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Abstract: Hydrological changes attributable to global warming increase the severity and frequency
of droughts, which in turn affect agriculture. Hence, we proposed the Standardized Agricultural
Drought Index (SADI), which is a new drought index specialized for agriculture and crops, and
evaluated current and expected droughts in the Korean Peninsula. The SADI applies crop phenology
to the hydrological cycle, which is a basic element that assesses drought. The SADI of rice and maize
was calculated using representative hydrological variables (precipitation, evapotranspiration, and
runoff) of the crop growing season. In order to evaluate the effectiveness of SADI, the three-month
Standardized Precipitation Index, which is a representative drought index, and rainfed crop yield
were estimated together. The performance evaluation of SADI showed that the correlation between
rainfed crop yield and SADI was very high compared with that of existing drought index. The results
of the assessment of drought over the past three decades provided a good indication of a major
drought period and differentiated the results for crops and regions. The results of two future scenarios
showed common drought risks in the western plains of North Korea. Successfully validated SADIs
could be effectively applied to agricultural drought assessments in light of future climate change, and
would be a good example of the water-food nexus approach.

Keywords: agricultural drought; Standardized Agricultural Drought Index; crop phenology;
hydrological cycle; climate change; Korean Peninsula; rice and maize

1. Introduction

Many climate change-related studies at global levels have shown the most notable changes in
temperate regions, particularly highlighting hydrological changes [1,2]. Hydrological changes lead to
climate disasters such as droughts and floods, and recent extreme droughts and floods have appeared
in many parts of the world [3]. In 2016, the cause of Brexit, namely Britain’s withdrawal from the
European Union, was socio-economic and political, but it originated from a prolonged, severe drought
in Syria [4,5]. This drought, which has been extensive and prolonged owing to climate change, has had
a direct impact on agriculture and has resulted in the emergence of refugees and international issues.

Traditionally, understanding of droughts has been conducted to promote primary industrial
productivity, such as agriculture, where water consumption is high [6]. In recent years, climate
dependence on water supply in most developed countries has decreased due to expanding irrigation
facilities, but it is still a major problem in developing countries and can cause limitation of irrigation
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facilities in extreme drought situations [7,8]. The monitoring and prediction of drought are still
important for human survival.

Drought indexes are widely used to predict and evaluate droughts. Many drought indexes, such
as the Standardized Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), and the
Standardized Precipitation Evapotranspiration Index (SPEI), have been proposed and widely used
in agriculture, hydrology, and forestry [9–11]. Although the reliability of existing meteorological
drought indexes has been proven in many studies, they are not highly relevant to the effects on
vegetation, such as agriculture and forests [11,12]. They are limited to considering the characteristics
of a specific agriculture, forest and ecosystem because of the use of time series precipitation data or
the consideration of evapotranspiration in calculating the drought index. In order to compensate for
this, some drought-related indexes have been proposed for specific agriculture and forest disasters
using soil and vegetation-related variables [13–15]. However, owing to the lack of meteorological
considerations, it is difficult to make future predictions for extreme climate changes. In other words,
representative drought indexes can assess hydrometeorological or vegetative conditions, but are limited
to agriculturally and hydrologically connected assessments.

Although drought is meteorologically and hydrologically defined and indexed, it is necessary
to overcome the limitations of the relationship with agriculture. In agriculture, the amount of water
demand, yield, and cultivation period are different depending on the characteristics of the crops,
but existing drought indexes have difficulties considering these [16,17]. In recent years, there have
been various attempts at the concept of a water-food nexus, but there have not been many studies
suggesting a practical approach through a structural linkage [18,19]. Thus, it is necessary to contribute
to understanding the amount of water available and the amount of water needed for agriculture
through an agriculture or crop-specific drought index.

Hence, in this study, we tried to assess the current and future agricultural droughts in the
Korean Peninsula using a new crop-specific drought index. This study presents the Standardized
Agricultural Drought Index (SADI) for each crop, which is an agricultural drought index considering
the hydrological cycle and crop phenology. We evaluate the effectiveness of the SADI over the past
three decades of data and applied two climate change scenarios to estimate short-term and long-term
future changes. Ultimately, we present the importance of crop-specific agricultural drought indexes
and the importance of the nexus approach between agriculture and water.

