individual trial,
the SD of the EEG signal from FCz was measured across time in a 100 ms
window. This window was applied successively in 30 time bins from the
beginning of the epoch (3 s prior to action) to the time of action onset. We
used linear regression to calculate the slope of the within-trial SD as a
function of time (Fig. 6A). This was performed separately for each trial
and each participant. Slopes greater than 0 indicate that EEG within the
100 ms window becomes more variable with the approach to action
onset. Finally, we compared slopes of this within-trial SD measure be-
tween self-initiated and externally-triggered conditions in a multilevel
model with single trials as level 1 and participants as level 2 variables.
Multilevel analysis was performed in R (R Core Team, Vienna, Austria).

Time-frequency analysis was performed with custom written Matlab
scripts. The preprocessed EEG time series were decomposed into their
time-frequency representation by using Complex Morlet wavelets with
20 frequencies, ranging linearly from 5 to 30 Hz. The number of wavelet
cycles increased from 3 to 7 in the same number of steps used to increase
the frequency of the wavelets from 5 to 30 Hz. Power at each trial, each
frequency and each time point was measured by convolving the raw time
series with the wavelet and squaring the resulting complex number. The
power at each frequency and each time point was then averaged across
trials for each participant. Edge artefacts were removed by discarding the
first and last 500 ms of the epoch. Baseline time window was defined as
the first 500 ms of the epoch (after removal of edge artefacts: 2.5–2 s
prior to skip action). Changes in power during action preparation were
subsequently expressed as the percentage of change relative to the
average power during the baseline time window, across time at a specific
frequency. Baseline normalisation was performed by using the
following equation:

percentagetf ¼ 100
powertf � baselinef

baselinef

Values > 0 indicates that power at a specific frequency (f) and a
specific time (t) is higher relative to the average power at the same fre-
quency during the first 500 ms of the epoch. Finally, we asked whether
percentage change in power relative to baseline differs between self-
initiated and externally-triggered skip conditions in the beta band
(15–30 Hz). Beta band Event-related Desynchronization (ERD) during
action preparation is a well-established phenomenon (Bai et al., 2005;
Doyle et al., 2005; Pfurtscheller and Lopes da Silva, 1999). Beta power
was calculated in a 500 ms window starting from 1 s and ending 0.5 s
prior to skip action. We avoided analysing later windows (e.g., 0.5–0 s
prior to action) to avoid possible contamination from action execution
following presentation of the red fixation cross that cued externally-

triggered responses. The average normalised power across all pixels
within the selected window was then calculated for each participant and
compared across conditions using paired-samples t-tests.

Modelling and simulations

All simulations were done in Matlab (MathWorks). We used a modi-
fied version of the Leaky Stochastic Accumulator Model (Usher and
McClelland, 2001), in which the activity of accumulators increases sto-
chastically over time but is limited by leakage.

δx ¼ ðI � kxÞΔt þ cξ
ffiffiffiffiffi

Δt
p

Where I is drift rate, k is leak (exponential decay in x), ξ is Gaussian noise,
c is noise scaling factor, and Δt is the discrete time step (we used
Δt ¼ 0.001). This leaky stochastic accumulator has been used previously
to model the neural decision of ‘when’ to move in a self-initiated
movement task (Schurger et al., 2012). In that experiment, I was
defined as the general imperative to respond (with a constant rate). This
imperative, if appropriately small in magnitude, moves the baseline level
of activity closer to the threshold, but not over it. Thus, imperative alone
does not trigger action, but does increase the likelihood of a random
threshold-crossing event triggering action. In the original model, c was
assumed to be constant and was fixed at 0.1. In a departure from the
original model, we assumed that the noise scaling factor could change
linearly from an initial value of c1 to a final value of c2, during action
preparation. Consequently,Δcwas defined as the magnitude of change in
the noise scaling factor during the trial.

Δc ¼ c2 � c1

A negative Δc means that the signal becomes less noisy as it ap-
proaches the threshold for action. Therefore, the modified model in our
experiment had five free parameters: I, k, c1, c2 and threshold.

δx ¼ ðI � kxÞΔt þ ctξ
ffiffiffiffiffi

Δt
p

Where ct is noise scaling factor at time t. The threshold was expressed as a
percentile of the output amplitude over a set of 1000 simulated trials
(each of 50,000 time steps each). Epochs of simulated data were matched
to epochs of actual EEG data by identifying the point of first threshold
crossing event within each simulated trial and then extracting an epoch
from 3000 time steps before to 1000 time steps after the
threshold crossing.

