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Abstract
Self-initiated movements are reliably preceded by a gradual buildup of neuronal activity known as the readiness
potential (RP). Recent evidence suggests that the RP may reflect subthreshold stochastic fluctuations in neural activity
that can be modeled as a process of accumulation to bound. One element of accumulator models that has been largely
overlooked in the literature is the stochastic term, which is traditionally modeled as Gaussian white noise. While there
may be practical reasons for this choice, we have long known that noise in neural systems is not white – it is long-term
correlated with spectral density of the form 1/f�(with roughly 1 � � � 3) across a broad range of spatial scales. I
explored the behavior of a leaky stochastic accumulator when the noise over which it accumulates is temporally
autocorrelated. I also allowed for the possibility that the RP, as measured at the scalp, might reflect the input to the
accumulator (i.e., its stochastic noise component) rather than its output. These two premises led to two novel
predictions that I empirically confirmed on behavioral and electroencephalography data from human subjects per-
forming a self-initiated movement task. In addition to generating these two predictions, the model also suggested
biologically plausible levels of autocorrelation, consistent with the degree of autocorrelation in our empirical data and
in prior reports. These results expose new perspectives for accumulator models by suggesting that the spectral
properties of the stochastic input should be allowed to vary, consistent with the nature of biological neural noise.

Key words: autocorrelation; Bereitschaftspotential; leaky stochastic accumulator; readiness potential; voluntary
action

Introduction
Uncued voluntary movements are preceded reliably by

a slow buildup of cortical activity known as the Bere-

itschaftspotential or readiness potential (RP; Shibasaki
and Hallett, 2006). Since its discovery in the 1960s
(Kornhuber and Deecke, 1965), the RP has been inter-
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Significance Statement

The cortical readiness potential (RP) is a gradual buildup of scalp electrical potential, and underlying neural
activity in motor areas, that reliably precedes the onset of voluntary self-initiated movements by up to one
second or more. More than fifty years after its discovery, the functional nature of the RP remains unclear. Here
I argue, based on empirical evidence, that the RP reflects the stochastic input to an accumulation-to-bound
decision process, and that this stochastic input is temporally autocorrelated, and not Gaussian white noise as
it is traditionally modeled. The argument is supported by testing and confirming two novel predictions that
emerge from an accumulator model when the stochastic input noise is autocorrelated rather than white.
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preted as a sign of movement preparation, the outcome
of a preconscious neural decision to initiate an action
(Libet et al., 1983). Recent evidence, however, supports
a different interpretation: the RP reflects ongoing sto-
chastic fluctuations in neural activity that favor the
spontaneous emission of a movement at certain times
more so than at others (Schurger et al., 2012; Murakami
et al., 2014; Schmidt et al., 2016). Both the shape of the
RP and the distribution of waiting times (how long the
subject waits before producing a spontaneous move-
ment) can be well described by a leaky stochastic
accumulator model (Schurger et al., 2012; Murakami
et al., 2014).

Accumulator models at a minimum consist of a con-
stant term (reflecting the decision evidence) plus a sto-
chastic term (see Materials and Methods). Integration over
these “inputs” to the accumulator results in the “output”
of the accumulator, commonly referred to as the decision
variable because a decision is made and action initiated
when the output exceeds a certain threshold. One ele-
ment of accumulator models that has been largely over-
looked in the literature is the stochastic term, which is
traditionally modeled as Gaussian white noise. While
there may be practical reasons for this assumption, it is
well known that noise in neural systems is not white, but
instead is pink – it is long-term correlated with spectral
density of the form 1/f�(with roughly 1 � � � 3; � � 0 for
white noise) across a broad range of spatial scales (Fig. 1;
Pereda et al., 1998; He et al., 2010). Whether or not
accumulator models should account for the spectral
properties of neural noise is an open question. At the
same time, we can also ask whether or not the stochastic
term in such models can be mapped onto a well-defined
neural phenomenon.

A recent study found evidence for an accumulator pro-
cess in area M2 of rats (homolog of human premotor
cortex) performing a task where the rat could spontane-
ously abandon waiting for a large reward and instead opt
for an immediate and certain, but smaller reward (Mu-
rakami et al., 2014). Using single-unit recordings, these
authors were able to identify two different and inter-
spersed functional subtypes of neurons: ones that be-
haved like the inputs to an accumulator, with tonic firing
rates proportional to the length of time that the rat waited,
and others that behaved like the outputs of an accumu-
lator, with firing rates ramping up to a fixed threshold level
just when the rat withdrew from the waiting station and
sought out the small but certain reward. Which of these
two is more likely to dominate in signals picked up by a

scalp electrode, the vantage point from which the RP is
commonly measured, is unknown.

Thus, here I take up two distinct but related points: (1)
that accumulator models of decision-making should
allow the slope ��� of the noise spectrum to vary instead
of using white noise (Fig. 1), especially when the imper-
ative (drift term) is weak relative to the noise; and (2)
that a buildup in event-preceding EEG potential might
reflect the average stochastic input to an accumulator
process (“RP-as-input”) rather than its average output
(“RP-as-output”).