2. Data and Methods

2.1. Study Area

The Korean Peninsula has a temperate monsoon climate with hot and humid summers and
cold, dry winters. The average annual temperature is 10–16 ◦C and the annual precipitation is about
1000–1400 mm [20]. Geographically, the northern part of the Kaema Plateau and the Taebaek mountain
range on the east coast are major mountainous areas, and plains are widely distributed around the
west coast [20,21] (Figure 1).

The Korean Peninsula, which includes the Republic of Korea (hereafter ‘South Korea’) and
Democratic People’s Republic of Korea (hereafter ‘North Korea’), covers an area of 221,000 km2, of
which about 55,000 km2 is farmland, accounting for 25%. Cropland covers approximately 20,000 km2 in
South Korea and 35,000 km2 in North Korea, and the cropland in North Korea has greatly increased in the
past two decades [22,23]. This is a phenomenon caused by rapid deforestation and cropland expansion
due to food problems in the 1990s [23]. Traditionally, rice is a staple food in the Korean Peninsula, so
rice production is the most popular. In North Korea, maize is also used as a major food crop. Although
the crop phenology differs depending on the region due to its long north-south characteristics, maize
is a typical phenology from April to July–August, and rice is from May to September.
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The Korean Peninsula is a temperate region in the mid-latitudes, and it is expected that the annual
mean temperature will increase 4 ◦C by the year 2100 and the precipitation pattern also will change
significantly with climate change [20,24]. It has been predicted that agricultural productivity will
increase, but it is expected that it will be necessary to provide a stable water supply and risk reduction
owing to exposure to climate disasters and hydrological changes [21].

2.2. Concept of SADI

The SADI is theoretically defined as the state of the hydrometeorological water cycle for each
crop phenology. Three specific hydrological variables, namely precipitation, evapotranspiration, and
runoff, are needed to calculate the SADI. It is fundamentally based on the hydrological cycle, but it is
calculated for the crop phenology rather than annually. SADI assesses drought through equilibrium,
taking into account the water supply and demand of the crop phenology. The calculation is as follows:

AD = PGS − (QGS + ETGS) (1)

SADI =
AD− µAD

σAD
(2)

where PGS, QGS, and ETGS are the growing season precipitation, growing season runoff, and growing
season evapotranspiration, respectively, and µAD and σAD are the 30-year arithmetic mean and standard
deviation of AD, respectively.

The growing season of each crop, namely crop phenology, was estimated by the Environmental
Policy Integrated Climate (EPIC) crop model. Climatic verified cropping information was applied to
the model parameters to simulate harvesting when all the crops were grown. Here, the period between
the planting date and harvesting date was defined as the growing season for each crop, this growing
season was defined as phenology. In this study, the SADI was calculated for rice and maize.

Potential evapotranspiration (PET) for calculating ETGS was based on the Penman–Monteith
equation [21], which is the most representative estimation method. PET was estimated, then
evapotranspiration was calculated according to the crop coefficient by crop, and ETGS was calculated
according to the phenology. The estimation equation is as follows:

PET = (RN × δ+ 86.66×AD× EA(1−RH) ×U/350)/((2.51− 0.0022× T) × (δ+ γ)) (3)

The Penman–Monteith equation simulates the daily PET. Daily minimum and maximum
temperatures, solar radiation, relative humidity, and wind speed data are required. RN is the
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total solar irradiance (MJ·m−2
·d−1), δ is the slope of the saturation vapor pressure curve (kPa·◦C−1),

AD is the air density (kg·m−3), and EA is the saturation vapor pressure at mean air temperature (kPa).
RH is the average relative humidity per day, U is the average daily wind speed (m·s−1), T is the daily
average temperature (◦C), and γ is the psychrometric constant (kPa·◦C−1) [21].