Parameter estimation for self-initiated skip actions was performed by
fitting the model against the real mean RP amplitude of each participant
in the self-initiated condition. First, 1000 unique trials of Gaussian noise,
each 50,000 time steps, were generated for each participant and were fed
into the model. The initial values of the model's parameters were derived
from a previous study (Schurger et al., 2012). The output of the model
was then averaged across trials and was down-sampled to 250 Hz to
match the sampling rate of the real EEG data. A least squares approach
was used to minimise root mean squared deviation (RMSD) between the
simulated and realmean RP, by adjusting the free parameters of the model
for each participant (by using the MATLAB ‘fminsearch’ function). Note
that this procedure optimised the model parameters to reproduce the
mean RP, rather than individual trials.

To fit the model to our externally-triggered skip condition, we fixed
the threshold of each participant at their best fitting threshold from the
self-initiated condition. We wanted to keep the threshold the same in
both conditions so that we could test the effect of changing noise levels
for a given threshold. Importantly, we also fixed the value of c1 at its
optimal value form the self-initiated condition. By using this strategy, we
can ask how noisiness of the signal changes, from its initial value, and we
can compare this change in noise between conditions. We additionally
performed parallel simulations without the assumption of a common
initial noise level, and obtained essentially similar results. Specifically, Δc
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in the all-parameter-free model (mean ¼ 0.02, SD ¼ 0.06) was similar to
the Δc in the model with c1 and threshold fixed (mean¼ 0.02, SD¼ 0.05).
The remaining parameters (I, k, c2) were optimised by minimising the
deviation between the simulated mean RP and the real mean RP in the
externally-triggered condition.

Finally, we tested the model on the across-trial variability of RP
epochs, having fitted the model parameters to the mean RP. All param-
eters of the model were fixed at each participant's optimised values for
the self-initiated condition, and for the externally-triggered condition
respectively. The model was run 44 times (22 participants, x 2 condi-
tions) with the appropriate parameters, and 1000 separate trials were
generated, each corresponding to a putative RP exemplar. The Gaussian
noise element of the model ensured that these 1000 exemplars were non-
identical. The standard deviation across trials was calculated from these
1000 simulated RP exemplars, for each participant and each condition.
Importantly, this procedure fits the model to each participant's mean RP
amplitude, but then tests the fit on the standard deviation across the 1000
simulated trials. Finally, to assess similarity between the real and pre-
dicted SD reduction, the predicted SD in self-initiated and externally-
triggered conditions was plotted as a function of time and the area be-
tween the two curves was computed. We then compared the area be-
tween the SD curves in a 2 s interval prior to self-initiated and externally-
triggered conditions for all participants' simulated data, and actual data
(Fig. 5), using Pearson's correlation.

Results

Behavioural data

Participants (n ¼ 22) waited for a display of random dots to change
from 0% to 100% coherent motion to the left or right. They responded by
pressing a left or right arrow key on a keyboard, accordingly, receiving a
reward for correct responses. However, the time of movement onset was
drawn unpredictably from an exponential distribution, so waiting times
could be sometimes extremely long. In the ‘self-initiated’ condition blocks
(Fig. 1A), participants could choose to skip waiting, by pressing both left
and right response keys simultaneously. This produced a smaller reward
than a response to coherent dot motion. Participants were informed that
the experiment was limited to one hour, so that appropriate use of the
skip response implied a general understanding of the trade-off between
time and money.

Crucially, this design meant that the skip response reflected a purely
endogenous decision to act, without any direct external instruction or
imperative stimulus, but rather reflecting the general trade-off between
smaller, earlier vs later, larger rewards (Green and Myerson, 2004). This
operational definition of volition captures some important features of
voluntary control, such as the link between internally-generated action
and a general understanding of the distributional landscape for
reasons-based decision-making (Schüür and Haggard, 2011).

We compared self-initiated skip decisions to skips in ‘externally-trig-
gered’ blocks, where participants could not choose for themselves when
to skip. Instead, they were instructed to make skip responses by a change
in the fixation cross colour (Fig. 1B) (see materials and methods), yoked
to the time of their own volitional skip decisions in previous blocks. Thus,
self-initiated and instructed blocks were behaviourally identical, but
differed in that participants had internal control over the hazard function
in the former, but not the latter condition.