With the above two points in mind, I explored the
behavior of a leaky stochastic accumulator when the
noise over which it accumulated was temporally autocor-
related, and empirically tested two novel predictions that
emerged. I tested these two predictions on behavioral and
EEG data recorded while subjects performed Libet’s self-
initiated movement task (Libet et al., 1983). One predic-
tion was that the shape of the RP should vary in a specific
way as a function of the waiting time (how long the subject
waits before producing a spontaneous movement). The
second prediction concerned the subjective estimate of
the time of the “urge” to move, what Libet et al. (1983)
referred to as ‘W’ time: W time was predicted to vary as a
function of waiting time, becoming earlier (with respect to
movement onset) with longer waiting times. Both predic-
tions were confirmed, with the model suggesting biolog-
ically plausible levels of autocorrelation (� � 1.4). Taken
together, the results suggest that the EEG RP may reflect
the autocorrelated stochastic input to an accumulation-
to-bound process, and highlight the potential utility of
using biologically realistic noise in accumulation-to-
bound models.

Materials and Methods
I reanalyzed behavioral and EEG data from a prior study

(Schurger et al., 2012). Details about human subjects,
stimuli and task, and data preprocessing are summarized
below. Details about data analyses, statistics, and com-
putational modeling are reported in full.

Human subjects
A total of 16 subjects participated in the study (six

female, mean age 28, one left handed). Subjects were
paid for their participation and all gave written informed
consent. Two of the subjects did not exhibit a RP (a
negative trend in electrical potential preceding movement
onset at Cz or any adjacent electrode) and so were ex-
cluded from further analyses, leaving N � 14.

Stimuli and task
Subjects sat �60 cm in front of a translucent screen

onto which the stimulus was back-projected. The subject
sat in a reclined position with dim ambient lighting. The
stimulus was a small clock face (white on a black back-
ground) with a diameter of � 6° of viewing angle. A small
white dot circled smoothly around the edge of the clock
dial, completing one full cycle every 3 s (equivalent to 50
ms per tick mark on the clock). Each trial began with the
onset of the clock rotation. Subjects were instructed to
wait for the clock to complete one full cycle. After that the
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subject was free to perform the instructed movement
(pressing a button with the thumb of the dominant hand)
at any time. Subjects were encouraged to try not to
preplan the moment when they would press the button,
but rather to do so spontaneously without any forethought
(Libet et al., 1983). After pressing the button, the dot
continued to circle the clock face for one more second
and then the screen went blank. Subjects were instructed

that after the screen went blank they should report (ver-
bally) what had been the position of the dot at the moment
that they first became aware of their urge to press the
button. In addition to this task (the “classic” task) subjects
also performed a second task which was identical except
that on some trials subjects were interrupted by an audi-
tory “click” indicating that they should press the button
immediately (the “interruptus” task). The analyses re-

Figure 1. Illustration of white noise and different flavors of pink noise. A–E, Noise with different 1/f exponents (�, where spectral power
scales as 1 / f� in log-log coordinates). The upper axis of each panel shows the time series and the lower axis shows the power
spectrum; � specifies the slope of the power spectrum in units of log power versus log frequency, so if � � 0, then the noise is white
(flat power spectrum, roughly equal power in all frequencies, each sample independent of all other samples). Notice that as �
increases, the time series becomes more and more dominated by low-frequency fluctuations, as indicated by the slope of the spectra.
Time series are shown for values of � between 0 and 2 to illustrate the way that time series change qualitatively as � changes. F, Same
noise series as in A after lowpass filtering with a first-order Butterworth filter (cutoff frequency of 1 Hz).
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ported here were performed on a combination of the data
form the first task and the uninterrupted trials from the
second task.

EEG data acquisition
EEG data were recorded inside of a shielded room

using a 60-channel EEG system (Elekta NeuroMag EEG/
MEG system) sampled at 1000 Hz. Of the 60 channels, I
used a subset encompassing the standard 10-20 mon-
tage, with the addition of electrodes C1, C2, FC1, and
FC2.

EEG data preprocessing
Data preprocessing and analysis were performed using

Matlab (MathWorks Inc) along with the FieldTrip toolbox
for Matlab (Oostenveld et al., 2011). Data were first down-
sampled to 250 Hz. Independent component analysis
(ICA) was used to identify and remove ocular artifacts
from the data (Jung et al., 2000), and trials with artifacts
remaining after this step were excluded by visual inspec-
tion. I extracted data epochs time locked to the first
button press after the start of the trial. Each data epoch
covered the window of time extending from -3.5 to �1.0
s relative to the button press.

Data analyses and statistics
Behavioral

I define the “waiting time” (or just “wait time”) as the
amount of time, in seconds, that elapsed from the begin-
ning of the trial until the subject first pressed the button.
‘W’ time (Libet et al., 1983) was the time, relative to the
onset of the button press, that the subject reported first
having been aware of the urge or decision to press the
button. This was recorded by taking the clock time at
which the subject reported having had the urge and sub-
tracting it from the clock time of the actual movement. The
correlation between waiting time and W time was com-
puted using Pearson’s correlation coefficient applied both
to the pooled data from all subjects and also separately
for each subject. In the latter case, the resulting r values
across subjects were tested for significance (difference
from zero) using Wilcoxon’s signed rank test.