Runoff was estimated based on the Groundwater Loading Effects of Agricultural Management
System (GLEAMS) model equation [25,26]. The GLEAMS model is a physically based mathematical
model developed for evaluating the effects of agricultural management systems on field-sized areas
within and throughout the plant root zone. It is composed of four sub-modules for hydrology,
erosion/sediment yield, pesticides, and plant nutrients, but we only used the hydrology sub-module for
estimating the amount of runoff. The GLEAMS hydrology sub-model parameter sets were constructed
for the developing periods for each of the plots and catchments in the United States [25]. The sequence
for the parameterization of each component consists of the soil, crop, and tillage operations provided
for each site and the supporting database information provided with the model [25]. The hydrologic
soil groups and runoff curve numbers are applied differently depending on the soil characteristics
of the region. Runoff calculation by the GLEAMS model equation uses a modified soil conservation
service curve number procedure [27]. The hydrologic soil groups and runoff curve numbers are applied
differently depending on the region’s soil characteristics but they most have C–D group and a runoff

curve number of 80–90 in most of Korean Peninsula [23]. The runoff estimation equation is as follows:

Q = (P + SM− 0.2S)2/P + SM + 0.8S (4)

where Q is runoff volume (cm day−1), P is daily precipitation (cm day−1), SM is snowmelt contribution
to precipitation (cm day−1), and S (cm day−1) is an abstraction which is a function of soil conditions and
land use [28]. A more detailed description of the model can be found in the GLEAMS manual [23,29].

SADI classifies drought into eight classes according to the index value. This classification refers to
the standard of other representative drought indexes, and these are summarized in Table 1.

Table 1. Classification of drought according to the Standardized Agricultural Drought Index (SADI).

SADI Score Drought Class

2.00 or greater Extremely wet
1.50 to 1.99 Very wet
1.00 to 1.49 Moderately wet
0.99 to 0.00 Normal

0.00 to −0.99 Near dry
−1.00 to −1.49 Moderately dry
−1.50 to −1.99 Severely dry
−2.00 or less Extremely dry

2.3. Evaluation of SADI

In order to evaluate the effectiveness of the SADI, we conducted a comparative analysis with the
agricultural productivity and the existing representative drought index. However, since productivity
in agricultural statistics refers to the irrigation condition, we estimated the crop yield of the rainfed
condition and evaluated its effectiveness. The rainfed crop yields of rice and maize were estimated using
the EPIC crop model, which has been successfully tested on the Korean Peninsula. The three-month
SPI (SPI-3) was selected as the representative drought index, and it was calculated for the same period
and compared with the SADI and rainfed crop yield. The SPI is based on monthly precipitation data
over a mostly continuous period of a minimum of 30 years. Statistics were used to determine the
dryness or wetness by comparing past precipitation data over the same period as the total months of
rainfall. Precipitation was normalized using a probability distribution function, so the value of the SPI
was actually the standard deviation of the median. Although, for SPI, there are various types such as
SPI-1, 3, 6, 12, and 24 depending on the range of application of precipitation data, in this study, we
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applied SPI-3, which has been shown to be related to agriculture and most widely used [30,31]. A
detailed description of the SPI can be found in McKee et al. [32] and in similar studies [11,12]. In the
case of the SPI, which is calculated monthly, the annual average SPI-3 was calculated separately for
comparison with the SADI derived from annual data. Linear regression analysis and coefficient of
determination were used to determine the relationships between the SADI and rainfed crop yield and
the SPI-3 and rainfed crop yield.

2.4. Use of the EPIC Crop Model to Estimate Crop Phenology and Rainfed Crop Yield

The EPIC model is a widely used crop model worldwide, and it has been applied in many studies
on the Korean Peninsula [21,23,33–35]. In this study, the EPIC crop model was used for gridded
estimation of crop phenology using the parameters of optimum climate conditions (see later) and for
gridded estimation of rainfed crop yield to evaluate the performance of the SADI.