On average participants skipped 108 (SD ¼ 16) and 106 (SD ¼ 17)
times in the self-initiated and externally-triggered conditions, respec-
tively. They responded to coherent dot motion in the remaining trials
(N¼ 177, SD¼ 61), with a reaction time of 767 ms (SD¼ 111 ms). Those
responses were correct on 86% (SD ¼ 4%) of trials. The average waiting
time before skipping in the self-initiated condition (7.3 s, SD ¼ 1.6) was
similar to that in the externally-triggered condition (7.6 s, SD ¼ 1.6),
confirming the success of our yoking procedure (see materials and
methods). The SD across trials had a mean of 3.17 s (SD across

participants ¼ 1.42 s) for self-initiated skips. Our yoking procedure
ensured similar values for externally-triggered skips (mean of SD across
trials 3.15 s, SD ¼ 1.43 s). In the externally-triggered condition, the
average reaction time to the fixation cross change was 699 ms
(SD ¼ 67 ms). On average participants earned £2.14 (SD ¼ £0.33) from
skipping and £2.78 (SD¼ £0.99) from correctly responding to dot motion
stimuli. This reward supplemented a fixed fee for participation. Themean
and distribution of waiting time before skip actions of each participant
are presented in Table S1 and Fig. S1.

EEG variability decreases disproportionately prior to action in self-initiated
and externally-triggered conditions

EEG data were pre-processed and averaged separately for self-
initiated and externally-triggered conditions (see materials and
methods for full details). Fig. 2A shows the grand average RP amplitude
in both conditions (see Fig. S2A for the relation between RP-peak
amplitude and waiting time before skipping). The mean RP for self-
initiated actions showed the familiar negative-going ramp. Note that
our choice to baseline-correct at the time of the action itself (see mate-
rials and methods and Fig. S3) means that the RP never in fact reaches
negative voltage values. This negative-going potential is absent from
externally-triggered skip actions (Jahanshahi et al., 1995; Papa et al.,
1991). The morphology of the mean RP might simply reflect the average
of stochastic fluctuations, rather than a goal-directed build-up. However,
these theories offer differing interpretations of the variability of indi-
vidual EEG trajectories across trials (see intro).

To investigate this distribution we computed standard deviation of
individual trial EEG, and found a marked decrease prior to self-initiated
skip action. This decrease is partly an artefact of the analysis technique:
individual EEG epochs were time-locked and baseline-corrected at action
onset, making the across-trial standard deviation at the time of action
necessarily zero (but see Fig. S3). However, this premovement drop in
EEG standard deviation was more marked for self-initiated than for
externally-triggered skip actions, although the analysis techniques were
identical. Paired-samples t-test on jack-knifed data showed that this dif-
ference in SD was significant in the last three of the four pre-movement
time bins before skip actions (see materials and methods): that is from
�1.5 to �1 s (t(21) ¼ 4.32, p < 0.01, dz ¼ 0.92, p values are Bonferroni
corrected for four comparisons), �1 to �0.5 s (t(21) ¼ 5.97, p < 0.01,
dz ¼ 1.27), and �0.5 to 0 s (t(21) ¼ 5.39, p < 0.01, dz ¼ 1.15).

To mitigate any effects of arbitrary selection of electrodes or time-
bins, we also performed cluster-based permutation tests (see materials
and methods). For the comparison between SDs prior to self-initiated vs
externally-triggered skip actions, a significant cluster (p < 0.01) was
identified extending from 1488 to 80 ms premovement (Fig. 2B, see also
Fig. S3 for a different baseline and Fig. S2B for the relation between EEG
convergence and waiting time before skipping). This suggests that neural
activity gradually converges towards an increasingly reliable pattern
prior to self-initiated actions. Importantly, this effect is not specific to FCz
but could be observed over a wide cluster above central electrodes
(Fig. S4). However, the bilateral skip response used here makes the
dataset suboptimal for thoroughly exploring the fine spatial topography
of these potentials, which we hope to address in future research.