EEG
EEG data epochs were sorted according to waiting time

into the lower 33rd percentile (short waiting time) and the
upper 33rd percentile (long waiting time), and averaged
together within each group to compare the shape of the
RP for short and long waiting times. Differences in the
amplitude of the RP at each time point were tested for
significance using a signed rank test and then subjected
to a cluster-based permutation test to correct for multiple
comparisons. Unless specified otherwise, the RP was
measured at electrode C1 (C2 if left handed).

Leaky stochastic accumulator model
Accumulator models at a minimum involve integration

over an input signal (drift or “imperative”) plus Gaussian
white noise. Noise in the brain, however, is temporally
autocorrelated with spectral density of the form 1/f� with
typically 1 � � � 3 (“pink” noise). The model that I used
was the same as that used in prior studies (Schurger et al.,

2012; Murakami et al., 2014), namely the leaky stochastic
accumulator model (Usher and McClelland, 2001), except
that the noise was pink, with � allowed to vary arbitrarily,
instead of white (� fixed at 0). Performing a run of the
simulation amounts to performing numerical integration
over the following differential equation:

dx � �I � kx�dt � c���dt

where I is the drift rate (the imperative to move), k is leak,
and �� is noise with 1/f exponent � allowed to vary arbi-
trarily, from 0 (white noise) to 3; c is a noise scaling factor
(by convention c � 0.1). I sometimes refer to the output of
the accumulator (x in the equation above) as the decision
variable. After each run of the simulation I extracted two
“data epochs,” one from the noise input to the accumu-
lator and one from the output of the accumulator. Both
epochs were time aligned to the sample at which the
output of the accumulator first crossed the threshold, and
spanned the interval from 5000 samples before the cross-
ing to 500 samples after. When I fit the event-locked input
to the accumulator to the shape of the RP, I use the term
RP-as-input, and when I fit the event-locked output of the
accumulator to the shape of the RP, I use the term
RP-as-output. The simulation is one and the same in both
cases, the only difference being which by-product of the
simulation (the input or the output) is considered to rep-
resent the RP.

Generation of pink noise
Normally, when simulating an accumulator process, a

series of computer-generated Gaussian-distributed pseudo-
random numbers is used to instantiate the (white) noise
term. For optimal performance it is best to generate the
entire time series of pseudo-random numbers all at once
at the beginning of the simulation, and then step through
it, rather than generating a single random number on each
iteration. Having the entire time course of the noise in
hand allows one to change the spectral properties of the
noise as desired. Power-law or 1/f noise has spectral
power that is inversely proportional to frequency, roughly
following a negative-sloping line in log-log coordinates
(He et al., 2010; Fig. 1): P � 1/f� with � commonly referred
to as the “1/f exponent.” For the simulations reported
here, I first generated a time series of Gaussian pseudo-
random numbers and then altered the spectrum of this
noise as follows: first the signal was converted into the
frequency domain via a fast Fourier transform (fft in Mat-
lab); then a given (negative) slope was imposed on the
power spectrum by multiplication with a log-linear func-
tion having the desired slope; and then the signal was
converted back into the time domain via an inverse Fou-
rier transform (ifft in Matlab). The resulting time series,
which could have any arbitrary � (for examples, see Fig.
1), was then used as the noise input to the simulated
accumulator process. Note that I make no assumptions
or claims about the spectral properties of the time
series other than that they must be temporally autocor-
related. The procedure described above is simply a
convenient way to obtain autocorrelated noise while
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parametrically varying the degree of temporal autocor-
relation in the time series.

Data fitting
For separate runs of the simulation, the average time

course of the model output or the stochastic input to the
model was fit to the average RP across subjects. The time
courses were time locked to the first crossing time, which
is of course always determined based on the output of the
accumulator. For both the RP-as-input and RP-as-output
simulations the fitting procedure included a scaling factor
whereby the amplitude of the simulated RP was scaled to
that of the empirical RP. In each case, the normalized
distribution of first-crossing times of the model was si-
multaneously fit to the normalized empirical waiting time
distribution. Fitting was performed using multidimensional
unconstrained nonlinear minimization (Nelder-Mead; func-
tion fminsearch in Matlab) on the mean-squared error be-
tween the simulated and empirical data. Appropriate starting
values for the parameters, including scaling parameters,
were identified by first trying a few fits by hand.

Modeling of ‘W’ time and derivation of the prediction
I modeled the subjective estimate of the time of the

conscious urge to move (Libet’s ‘W’ time) by adding a
second threshold, slightly lower than the main activation
threshold (Fig. 2), similar to Ganos et al. (2015). This
“advance warning” threshold is sufficiently close to the
main threshold that crossing it is a good predictor that the
main threshold is about to be crossed (i.e., movement is
about to ensue) with very high probability. ‘W’ time in this
model is simply the temporal delay between the crossing
of the two thresholds, expressed with respect to the
crossing of the second threshold (i.e., a negative number).
Note that I do not assume that this predictive information
uniquely determines ‘W’ time, but only that it informs ‘W’
time. Prior evidence indicates that neural information from
both before and after movement onset can influence ‘W’
time (Sirigu et al., 2004; Lau et al., 2007; Banks and
Isham, 2009; Douglas et al., 2015), and thus that the brain
likely makes use of information from both before and after
movement onset in its estimation of ‘W’ time. Here, I only
assume that a premovement prediction about an upcom-
ing movement and its reafferent consequences (Wolpert,
1997) is at least part of the information that contributes to
the brain’s estimate of ‘W’ time.