EPIC is a generic crop model that was developed in the United States. It is used in various fields
related to the agricultural environment, such as crop productivity, soil quality and condition, and
hydrological variables [25,35,36]. It was first developed in the 1980s, and has been updated and widely
used in agricultural research in the United States, Europe, Asia, Africa, and global scale [37–39]. We
used the most recent version of the EPIC model (EPIC 0810). In the EPIC model to estimate crop growth,
potential biomass is calculated daily from photo-synthetically active radiation and radiation-use
efficiency [37]. And a potential biomass is adjusted to actual biomass through daily stress caused
by water condition, extreme temperatures, and nutrient deficiency [37,40]. The estimation of daily
potential biomass growth uses climate-related parameters, such as solar radiation, temperature, and
biomass-energy conversion rates of crops. Ultimately, crop yield estimates are based on the actual
biomass accumulation and crop harvest index [38,41].

In this study, a calibrated crop parameter was used to estimate the crop yield on the Korean
Peninsula using previous verified studies [21,35]. For rice, the optimum temperature was 25 ◦C, the
base temperature was 10 ◦C, the harvest index was 0.55 mg·mg−1, the biomass-energy ratio was set
at 30 kg·MJ−1, and the potential heat unit (PHU) ranged from 1300 ◦C to 1500 ◦C depending on the
climate of the specific grid cells. For maize, the optimum temperature was 25 ◦C, the base temperature
was 8 ◦C, the harvest index was 0.45 mg·mg−1, the biomass-energy ratio was set at 43 kg·MJ−1, and
the PHU range was 1000–1200 ◦C depending on the climate of the specific grid cells [21,37,38]. These
parameters have been verified for performance in previous studies in the Korean Peninsula [21,34,35],
and thus were not evaluated for crop yield estimates. Lim et al. [35] verified for rice yield by an
average accuracy of 91% in the root mean square error (RMSE) and an average error rate of 4.2% in the
relative error. Kafatos et al. [34] showed an average accuracy of 80% for maize yield estimation. In
Lim et al. [21], the average accuracy by RMSE of rice was 89% and the relative error was 2.3%, and the
RMSE of maize was 81% and the relative error was 5.8%. The rice showed a more accurate evaluated
result, and the maize also had a sufficiently high level of accuracy. The three studies, although the
same calibrated version was used for the Korean Peninsula, showed a little different accuracy by the
dissimilar spatial unit of statistics and different climate data. Unlike the estimates rainfed crop yield in
this study, these references are simulated and verified in irrigated conditions, but it is reasonable to
utilize this calibrated version because the statistical evaluation of rainfed crop yields is not possible.

2.5. Climate and Other Input Data and Process

For calculating SADI, six meteorological variables at a daily time scale were required (minimum and
maximum temperature, solar radiation, precipitation, relative humidity, and wind speed). Precipitation
was used to calculate PGS and SPI-3, the remaining five variables were used to calculate ETGS, and
all six variables were used to calculate QGS. Daily meteorological data were obtained by the Korean
Meteorological Administration online climate data portal system. We used 102 weather stations for the
period of 1981–2010. For points for which there were no records, the parameters were determined
using the Kriging and inverse distance weighted (IDW) interpolation methodologies for 1 km2 spatial
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resolution. The Kriging method was used to interpolate the maximum and minimum temperature,
and the IDW method was applied to solar radiation, precipitation, relative humidity, and wind
speed [42–44].

In addition, to assess future agricultural drought, we applied two typical climate change scenarios,
namely Representative Concentration Pathways (RCPs) 4.5 and 8.5. We used the HadGEM2-AO Global
Climate Model (GCM) developed by the Hadley Centre for Climate Prediction and Research in the
United Kingdom, and the HadGEM3-RA regional climate model. The HadGEM3-RA is a regional
downscaled version of the HadGEM2-AO GCM. The climate model data for the study area were
acquired through the Coordinated Regional Climate Downscaling Experiment-East Asia. All the future
climate data had 12.5 km2 spatial resolution, but we resampled the spatial resolution to 1 km2 using the
nearest technique considering the small patch characteristics of Korean cropland. We utilized 40 years
of future climate data from 2041 to 2080. The EPIC model required several soil-related parameters (pH,
OC (%), bulk density (tm−3), cation exchange capacity (cmol·kg−1), silt (%), sand (%), and electrical
conductivity (mS·cm−1)). The soil data were constructed spatially using the Digital Soil Map of the
World [45] and the ISRIC-WISE database [46].