We also analysed mean and SD EEG amplitude prior to stimulus-
triggered responses to coherent dot motion (as opposed to skip re-
sponses). Importantly, because coherent dot-motion onset is highly un-
predictable, any general difference in brain state between the self-
initiated skip blocks and the externally-triggered skip blocks should
also be apparent prior to coherent dot-motion onset. We did not observe
any negative-going potential prior to coherent dot motion (Fig. 3A). More
importantly, the SD of EEG prior to coherent dot motion onset did not
differ between conditions in any time window (p > 0.5, Bonferroni cor-
rected for four comparisons) (Fig. 3B). This suggests that the dispro-
portionate drop in SD prior to skip actions (Fig. 2) cannot be explained by
some general contextual difference between the two conditions, such as
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Fig. 2. EEG activity prior to skip actions. The red and blue lines represent self-initiated and externally-triggered skip conditions, respectively. Data is time-locked to the skip action (black
vertical line), baseline-corrected in a 10 ms window around the skip, and recorded from FCz electrode. The average time of the skip instruction (fixation cross changing to red) in the
externally-triggered condition is shown as a grey vertical line. A. Grand average RP amplitude ± standard error of the mean across participants (SEM). B. Standard deviation across trials
averaged across participants ± SEM. Shaded grey area shows a significant difference between standard deviation traces across central electrodes, detected by cluster-based permuta-
tion test.

Fig. 3. EEG activity prior to response to coherent dot motion direction. The red and blue lines represent activity in self-initiated and externally-triggered blocks, respectively. Data is time-
locked to the response to coherent dot motion direction (black vertical line), baseline-corrected in a 10 ms window around the response, and recorded from FCz electrode. The average time
of the coherent dot motion onset is shown as a grey vertical line. A. Grand average ERPs ± SEM across participants. B. Standard deviation across trials, averaged across participants ± SEM
across participants.
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differences in expectation of dot stimuli, task difficulty, temporal moni-
toring related to discounting and hazard function. If the decreased
variability prior to self-initiated skips had merely reflected a background,
contextual process of this kind, low variability should also be present
when this process was unpredictably interrupted by coherent dot motion.
However, this was not found. Rather, reduced variability was associated
only with the period prior to self-initiated action (Fig. 2), and not with
any difference in background cognitive processing between the condi-
tions (Fig. 3).

Finally, variability in the reaction time to respond to externally-
triggered skip cues could potentially smear out stimulus-driven prepa-
ration of skip actions. Such jitter in RT would have the artefactual effect
of increasing EEG variability across trials. To rule out this possibility we
checked whether across-trial EEG convergence was correlated across

participants with variability in behavioural reaction time to the skip
response cue, but found no significant correlation between the two var-
iables. This suggests that the difference in EEG convergence between self-
initiated and externally-triggered skip conditions could not be explained
by mere variability in RT to skip cues (Fig. S5).

Modelling the converging EEG distribution of self-initiated actions

Leaky stochastic accumulator models have been used previously to
explain the neural decision of ‘when’ to move in a self-initiated task
(Schurger et al., 2012). A general imperative to perform the task shifts
premotor activity up closer to threshold and then a random
threshold-crossing event provides the proximate cause of action. Hence,
the precise time of action is driven by accumulated internal physiological

Fig. 4. A–C. Results of sensitivity analysis. Effects of changing parameters of a stochastic accumulator model on SD across 1000 model runs. (A) Drift gradually changed from 0.05 (cyan) to
0.15 (blue) in 0.02 steps, while other parameters were kept fixed. (B) Leak gradually changed from 0.3 (magenta) to 0.7 (blue) in 0.1 steps, while other parameters were kept fixed. (C)
Change in noise gradually changed from �0.05 (yellow) to 0.05 (green) in 0.02 steps, while other parameters were kept fixed. D-F. The best fitting parameters to real mean RP amplitude in
self-initiated (red) and externally-triggered (blue) conditions. Asterisks show significant difference (p < 0.001). Error bars show SD across participants. G. Effect sizes (dz) for the between-
condition difference in fitted drift, the leak and the change in noise parameters. Error bars show 95% confidence interval.
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noise, and could therefore be viewed as random, rather than decided
(Schurger et al., 2012). However, the across-trial variability of cortical
potentials in our dataset suggests that neural activity converges on a fixed
pattern prior to self-initiated actions, to a greater extent than for
externally-triggered actions. This differential convergence could reflect a
between-condition difference in the autocorrelation function of the EEG.
The early and sustained additional reduction in SD before self-initiated
actions motivated us to hypothesise an additional process of noise con-
trol associated with self-initiated actions.