Estimation of the 1/fexponent��)
The 1/f exponent was computed as the sign-reversed

slope of the best fitting line fit to the fractal component of
the power spectrum in log-log coordinates. The fractal
component of the power spectrum was estimated using
the IRASA method of Wen and Liu (2016) and the best
fitting line was estimated using ordinary least squares
regression (lscov in Matlab).

Code accessibility
Computer code (Matlab) for running the simulations is

available as Extended Data 1, and is also available online
at https://bitbucket.org/aschurger/lsa_rp_model.

Results
Behavioral
Waiting time

Subjects waited on average 7.1 (�0.63 s SEM) seconds
to produce a movement in the classic Libet task, and 5.4
s (�0.31 s SEM) in the interruptus task. This difference
was significant (p � 0.001; two-tailed t test, t � 4.5, df �
14), although the two distributions were mostly overlap-
ping (see Fig. 3B of Schurger et al., 2012). Since I com-
bined noninterrupted trials from the interruptus task with
data from the classic task, I performed an additional test
(see below) to make sure that this average difference in
waiting time did not account for any of the other results
related to waiting time.

‘W’ time
Libet et al. (1983) used the term ‘W’ time to refer to the

subjective estimate of the time of the conscious urge to
move. The mean ‘W’ time in the classic task was –142 ms
(�34 ms SEM), and the mean ‘W’ time in the interruptus
task was –126 ms (�44 ms SEM). The ‘W’ times in the two
tasks were not significantly different across subjects (p �
0.45; two-sided paired samples signed rank test).

EEG RP
Fourteen of 16 subjects exhibited the gradual negative

deflection in scalp electrical potential before movement
onset, at or near the vertex, that is characteristic of the
RP. The two subjects that did not exhibit an RP were
excluded from further analyses. The average RP across
subjects (N � 14) is shown in Figure 3B. The tail of the RP
extended back in time at least two full seconds before
nearing its horizontal asymptote.

Data fitting
The RP-as-output variant of the model has been shown

previously to fit the data well (Schurger et al., 2012), but
what about the RP-as-input variant? Although the present
argument is focused on empirical predictions made by
the two models, nevertheless it was important to con-
firm that the RP-as-input model was capable of fitting
the data, before going on to test empirical predictions
derived from it.

The RP-as-input model is in fact capable of producing
a very good fit to the data. Figure 3 shows the normalized
distribution of first crossing times of the output of the
accumulator fit to the normalized empirical waiting time
distribution (n � 14). Also shown is the average time
course of the stochastic input to the accumulator (time
locked to threshold crossings in the output), fit to the
average RP. The parameters for the best fit were obtained
after an exhaustive search of the parameter space, and
were as follows: � � 1.4, I � 0.1, k � 0.6, and threshold
� 0.1256. Thus, a single set of parameters exists such
that the RP is well fit by the event-locked stochastic input
to the accumulator and the waiting time distribution is well
fit by the first-crossing time distribution of the output. It is
noteworthy that the value for � was 1.4, which is approx-
imately the value for � found in our EEG data (1.34 � 0.14
SEM; Fig. 4) and that has been observed in the past for
EEG data (Pereda et al., 1998; reported � � 1.5).
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One might ask whether or not it is necessary to use 1/f
noise as input to the accumulator. Perhaps all that is
necessary is to suppress the higher frequencies, in which
case a low-pass filter applied to white noise might suffice
(Fig. 1F). One problem with this reasoning is that this
procedure could be seen as simply a very crude way of

approximating 1/f noise, which would bring us back to the
original question. Nevertheless, it is unclear a-priori how
well the model would fit the data using low-pass filtered
white noise instead of 1/f noise as input to the accumu-
lator. I tested this possibility using a first-order Butter-
worth low-pass filter, varying the cutoff frequency. I used

Figure 2. Schematic illustration of the model (A) with sample input and output (B–G). In A, the � symbol represents the neural
accumulator, with pink noise plus constant input on the left and output on the right. The higher of the two thresholds is the activation
threshold: when this threshold is crossed, then the “neural decision to move” has been made and movement ensues. The lower of
the two thresholds is a self-monitoring threshold: when this threshold is crossed a signal is generated indicating that movement is
about to ensue with very high probability. When subjects are asked to estimate the time at which they were first aware of an urge to
move (‘W’ time), this decision is (according to the model) informed by the delay between the crossing of the two thresholds. B–F,
Average input and output from the model for different values of the 1/f exponent ���. G, Same for lowpass filtered white noise (see
Materials and Methods).
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a low-order filter because it has a shallow cutoff, thereby
approximating more closely the relationship between fre-
quency and power found in 1/f noise (with higher-order
filters the fit, in particular to the RP, only became worse).
I used the same exhaustive parameter search here as I
had used when running the model with 1/f noise.