We used the 2010 Global Land Cover 30 (GLC30) data to apply the current agricultural area [47]
(accessed from http://www.globallandcover.com). The GLC30 is a constructed 30 m2 land cover map
based on Landsat 7 satellite imagery. We extracted the cropland of the Korean Peninsula and resampled
the nearest technique with 1 km2 grid cells.

The overall process of calculating these SADI is shown in Figure 2.
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3. Results and Discussion

3.1. Evaluation of SADI Using Rainfed Crop Yield and the SPI-3

In the baseline period (1981–2010), we compared the SADI, SPI-3, and rainfed crop yield annually.
The SADI of rice (SADI-Rice) showed a higher annual deviation than the SPI-3 or rainfed crop yield,
and there was a severe agricultural drought in 1988–1989 and 2000. On the other hand, very wet
conditions were observed in 1998 and 2002, and it was estimated that the rainfed rice yield was high
in this period. In fact, 2002 was the year when summer precipitation was more concentrated. SADI
sensed the highly wet condition of the growing season, while SPI-3 showed a significant difference
from the production due to other seasonal dry conditions. Overall, the SADI-Rice and rainfed rice
yields showed similar trends, while the SPI-3 and rainfed rice yields showed less similarity (Figure 3).
The SADI-Rice and SPI-3 showed a similar trend, but only during a certain period.

http://www.globallandcover.com
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In the case of SADI of maize (SADI-Maize), the similarity with the rainfed maize yield was higher
than that for rice. In 1990, the three indicators which is SADI-maize, SPI-3, and rainfed maize yield
showed similar values, and in 1998, the similarities were high. However, the SPI-3 and rainfed maize
yield were significantly different at many times, while the SADI-Maize showed a consistent pattern
with rainfed maize yield. SADI-Maize estimated that there was a severe agricultural drought in 1982
and 2000, and the rainfed maize yield showed the same tendency (Figure 4). In the case of agricultural
statistics and related research, it was reported that the agricultural production was relatively low
during these years [21,48,49].
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The relationship between SADI and rainfed crop yield was revealed in the linear comparison
with the linear regression analysis, but the relationship between the SPI-3 and rainfed crop yield was
very weak (Figure 5). Between the SADI-Rice and rainfed rice yield, the linear regression returned
a coefficient of determination of 0.523, which showed a sufficient correlation with productivity. On
the other hand, the SPI-3 showed a coefficient of determination of only 0.051 with rainfed rice yield.
Between the SADI-Maize and rainfed maize yield, the linear regression returned a coefficient of
determination of 0.763, which was highly correlated with productivity. On the other hand, the SPI-3
showed a coefficient of determination with rainfed maize yield of only 0.026.
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Figure 5. Linear regression for the Standardized Agricultural Drought Index (SADI), three-month
Standardized Precipitation Index (SPI-3), and crop yield ((a): SADI-Rice and rainfed rice yield, (b):
SADI-Maize and rainfed maize yield, (c): SPI-3 and rainfed rice yield, and (d): SPI-3 and rainfed
maize yield).

The SADI using crop-specific phenology was found to be highly correlated with rainfed crop
yield compare with the SPI-3, although it was not the actual production statistics. SADI showed high
similarities with both crops, and especially indicated a high correlation with crop yield for maize. The
high correlation with rainfed crop yields could be interpreted as the high explanatory power of the
SADI for agricultural productivity and agricultural water demand.