Sensitivity analysis
To investigate this hypothesis we first performed a sensitivity analysis

by investigating how changing key parameters of the model could in-
fluence across-trial variability of the output (for details see materials and
methods). We modelled the hypothesised process of noise control by
allowing a gradual change in noise (Δc) prior to action. We also explored
how changes in the key drift (I) and leak (k) parameters would influence
the trial-to-trial variability of RP. We gradually changed each parameter
while holding the others fixed, and simulated RP amplitude in 1000 trials
time locked to a threshold-crossing event. SD was then measured across
these simulated trials. Simulated across-trial SDs showed that lower drift
rates and shorter leak constants were associated with a higher across-trial
SD. Conversely, reductions in noise were associated with a lower across-
trial SD (Fig. 4A–C). Thus, for the model to reproduce the differential
EEG convergence found in our EEG data, either the drift or the leak should
be higher, or the change in noise parameter should be lower, in self-
initiated compared to externally-triggered skip action conditions.

Model fitting and optimal parameters
We next fitted the model on the mean RP amplitude of each partici-

pant, separately for the self-initiated and externally triggered conditions
(Tables S2 and S3). The best fitting parameters were then compared
between the two conditions. The drift was significantly lower
(t(21) ¼ �4.47, p < 0.001, after Bonferroni correction for the three pa-
rameters tested) in the self-initiated (mean across participants ¼ 0.09,
SD ¼ 0.03) compared to the externally-triggered condition (mean across

participants ¼ 0.13, SD ¼ 0.04) (Fig. 4D). The leak was also significantly
lower (t(21) ¼ �4.20, p < 0.001, Bonferroni corrected) in the self-
initiated (mean across participants ¼ 0.40, SD ¼ 0.21) compared to the
externally-triggered condition (mean across participants ¼ 0.58,
SD¼ 0.20) (Fig. 4E). The change in noisewas negative in the self-initiated
(mean across participants ¼ �0.03, SD ¼ 0.05) but positive in the
externally-triggered condition (mean across participants ¼ 0.02,
SD ¼ 0.05). This difference was significant between the conditions
(t(21) ¼ �5.38, p < 0.001, Bonferroni corrected) (Fig. 4F). Finally, to
investigate which parameters were most sensitive to the difference be-
tween self-initiated and externally-triggered conditions, we expressed
the effect of condition on each parameter as an effect size (standardized
mean difference, Cohen's dz). Importantly, the effect size for the
between-condition difference in the change in noise parameter (dz¼ 1.15,
95%CI ¼ [0.60 1.68]) was larger than that for the drift (dz ¼ 0.95, 95%
CI ¼ [0.44 1.45]) or the leak (dz ¼ 0.89, 95%CI ¼ [0.39 1.38]) param-
eters (Fig. 4G).

So far, we fitted model parameters to the mean RP amplitude, and
noted through separate sensitivity analysis their implications for across-
trial SD. Next, we directly predicted the drop in across-trial SD of simu-
lated RP data in self-initiated compared to externally-triggered condi-
tions, using the optimal model parameters for each participant in each
condition. We therefore simulated 22 RP data sets, using each partici-
pant's best fitting parameters in each condition (see materials and
methods), and computed the SD across the simulated trials. We observed
a marked additional drop in simulated across-trial SD in the self-initiated
compared to externally-triggered condition (Fig. 5A and B). The differ-
ential convergence between conditions in the simulated data closely
tracked the differential convergence in our EEG data (Correlation across
participants, Pearson's r ¼ 0.90, p < 0.001) (Fig. 5C).

Within-trial reduction in EEG variability

Optimum parameter values from the model suggest that a consistent
process of noise reduction reliably occurs prior to self-initiated actions.
This theory predicts that, compared to externally-triggered actions, EEG

Fig. 5. (A) Observed SD across trials averaged across participants ± SEM. Data are baselined to a 10 ms window around the skip and are recorded from FCz electrode. (B) Simulated SD
across trials averaged across participants ± SEM. The red and blue lines represent activity in self-initiated and externally-triggered blocks, respectively. The black vertical line is the
moment of skip action. (C) Correlation between observed and simulated EEG convergence. EEG convergence was measured by subtracting the area under the SD curve in self-initiated from
the externally-triggered condition.
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variability should reduce more strongly not only across trials but also
within each single self-initiated action trial. To test this prediction we
measured SD within a 100 ms sliding window for each trial, and each
condition (see materials and methods) (Fig. 6A). We then used linear
regression to calculate the slope of the within-trial SD change for each
trial, and compared slopes between the self-initiated and externally-
triggered conditions using a multilevel model with single trials as level
1 and participants as level 2 variables. While EEG variability decreased
within self-initiated skip trials (mean slope ¼ �0.01 μV/sample, SD
across participants ¼ 0.02 μV), it increased within externally-triggered
trials (mean slope ¼ 0.01 μV/sample, SD across
participants ¼ 0.02 μV). The between-condition difference in slopes was
highly significant (t(4102) ¼ 3.39, p < 0.001; Fig. 6B), consistent with a
progressive reduction of EEG variability prior to self-initiated actions.