Using low-pass filtered noise as input to the accumu-
lator, under the RP-as-input assumption, the model could
fit either the RP or the wait-time distribution, at the ex-
pense of the fit to the other, but had trouble fitting both
with the same set of parameters. Notably, the best fit
overall using low-pass filtered noise was significantly
poorer than the best fit achieved with simulated 1/f noise
(MSE of best fit with low-pass filtered noise 0.0271 �

0.00066 SD, vs 0.0146 � 0.00054 SD using 1/f noise; p �
10�9, two-sided Wilcoxon rank sum test). Again, this
might simply reflect the fact that a low-pass filter applied
to white noise yields a relatively poor approximation of 1/f
noise. However, as stated previously, I make no claims
about the necessity of “true” 1/f (power-law) noise, only
that the input noise should be temporally autocorrelated,
although it would appear that simulated 1/f noise does
lead to a significantly better fit overall.

Prediction 1: relationship between the shape of the
RP and waiting time

The predicted relationship between waiting time and
the shape of the RP under the RP-as-input and RP-as-
output assumptions is shown in Figure 5, for the param-
eters reported above (� � 1.4, I � 0.1, k � 0.6, and
threshold � 0.1256). Although these specific parameters
were the ones that resulted in the best fit under the
RP-as-input assumption, the predicted relationship be-
tween RPs for short versus long wait times remained
qualitatively the same regardless of the specific parame-
ters used, as long as � was more than �0.5. As illustrated
in the figure, under the RP-as-input assumption the model
predicts that the early RP will have a lower amplitude for
long versus short waiting times (Fig. 5A). On the other
hand, under the RP-as-output assumption the model pre-
dicts the opposite: a higher amplitude early RP for long
versus short waiting times (Fig. 5B). The empirical data
clearly support the RP-as-input interpretation (Fig. 6; p �
0.01 for the mean amplitude over the range -1.5 to -0.5 s,
two-tailed signed rank test).

To understand the relationship (Fig. 5C,D), consider
that the output of the accumulator will tend to have a
steeper slope on trials with a short waiting time. This

Figure 3. Fitting the model to the data under the RP-as-input interpretation. Left, The distribution of first crossing times (dashed black
line) fit to the empirical distribution of waiting times (solid gray line). Right, The (sign reversed) average stochastic input to the
accumulator time locked to threshold crossings in the output (dashed black line) fit to the empirical RP (RP at C1; solid gray line). The
two fits were performed simultaneously, i.e., with the same parameters. The parameters used for the best fit were � � 1.4, I � 0.1,
k � 0.6, and threshold � 0.1256. Inset shows the same fit (same parameters), but with the RP measured at either electrode FC1, C1,
or Cz chosen individually for each subject depending on which electrode had the highest amplitude signal at t(0). Note that the fitting
procedure included a scaling factor whereby the amplitude of the simulated RP was scaled to that of the empirical RP.

Figure 4. Estimated 1/f exponent. Boxplot of the 1/f exponent (
�) estimated for each subject (N � 14) at electrode C1. Each dot
represents one subject. See Materials and Methods for the
estimation procedure.
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translates into a lower initial amplitude, when time aligned
to the first crossing time. Whereas trials with a longer
waiting time will tend to have a more gradual, shallow
slope, and thus a higher amplitude when time aligned to
the first crossing time. The input to the accumulator, on
the other hand, will tend to have a higher amplitude
throughout the epoch for trials with a short waiting time
(the higher its amplitude the sooner its integral will cross
a given threshold value). This relationship is explained
schematically in Figure 5C,D, which illustrates the rela-
tionship for the simplest case where the input is constant
and the output is linear. Note that this overly simplified
schematic is only intended to describe the relationship
between the input and output but not their shape.

Prediction 2: correlation between waiting time and
W time

As mentioned in Materials and Methods, I assume that
the temporal delay between the crossing of the advance
warning threshold and the main activation threshold con-
tributes to the subjective estimate of ‘W’ time (Fig. 2).
Thus, if the trajectory of the decision variable is relatively
steep, then that temporal delay will be relatively short, and
so ‘W’ time will be later in time (closer in time to the onset
of movement). On the other hand, if the trajectory of the
decision variable happens to be relatively gradual, then
the temporal delay will be longer and ‘W’ time will be
earlier (farther back in time from the onset of movement).
Therefore, the prediction is that waiting time should be

Figure 5. Predicting the shape of the RP as a function of waiting time. A, Average stochastic input to the accumulator, time aligned
to first crossing times in the output, separately for trials with a long wait (upper 33rd percentile; black line) and for trials with a short
wait (lower 33rd percentile; gray line). B, Same as A but for the output of the accumulator. The early tail of the output on “short wait”
trials is noisier than the rest because of missing data: on trials with a short wait, often the climb to the threshold was shorter than the
epoch length. C, Schematic depiction of the input and output for constant input, time aligned to the beginning of the trial. On trials
with a short wait, the input is greater and the output rises more quickly to the threshold. D, Same as C, but time aligned to the
threshold crossing. Notice that when time is aligned to the threshold crossing the relationship between input and output becomes
reversed. This helps to intuitively explain the reversal in the relationship between the predicted shape of the RP for long- and
short-wait time trials. Parameters used for A, B: � � 1.4, I � 0.1, k � 0.6, and threshold � 0.1256. However, the relationship between
predicted RPs for short versus long wait times (reversal of amplitude relationship for input versus output) remained qualitatively the
same regardless of the specific parameters used, as long as � was ��0.5. Regarding A, B, note that, because the epochs are time
locked to threshold crossings in the output, only the outputs (B) are guaranteed to reach the same amplitude at t(0). The two curves
in A do not necessarily have to reach the same amplitude at t(0), because these are the average inputs to the accumulator. The inputs
for long and short waits in C, D are set to 1 and 2, respectively, for illustrative purposes, so that the slope of their respective outputs
will be 1 and 2. Note that this overly simplified schematic is only intended to describe the relationship between the input and output
but not their shape.
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negatively correlated with ‘W’ time, with longer waiting
times predicting earlier ‘W’ times and vice versa (Fig. 7).
Remarkably, this prediction is confirmed, both in the
pooled data from all subjects (Fig. 8; Pearson’s correlation
coefficient: r � -0.116, p � 0.0003; slope of regression
line: b � -0.012), and in the aggregate of individual cor-
relations across subjects (Fig. 9; p � 0.0009, two-sided
Wilcoxon signed rank test on the r’s from each individual
subject, n � 14; r was negative for 13 of 14 subjects, p �
0.0009 binomial).