3.2. Assessing Agricultural Drought of the Baseline Period Using the SADI

The SADI-Rice calculated for all regions on the Korean Peninsula demonstrated that the spatial
patterns changed over time. Initially, in the 1980s, North Korea was wetter than South Korea during
the rice growing season, but this was reversed in the 1990s (Figure 6). In particular, the northern part
of North Korea showed widespread, severe drought conditions in the 1990s. In the 1990s, North Korea
suffered from a significant food problem, which was called the Arduous March. In the 2000s, overall
wet conditions were observed, and the extremely wet area was very wide in South Korea. However,
in North Korea, dry conditions were still widely distributed in the northern area. The average SADI
over the 30 y identified the southern part of the peninsula as the wettest region and the northern
part as the driest (Figure 5). The SADI was found to have a larger annual spatial variation when
compared with the previously applied drought indexes at the same regions, such as the SPI, PDSI, and
SPEI [8,10,11,50].
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the 1980s, 1990s, and 2000s.

The spatial patterns for the SADI-Maize also varied with time (Figure 7). In the 1980s, it was dry in
the inland area and relatively wet in North Korea. In the 1990s, the severely dry region was widespread
in South Korea, and, as in the 1980s, North Korea showed wetter conditions. In northern North Korea,
which is known to be disadvantageous for agriculture owing to the temperature distribution, most
areas had wet conditions that were greater than medium. In the 2000s, overall wet conditions were
observed throughout the Korean Peninsula, and dry conditions were only observed in some inland
and island areas. The northern part of the Korean Peninsula was wetter during the maize growing
season than the southern regions based on the three decades average (Figure 7).

These clear differences between rice and maize were not reflected in the meteorological drought
index such as SPI-3 [8,10,14].
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3.3. Assessing Agricultural Droughts in the Future Using the SADI and Two RCP Scenarios

Future drought assessments were made using data from 40 years from 2041 to 2080 and spatially
suggested mean values in the 2050s (2041–2060) and 2070s (2061–2080). For future SADI estimations,
rice and maize demonstrated similar results. Both crops were predicted to face drier conditions in the
future for both climate change scenarios.

In the case of the SADI-Rice, South Korea was significantly wetter in the baseline period compared
to North Korea, and the west coast was wet compared to inland and northern regions (Figure 8). For
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the RCP 4.5 scenario in the 2050s, the wet area of South Korea appeared to be widening, but in the case
of North Korea, moderately and severely dry areas were found to be widespread in the western plain,
which is the most important granulous area. For the RCP 4.5 scenario in the 2070s, the wet region in
South Korea decreased and the dry region in North Korea decreased. This tendency was similar in the
RCP 8.5 scenario at the 2050s and 2070s, respectively. Nevertheless, the dry area of North Korea for the
RCP 8.5 scenario was more widespread than the RCP 4.5 scenario. Overall, dryness decreased in the
northern part of the Korean Peninsula where the dry region was widespread in the baseline period,
and the increase in dryness in the western part of North Korea was significant.
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Figure 8. Spatial distribution of the Standardized Agricultural Drought Index for rice (SADI-Rice) in
the baseline and future climate scenarios.

In the case of the SADI-Maize, the baseline period was found to be wetter in North Korea than in
South Korea, and dry regions were found in the inland and island areas (Figure 9). For the RCP 4.5
scenario in the 2050s, the wetness increased in the South compared with that in the baseline period,
and moderately and severely dry areas in the western plain were found to be widespread in North
Korea. This tendency was similar in the RCP 8.5 scenario. In the 2070s, wet conditions increased in
South Korea’s southern coastal and island areas, while severely dry areas in North Korea decreased,
but nearby dry regions increased. In the case of Jeju Island, which is basaltic, water resources are
limited in agricultural areas, and wet conditions are caused by the increase in overall precipitation.
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Generally, the risk of agricultural drought in North Korea in the future is high. The western plains
of North Korea were predicted to be particularly affected in this respect. However, unlike previous
studies, the causes of inconsistency between the drought assessment for South Korea and North Korea
(RCP 8.5: 2070s) seemed to be related to crop cycles [51,52].