Previous discussions of amplitude variation in EEG focussed on
synchronised activity within specific spectral bands (Pfurtscheller and
Neuper, 1994). Preparatory decrease in beta-band power has been used
as a reliable biomarker of voluntary action (Kristeva et al., 2007). While
time-series methods identify activity that is phase-locked, spectral
methods identify EEG power that is both phase-locked and
non-phase-locked, within each specific frequency band (Cohen, 2014;
Pfurtscheller and Lopes da Silva, 1999). Since motor threshold models
simply accumulate all neural activity, whether stochastic or synchron-
ised, we reasoned that reduction in the noise scaling factor within an
accumulator model might be associated with reduction in the
synchronised activity. We therefore also investigated the decreasing
variability of neural activity prior to self-initiated action using spectral
methods (see materials and methods). Specifically, we focused on the
event-related desynchronization (ERD) of beta band activity (Bai et al.,
2011; Calmels et al., 2006; Stanc�ak and Pfurtscheller, 1996). We
compared ERD between the self-initiated and externally-triggered con-
ditions in a 500 ms window (1–0.5 s prior to action, based on previous
reports (Tzagarakis et al., 2010)). Beta power in this period decreased
prior to self-initiated skip (mean percentage change¼ -%9.3, SD¼%7.4)
(Fig. 7A), but not before externally-triggered skip actions (mean per-
centage change ¼ -%0.6, SD ¼ %6.9) (Fig. 7B). Importantly, percentage
change in beta power was significantly different between the two con-
ditions (t(21) ¼ �4.16, p < 0.001) (Fig. 7C).

Discussion

The capacity for endogenous voluntary action lies at the heart of
human nature, but the brain mechanisms that enable this capacity
remain unclear. A key research bottleneck has been the lack of
convincing experimental paradigms for studying volition. Many existing
paradigms rely on paradoxical instructions equivalent to “be voluntary”

or “act freely” (Haggard, 2005; Libet et al., 1983). In a novel paradigm,
we operationalized self-initiated actions as endogenous ‘skip’ responses
embedded in a perceptual decision task, with a long, random foreperiod.
Participants could decide to skip waiting for an imperative stimulus, by
endogenously initiating a bilateral keypress. Although previous studies in
animals also used ‘Giving up waiting’ to study spontaneous action de-
cisions (Murakami et al., 2014), we believe this is the first use of this
approach to study self-initiated actions in humans.

The skip action in our task has many features traditionally associated
with volition including internal-generation (Passingham et al., 2010),
reasons-responsiveness (Anscombe, 2000), freedom from immediacy
(Shadlen and Gold, 2004), and a clear counterfactual alternative (Per-
eboom, 2011). Crucially, operationalising self-initiated voluntary action
in this way avoids explicit instructions to “act freely”, and avoids sub-
jective reports about “volition”. We compared such actions to an exog-
enous skip response to a visual cue in control blocks. The expectation of
visual stimulation (coherent dot motion), and the occurrence and timing
of skip responses were all balanced across the two blocks, so the key
difference is that participants had voluntary control over skips in the
self-initiated, but not the externally-triggered blocks. We noted above
that voluntary control in turn involves a number of components,
including decision, initiation, and expectation of action. We cannot be
certain how much each of these components contributes to our electro-
physiological results. However, these different components are all
considered important markers of self-initiated voluntary action.

The neural activity that generates self-initiated voluntary actions re-
mains controversial. Several theories attribute a key role to medial
frontal regions (Krieghoff et al., 2011; Nachev et al., 2008; Passingham,
1995). Averaged scalp EEG in humans revealed a rising negativity
beginning 1 s or more before the onset of endogenous actions (Kornhuber
and Deecke, 1965), and appearing to originate in medial frontal cortex
(Boschert et al., 1983; Deecke and Kornhuber, 1978). Since this ‘readi-
ness potential’ does not occur before involuntary or externally-triggered
movements, it has been interpreted as the electro-physiological sign of
planning, preparation, and initiation of self-initiated actions (Keller and
Heckhausen, 1990; Kornhuber and Deecke, 1990). RP-like brain activ-
ities preceding self-initiated actions were also reported at the
single-neuron level (Fried et al., 2011). However, the view of the RP as a
causal signal for voluntary action has been challenged, because simply
averaging random neural fluctuations that could trigger movement also
produces RP-like patterns (Schurger et al., 2012). Such stochastic accu-
mulator models were subsequently used to predict humans' (Schurger
et al., 2012) and rats' self-initiated actions in a task similar to ours
(Murakami et al., 2014). Thus, it remains highly controversial whether
the RP results from a fixed precursor process that prepares self-initiated
actions, or from random intrinsic fluctuations. We combined an