The parameters used to generate the above prediction
were the same as those used for fitting the data and
predicting the shape of the RP: � � 1.4, I � 0.1, k � 0.6,
and threshold � 0.1256. The prediction was robust to
small changes in the parameters. Most importantly the
prediction only held for � more than �1.2, i.e., this pre-
diction depends on the stochastic input being pink. Thus,
allowing � to vary revealed a novel prediction that would
not have been revealed otherwise.

The advance warning threshold may be thought of as
analogous to the processing of an “efference copy” by an
internal forward model (Wolpert, 1997). When the predic-
tion threshold is crossed, information is generated indi-
cating that a specific movement is just about to happen
with high probability. After the movement is completed,
this information informs the subsequent subjectively-
estimated ‘W’ time. Note again that I do not assume that
the predictive signal uniquely determines ‘W’ time, but
only that it informs ‘W’ time. There is strong evidence that
neural information from both before and after movement
onset can influence ‘W’ time, and thus that the brain likely
makes use of information from both before and after
movement onset in making this particular judgment (Lau
et al., 2007; Banks and Isham, 2009; Douglas et al., 2015).
Here, I assume that a premovement prediction about an
upcoming movement (and its reafferent consequences) is
at least part of the information that contributes to the
brain’s post hoc estimate of ‘W’ time.

Figure 6. The shape of the RP as a function of waiting time. Average empirical RP (sign reversed for easier comparison with model
predictions) at electrode C1 for trials with short (gray line) and long (black line) waiting times. Thin dashed lines show standard error
of the mean. Stars at the bottom of the axis mark time points where the difference between the two was significant at p � 0.05 (gray
stars) and p � 0.01 (black stars); p � 0.01 for the mean amplitude over the range -1.5 to -0.5 s (two-tailed signed rank test).

Figure 7. Predicting ‘W’ time as a function of waiting time. Schematic showing how ‘W’ time is predicted to vary as a function of
waiting time. On trials with a short waiting time, the slope of the decision variable is steeper (gray line) than on trials with a long waiting
time (black line). A steeper slope means that the interval between the crossing of the two thresholds will be shorter, so ‘W’ time will
be closer in time to the onset of movement (smaller in absolute value). For trials with a more gradual slope of the decision variable
(black line) the reverse is true, ‘W’ time will be further back in time from the onset of movement and larger in absolute value.
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As mentioned before, to guard against the possibility
that this correlation might be driven by the difference in
mean waiting time for the classic and interruptus tasks
(recall that noninterrupted trials from the interruptus task
were combined with data from the classic task), I tested
the pooled correlation separately for the data from the
classic task and the data from the interruptus task. The
correlation was negative and highly significant in both
data sets (classic task: r � -0.1159, p � 0.001; interruptus
task: r � -0.1156, p � 0.001), thus arguing against this
possible interpretation.

Discussion
Here, I explored the behavior of an accumulator model

when the power spectrum of the input noise was allowed
to vary from white (the standard for such models) to pink,
i.e., allowing for varying levels of temporal autocorrelation
in the noise. The 1/f exponent (�) of the noise spectrum
thus becomes a parameter of the model, which can take
values in the range 0 	 � � 3. Previous work has looked
at stochastic differential equations that can generate au-
tocorrelated noise in their output with a variable 1/f expo-
nent (Ruseckas and Kaulakys, 2010), but this is different

Figure 8. ‘W’ time as a function of waiting time aggregate. Correlation between waiting time and ‘W’ time for simulated data from the
model (left) and for the empirical data from all subjects (right; each dot is one trial from one subject). Although there is noise in the
model, the model data are bounded by zero at the top, because there is no noise in the estimation of ‘W’ time, it is strictly earlier than
movement time and is “reported” exactly as is. In reality there is a lot of variance across trials and across subjects in the reporting
of ‘W’ time, and this is evident in the panel on the right. Combining the data from all subjects can be problematic, because differences
between subjects and differences within subject are confounded, so in Figure 9, I present the correlations separately for each subject.