In the southern part of the Korean Peninsula, which will shift toward a subtropical climate in the
future, the growing season for maize and rice will shorten, thereby ameliorating the damage caused by
agricultural drought [53,54].

3.4. Implications of the New Agricultural Drought Index Using a Water-Agriculture Nexus Approach

The reason why existing drought indexes are not related to agricultural productivity or water
demand is because they are focused on hydrometeorological changes [8–10]. The indexes developed
specifically for agricultural drought have been developed or evaluated mainly using variables
related to soil moisture and vegetation [13,14,16,17]. However, there are difficulties in forecasting or
backcasting short-term or long-term, and there are limitations in connecting them with meteorological
drought [14,16,55]. The SADI presented in this study might be able to overcome the limitations of the
two previous types of indexes.

In terms of climate change impacts and adaptation, most studies evaluating future droughts only
identified meteorological droughts [51–53]. This is because most of the variables needed for agricultural
drought evaluation are difficult to predict for the future. In this study, we evaluated agricultural
drought considering climate change by using crop phenology. Although only two representative crops
were considered in this study, the effects of climate change on overall agriculture could be predicted
deeply with the application of vegetables and other main crops [56].
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The development of SADI using hydrological cycles and crop phenology is an example of an
empirical nexus approach between water and food. Many nexus concepts have been presented in the
water-food sector, but they have only focused on quiet conceptualizing or synergies and trade-offs
based on intervariable relationships [18,57,58]. In other words, it was difficult to apply the nexus
approach within the equations and into the variables. However, the SADI is significant in that it is
more empirically integrate through linkage within equations and concepts.

Nevertheless, this study had some limitations. First, there were structural limitations in that it
could not be quantitatively compared to production statistics. In the case of representative crops,
irrigation is basically used in production and agricultural statistics are produced, so it is impossible
to directly verify the statistical crop yield. It would be possible to verify this if the SADI were used
with the crop phenology of vegetable crops for which rainfed cultivation statistics are available. The
second limitation was that only one model’s data could be used for future climate predictions, and the
spatial resolution of the overall climate data was not high. Future climate data have been produced by
various climate models of Coupled Model Intercomparison Project Phase 5, but this study only used
data from one climate model to focus on the development and application of new indexes. In addition,
the spatial resolution of the original climate data was low, but that for drought assessment progressed
to 1 km2 owing to the nature of the cropland consisting of small patches on the Korean Peninsula. This
could also cause uncertainty.

In summary, the results of this agricultural drought assessment showed similarities and differences
with previous results. While the same at-risk areas and time frames were identified, crop cycle
characteristics not captured by meteorological drought or productivity measurements were observed.
Thus, nexus thinking has the ability to identify previously unidentified phenomena by suggesting new
forms of output, such as the SADI.

4. Conclusions

A new agricultural drought index considering the hydrological cycle and crop phenology is
suggested, namely the SADI. Close assessment of agricultural drought using SADI in the Korean
Peninsula has significant implications for the empirical water-food nexus approach and for identifying
regions at risk of drought due to climate change. The growing season precipitation, evapotranspiration,
and runoff were used to calculate the SADI of each crop, and two climate change scenarios were
applied for assessing future agricultural drought. First, the evaluation of the SADI performance,
which was compared with the rainfed crop yield, showed excellent results compared with those of
the traditional drought index. As an assessment result of the baseline period, we could identify the
spatial difference according to the crops in the same period and area, and could confirm the traditional
difference between South Korea and North Korea. In future scenarios, the SADI predicted to face
drier conditions for both climate change scenarios and each crop. The risk of agricultural drought
in North Korea was expected to be higher than that in South Korea, and the western plains of North
Korea might be particularly affected in this respect. The SADI has great significance in realizing the
structural linkage between the water and food sector, but it is limited in that it could not have a high
correlation with the actual statistical crop yield. This study highlighted the fact that a drought index
considering crop phenology could contribute to enhancing the assessment of climate change impact
and to comprehensive adaptation in the water-agricultural sector.
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