Fig. 6. Within-trial EEG variability. (A) SD was measured within 100 ms windows for each trial and each condition. Red and blue bars show within-trial SD in each time bin in self-initiated
and externally-triggered conditions, respectively. The solid red and blue lines show the linear fit to the time bins in self-initiated and externally-triggered conditions, respectively. (B) The
slope of the change in within-trial variability was then compared between the self-initiated (red) and externally-triggered (blue) skip conditions. Error bars show SEM across participants.

N. Khalighinejad et al. NeuroImage 165 (2018) 35–47

43



experimental design that provides a clear operational definition of voli-
tion, and an analysis of distribution of pre-movement EEG across and
within individual trials. We report the novel finding that self-initiated
movements are reliably preceded by a process of variability reduction,
measured as a decreasing variability in individual trial RPs, over the 1.5 s
prior to movement.

Importantly, this variability reduction was specifically associated
with the premovement period before a self-initiated action: First, vari-
ability reduction was stronger prior to self-initiated skip actions than
prior to externally-triggered skip actions. Second, and crucially, the
variability reduction did not reflect any general contextual factor that
might differ between these two conditions. In our task, the onset of
coherent dot motion provides an unexpected snapshot of the brain state
in the specific context provided by each condition, but not at the time of
the skip event. Fig. 3 showed that any such contextual differences be-
tween conditions did not affect EEG variability, and thus could not
explain the reduced variability prior to self-initiated skip actions. Thus,

the reduced variability in our self-initiated skip condition is linked to the
impending action itself, and not to any general difference in the cognitive
processing or task demands between the two conditions. This pattern of
results suggests a neural precursor of self-initiated action, rather than
other background contextual factors unrelated to action preparation.

Measurement of inter-trial variability has been extensively used in the
analysis of neural data (Averbeck and Lee, 2003; Churchland et al., 2011,
2010, 2006; He, 2013; Saberi-Moghadam et al., 2016; Schurger et al.,
2015). For example, presenting a target stimulus decreases inter-trial
variability of neural firing rate in premotor cortex (Churchland et al.,
2006). Interestingly, RTs to external stimuli are shortest when variability
is lowest, suggesting that a decrease in neural variability is a marker of
motor preparation (Churchland et al., 2006). Moreover, reducing neural
variability is characteristic of cortical responses to any external stimulus
(Churchland et al., 2010), and could be a reliable signature of conscious
perception (Schurger et al., 2015). Importantly, in previous studies, the
decline in neural variability was triggered by a target stimulus, i.e.

Fig. 7. Percentage change in total EEG power compared to baseline (2.5–2 s prior to action) in self-initiated (A), and externally-triggered skip conditions (B). In each condition, the
percentage change in power was computed 1–0.5 s prior to skip action, and from 15 to 30 Hz based on previous literature (region of interest shown by black box). (C) The percentage
change from baseline was compared between the self-initiated (red bar) and externally-triggered (blue bar) conditions. Error bars show SEM across participants.
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decreasing neural variability was triggered exogenously (Churchland
et al., 2010). Our results show that inter-trial variability also decreases
prior to a self-initiated action, in the absence of any external target.

Classical models might attribute variability reduction prior to self-
initiated action to a consistent process of preparation. In contrast, sto-
chastic fluctuation models have been recently used to account for the
neural activity preceding self-initiated actions in humans (Schurger et al.,
2012) and rodents (Murakami et al., 2014). We did not aim in this
experiment to compare these models directly, but to investigate their
predictions regarding the shape and variability of the RP. Our modelling
showed variability reduction could be explained within a stochastic
fluctuation model, with the additional assumption of progressive decrease
in the input noise level. In the absence of external evidence, stochastic
models depend only on internal physiological noise to determine the time
of action. Thus, Schurger et al.’s model first shifts premotor activity
closer to a motor threshold, while the actual threshold-crossing event is
triggered by accumulating stochastic fluctuations (Schurger et al., 2012).
By fitting a modified version of the leaky stochastic accumulator model
on each participant's mean RP amplitude, we observed that integration of
internal noise evolves differently prior to self-initiated and
externally-triggered skip actions. The rate of the drift and the leak was
lower and the change in noise was negative prior to self-initiated actions,
compared to externally-triggered actions. Importantly, by fitting model
parameters to each participant's mean RP, and testing the variability of
EEG data generated with those parameters, we found that variability
reduction before self-initiated action was mainly driven by a
gradually-reducing noise level.