Figure 9. ‘W’ time as a function of waiting time per subject. Correlation between waiting time and ‘W’ time for the empirical data
grouped by subject. The horizontal axis is the waiting time (from 0 to 20 s) and the vertical axis is ‘W’ time in seconds with respect
to movement onset. Data are shown in red if the correlation is individually significant at p � 0.05. When the r values for all subjects
are submitted to a Wilcoxon signed rank test the effect is significant at p � 0.001. Also, the probability of 13 subjects (out of 14)
individually exhibiting a negative correlation is 0.0009 (binomial test).
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from the present work which used autocorrelated noise in
the input to the process (in place of the Gaussian white
noise used by convention).

With the 1/f exponent (�) of the input noise as a param-
eter, I tested the possibility that the canonical RP reflects
the average event-locked stochastic input to an accumu-
lator rather than its average output. I first showed that the
model, under the RP-as-input assumption, was able to fit
the data and then tested a prediction regarding the shape
of the RP. Finally, I also tested a prediction regarding ‘W’
time that depends on the input noise being autocorre-
lated.

Intuitively one might expect that, from the perspective
of a scalp electrode, the output of a neural accumulator
might be too faint to be detected, because it might be
computed by a small population of neurons (compare
O’Connell et al., 2012). At the same time, the stochastic
input to the decision process should be at least as readily
measured at the scalp if it is shared among a large
number of neurons spanning a functional network (Mantini
et al., 2007). Whatever the case may be, the model provided
a way to distinguish between these two possibilities by
generating opposing predictions depending on the sub-
strate (input or output) of the observed average (Fig. 5).

The model also incorporated a second “warning”
threshold, slightly lower than the primary activation
threshold, such that when the lower threshold is crossed
the probability of soon crossing the primary activation
threshold is high (Fig. 7). This lower threshold allows the
model to account for the estimated time of the subjective
urge to move (‘W’ time) in terms of the delay between the
crossing of the two thresholds. This is clearly an oversim-
plification of the true state of affairs: prior data have
implicated factors from both before and after movement
onset in the subjective estimation of ‘W’ time (Sirigu et al.,
2004; Lau et al., 2007; Banks and Isham, 2009; Desmur-
get et al., 2009; Douglas et al., 2015). However, the model
is only intended to account for one such factor, originating
before movement, plausibly the generation of a forward
model (Wolpert, 1997). There has been a great deal of
controversy surrounding the meaning of ‘W’ time and its
relationship to the onset of intention (for review, see Maoz
et al., 2015).

Note that the argument here is not that pink noise is
superior to white noise in stochastic accumulator models.
Rather it is an argument in favor of allowing � to vary (as
it does in real neural systems) in accumulator models of
decision-making. The resulting value for � that is sug-
gested by the model could in principle be near zero (i.e.,
white noise) or it could be roughly between 1 and 2 (pink
noise). The point is that having � as a parameter adds a
new dimension to the model allowing it to account more
fully for the neural data, by fitting its spectral properties.
One advantage of doing so is that the stochastic input
may then behave in a way that is amenable to modeling,
e.g. the the RP-as-input variant of the model can only fit
the data when � is non-zero. Another advantage is that
with variable �, we can account for properties of the data
that were previously overlooked, potentially leading to
new predictions.

Allowing the spectral properties of the input noise to
vary here led to two novel predictions. The first prediction
was that the shape of the RP should vary as a function of
the time elapsed between the beginning of the trial and
the onset of the self-initiated movement (the waiting time).
The relationship between the shape of the RP and waiting
time was reversed depending on whether the RP was
modeled as the average input to or average output from
the accumulator (Fig. 5) thus constituting a strong test
with which to adjudicate between these two possibilities.
The second prediction was that the estimated time of the
subjective urge to move, with respect to movement onset,
should be negatively correlated with the waiting time,
being earlier in time (with respect to movement onset) for
longer waiting times, and vice versa. Both of these pre-
dictions were confirmed, lending support to the hypothe-
ses encapsulated in the model. The results are important
because they drive a wedge between two different pos-
sible (and plausible) interpretations of the RP: (1) as the
average event-locked stochastic input to an integration-
to-bound process, or (2) as the average event-locked
output from an integration-to-bound process. Both re-
sults point to the former interpretation.

Note that Caspar and Cleeremans (2015) found that the
amplitude of the RP was lower among subjects with late
‘W’ times (“short W group”) compared to subjects with
early ‘W’ times (“long W group”), whereas Haggard and
Eimer (1999) found the opposite. These studies did not
group their data according to waiting time as I have done
here, but one can infer the following: If longer waiting
times are associated with both earlier ‘W’ times and a
lower-amplitude early RP, then early ‘W’ times may be
associated with a lower-amplitude early RP. This is
broadly consistent with Caspar and Cleeremans (2015),
although the difference here was in the early RP, whereas
these two prior studies report a difference in the ampli-
tude of the RP overall. Note also that the results of both
Haggard and Eimer (1999) and Caspar and Cleeremans
(2015) depend on the choice of baseline which has re-
cently been a topic of debate (Khalighinejad et al., 2018).
I did not apply any baseline correction to the EEG data
reported here.

The hypotheses tested in the present study are based
on two premises. One is that, when movements are made
spontaneously and voluntarily, a subset of neurons in
premotor areas behave like inputs to an accumulator
while other neurons behave like outputs (Murakami et al.,
2014). This first premise raises the question of which
subpopulation of neurons is responsible for the RP, as
captured from the perspective of a scalp electrode, or
other mass-action recording modality. The second prem-
ise is that real biological noise in the brain is not white, but
rather has (approximately) a 1/f spectral profile. Although
we have known about the RP for a long time, attempts to
model it mechanistically have come about only recently
(Schurger et al., 2012). These two premises expand the
horizon of stochastic accumulator models, especially in
the low-SNR regime, and add a new dimension to the
kinds of hypotheses that can be derived from such mod-
els.
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The model developed here accounts for both the shape
of the RP and W time in terms of a third variable, the time
spent waiting to produce a movement. To date, this vari-
able has been given very little attention in the literature,
but was predicted to be a factor by the model. To the
extent that the waiting time in a self-initiated movement
task can be considered analogous to the reaction time in
a perceptual decision-making task, we can then consider
some of the parallels between them. From the point of
view of the accumulator model, both reaction time and
waiting time reflect the very same thing: the time it takes
for the integral of evidence plus noise to reach a decision
boundary. Both produce a gamma distribution, and both
exhibit a positive linear relationship between the standard
deviation and the mean (Schurger et al., 2012).

The simplifying assumption of Gaussian white noise in
accumulator models has held strong for decades, and
such models have proven themselves very capable of
accounting for behavioral and neural data (Ratcliff, 1978;
Ratcliff et al., 1999; Gold and Shadlen, 2001; Usher and
McClelland, 2001; Ratcliff et al., 2004; Gold and Shadlen,
2007; Ratcliff and Starns, 2009, 2013). This begs the
question of why we should further complicate things by
introducing varying levels of autocorrelation in the input
noise. The answer is simple: stochastic fluctuations in
neural systems tend to be temporally autocorrelated
(Destexhe et al., 2003; Rudolph and Destexhe, 2003;
Henrie and Shapley, 2005; Garcia-Perez et al., 2007; Mil-
stein et al., 2009; Van De Ville et al., 2010; He, 2011). A
real neural integrator, given that it must integrate over
fluctuations originating elsewhere in the brain, will likely
integrate over autocorrelated fluctuations, and if so then
the level of autocorrelation will likely vary between differ-
ent cognitive states and between different individuals (He
et al., 2010). Thus, the level of autocorrelation (1/f expo-
nent) in neural time series is a meaningful and functionally
relevant physiological variable that can be accounted for
in models of decision-making by allowing the spectral
properties of the stochastic input to vary.

While the use of simulated 1/f noise as input to the
accumulator yields a very good fit to the data (wait-time
distribution and RP) there might be other ways to accom-
plish this. I was able to achieve a moderately good fit to
the data using low-pass filtered white noise, although the
best fit was still significantly poorer than that achieved
using simulated 1/f noise. Also, the (log-log) slope of the
resulting spectrum was far from that observed in the
empirical data (�3.0 for low-pass filtered noise vs �1.4
for simulated 1/f noise). So, while it might be possible to
fit the wait-time distribution and/or RP using low-pass
filtered white noise as input, the spectrum of the resulting
input time series is a very poor match to that observed
empirically. Thus, one key advantage of using simulated
1/f noise versus low-pass filtered white noise is that it can
account not only for the behavior and event-related po-
tential, but also for the spectral properties of the EEG
data, offering a more complete representation of the data.
Still, no claim is made here as to whether or not true
power-law noise is required. What is required, at a mini-
mum, is that the stochastic input time series are tempo-

rally autocorrelated and that the degree of autocorrelation
can be varied parametrically. The technique used here to
generate simulated 1/f noise (see Materials and Methods)
offers a means of doing that.

Accumulator models are commonly viewed as operat-
ing at a higher level of abstraction than neural models.
Nevertheless, aspects of such models are commonly
mapped onto neural phenomena (Gold and Shadlen,
2007). The output of the accumulator (x, the decision
variable) is commonly taken to represent the firing rate of
neurons involved in decision-making, and the constant
input (I) is taken to represent the sensory evidence in the
form of firing rates of sensory perceptual neurons that
synapse, directly or indirectly, onto the decision neurons.
The noise term on the other hand is not typically consid-
ered to map directly onto a specific neural phenomenon,
but rather accounts for variability within and across trials.
Here, I offer a more explicit treatment of what the noise
term reflects: it reflects stochastic variability in neural
activity originating from elsewhere in the brain, and as
such perhaps should be modeled as having the same
power spectrum as real neural noise. This spectrum is
known to be pink rather than white.

One might argue that, although the use of autocorre-
lated noise in the model is more biologically realistic, it
may add relatively little in terms of accounting for and
helping to explain the data. As mentioned previously,
standard accumulator models, with Gaussian white input
noise, have been widely used in the study of perceptual
decision-making and reaction time paradigms and have
proven very effective in accounting for neural and behav-
ioral data. While this may be true, the fact that the pre-
dictions made here emerge from the model only when the
input noise is autocorrelated lends credence to the argu-
ment that the spectral properties of the noise used in such
models does matter. Further research will be needed to
bear this out, but intuitively it seems that it will likely
matter most when the imperative (the drift term) is weak
relative to the noise, i.e., in the context of decision-making
under uncertainty.
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