Previous studies show that changes in noise level influence choice, RT
and confidence in accumulation-to-bound models of perceptual decision
making (Fetsch et al., 2014; Furstenberg et al., 2015; Kiani et al., 2008;
Zylberberg et al., 2016). Interestingly, the motivating effects of reward
on speed and accuracy of behaviour were recently shown to be attrib-
utable to active control of internal noise (Manohar et al., 2015). In
general, previous studies show an important role of active noise control
in tasks requiring responses to external stimuli (Kool and Botvinick,
2013; Manohar et al., 2015). We have shown that similar processes may
underlie self-initiated action, and that a consistent process of noise
reduction may be a key precursor of self-initiated voluntary action. This
additional process of noise control may make a stochastic approach more
similar to classical models of voluntary action.

Finally, we showed that a decrease in premotor neural variability
prior to self-initiated action is not only observed across-trials, but is also
realised within-trial and as a reduction in EEG power in the beta fre-
quency band. The observed reduction in beta-band power is entirely
consistent with the proposed reduction in neural noise preceding self-
initiated action that was suggested by our modelling. Clearly, any natu-
ral muscular action must have some precursors. Sherrington's final com-
mon path concept proposed that descending neural commands from
primary motor cortex necessarily preceded voluntary action (Sherring-
ton, 1906). However, it remains unclear how long before action such
precursor processes can be identified. Our result provides a new method
for addressing this question. The question is theoretically important,
because cognitive accounts of self-initiated action control divide into two
broad classes. In classical accounts, a fixed, and relatively long-lasting
precursor process is caused by a prior decision to act (Anscombe, 2000;
Kornhuber and Deecke, 1990). In other recent accounts, stochastic fluc-
tuations would dominate until a relatively late stage, and fixed precursor
processes would be confined to brief, motoric execution processes
(Schurger et al., 2012).

The precursor processes that our method identifies may be necessary
for self-initiated action, but may not be sufficient: identifying a precursor
process prior to self-initiated movement says nothing about whether and
how often such a process might also be present in the absence of
movement. On one view, the precursor process might occur quite
frequently, but a last-minute decision might influence whether a given
precursor event completes with a movement, or not. Our movement-

locked analyses cannot identify any putative precursor processes or
precursor-like processes that failed to result in a movement. However,
our spectral analyses (Fig. 7) make this possibility unlikely. They show a
gradual decline in total beta-band power beginning around 1 s prior to
self-initiated action. Any putative unfulfilled precursor processes would
presumably produce partial versions of this effect throughout the epoch,
but these are not readily apparent. Lastly, there might be a nonlinear
relation between the recorded signals and the decision process. Our an-
alyses assumed a simple, linear relation between the decision process and
the measured variables. This assumptionmay be simplistic, but almost all
analyses of neural data make similar assumptions at some level.

Interestingly, our endogenous skip response resembles the decision to
explore during foraging behaviour (Constantino and Daw, 2015; Kolling
et al., 2012). That is, endogenous skip responses amounted to deciding to
look out for dot-motion stimuli in forthcoming time-periods, rather than
the present one. This prompts the speculation that spontaneous transition
from rest to foraging or vice-versa could be an early evolutionary ante-
cedent of human volition.

In conclusion, we show that self-initiated actions have a reliable
precursor, namely a consistent process of neural variability reduction
prior to movement. We showed that this variability reduction was not
due to a background contextual process that differed between self-
initiated and externally-triggered conditions, but was related to self-
initiated action. We began this paper by distinguishing between a clas-
sical model, in which a fixed preparation process preceded self-initiated
action, and a fully stochastic model, in which the triggering of self-
initiated action is essentially random – although the artefact of work-
ing with movement-locked epochs might give the appearance of a spe-
cific causal signal such as the RP. We found that the precursor process
prior to self-initiated action could be modelled within a stochastic
framework, given the additional assumption of a progressive reduction in
input noise. Future research might usefully investigate whether the
precursor process we have identified is the cause or the consequence of
the subjective ‘decision to act’.
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