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ABSTRACT

Classifying Challenging Behaviors in Autism Spectrum Disorder with Neural

Document Embeddings

by Abigail Sandra Atchison

The understanding and treatment of challenging behaviors in individuals with Autism

Spectrum Disorder is paramount to enabling the success of behavioral therapy; an

essential step in this process being the labeling of challenging behaviors demonstrated

in therapy sessions. These manifestations di↵er across individuals and within individ-

uals over time and thus, the appropriate classification of a challenging behavior when

considering purely qualitative factors can be unclear. In this thesis we seek to add

quantitative depth to this otherwise qualitative task of challenging behavior classifi-

cation. We do so through the application of natural language processing techniques to

behavioral descriptions extracted from the CARD Skills dataset. Specifically, we con-

struct 3 sets of 50-dimensional document embeddings to represent the 1,917 recorded

instances of challenging behaviors demonstrated in Applied Behavior Analysis ther-

apy. These embeddings are learned through three processes: a TF-IDF weighted

sum of Word2Vec embeddings, Doc2Vec embeddings which use hierarchical softmax

as an output layer, and Doc2Vec which optimizes the original Doc2Vec architecture

through Negative Sampling. Once created, these embeddings are initially used as

input to a Support Vector Machine classifier to demonstrate the success of binary

classification within this problem set. This preliminary exploration achieves promis-

ing classification accuracies ranging from 78.2-100% and establishes the separability of

challenging behaviors given their neural embeddings. We next construct a multi-class

classification model via a Gaussian Process Classifier fitted with Laplace approxi-

ix



mation. This classification model, trained on an 80/20 stratified split of the seven

most frequently occurring behaviors in the dataset, produces an accuracy of 82.7%.

Through this exploration we demonstrate that the semantic queues derived from the

language of challenging behavior descriptions, modeled using natural language pro-

cessing techniques, can be successfully leveraged in classification architectures. This

study represents the first of its kind, providing a proof of concept for the applica-

tion of machine learning to the observations of challenging behaviors demonstrated

in ASD with the ultimate goal of improving the e�cacy of the behavioral treatments

which intrinsically rely on the accurate identification of these behaviors.
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Chapter 1

Introduction

Challenging behaviors are defined as behaviors that are not culturally or socially

acceptable, and can put the physical safety of the individual and/or others in jeopardy,

a↵ect learning, and limit access to community settings [1, 2, 3]. These behaviors

often a↵ect an individual’s ability to interact with their environment consistently

and positively [4, 5, 6]. Individuals with Autism Spectrum Disorder (ASD) have

been found to demonstrate such challenging behaviors with significant frequency [4].

Further, the severity and prevalence of challenging behaviors in the lives of individuals

with ASD has not been found to be limited to one specific developmental stage such as

adolescence or early childhood [7, 2, 8]. In short, improving the e�cacy and e�ciency

of the treatment of ASD means that researchers must look to better understand

challenging behaviors exhibited by individuals with ASD in order to best leverage

and target behavioral treatments.

In this thesis we look to explore the application of natural language processing and

supervised machine learning to the problem of classifying challenging behaviors ex-

hibited in ASD. By demonstrating that neural word embeddings can be used to
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di↵erentiate between challenging behaviors, we present the potential for classification

models to be deployed in a clinical environment to aid in establishing the context of

behavioral treatment.

A common practice in the treatment of behavioral patterns in ASD is Applied Behav-

ior Analysis (ABA), which employs Behavior Analysis in order to develop a specific

therapy regimen. Behavior Analysis, defined as the scientific study of behavior [9],

is leveraged by ABA as a means by which an individual’s behavioral patterns can be

shaped through the consistent application of reinforcement learning and controlling

of environmental factors. During ABA, challenging behaviors exhibited are analyzed

and defined on a case by case basis. This approach takes into consideration the reality

that the same challenging behavior, for example Aggression, can manifest di↵erently

across individuals as well as within a single individual over the course of treatment

[1, 10]. ABA can be facilitated in a variety of settings, such as home sessions, clinic

visits, or even in a school setting. At its core, it seeks to deliver a daily therapy regi-

men targeting both the behavioral strengths and weaknesses of the individual being

treated; a goal that has been demonstrated to provide measurable improvements in

the outcome of children on the spectrum when early, intensive (30 or more hours per

week) intervention is facilitated [11].

While ABA represents a demonstrably successful way of addressing challenging be-

haviors, the means by which these behaviors are identified and tracked are highly

personalized and these identifications can only be made within the scope and expe-

rience of the particular specialist conducting the assessment. We present this thesis

with the hopes of adding quantitative depth to this process through behavioral clas-

sification.

The potential to leverage neural word embeddings constructed from behavioral de-

scriptions to classify challenging behaviors holds great value not only in the under-
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standing of these behaviors but also in clinical applications. Through an exploration

of the models constructed, we demonstrate this potential by outlining the means by

which quantitative techniques can be applied to highly qualitative data in order to

better guide the identification of behaviors exhibited over the course of ABA treat-

ment. In the pages that follow, we will detail the data used in our study (chapter 2),

the machine learning methods leveraged in the construction and modeling of word

embeddings (chapter 3), results obtained (chapter 4), and their practical significance

(chapter 5). We then outline future work and previous applications (chapter 6) along

with final conclusions (chapter 7).
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Chapter 2

Data

To determine if neural word embeddings could aid in the classification of challenging

behaviors, we started with an analysis of behavioral descriptions across 15 behaviors.

The descriptions were provided by the Center for Autism and Related Disorders

(CARD), one of the largest national providers of ABA therapy services.

The dataset, known as the CARD SkillsTM dataset, is a clinical database that houses

the ABA curriculum for patients, as well as a detailed log documenting the evolution

of patient progress from the start of services to termination of services, which typi-

cally spans several years. In this study we focus specifically on recorded challenging

behaviors and the description associated with that particular demonstration of the

behavior recorded. In the case of the CARD skills dataset, all patients were under

direct supervision of BIs and BCBAs employed by CARD during treatment.

The dataset consists of treatment history for 1,602 individuals. After an initial pre-

processing step to remove all challenging behavior labels which did not have descrip-

tions associated with them, the resultant dataset consisted of 1,917 total observations

of challenging behaviors during ABA treatments. These descriptions were then tok-
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enized using the tokenize package provided by the Python Natural Language Toolkit

[12]. Following tokenization, each row in the dataset corresponds to a single instance

of a challenging behavior. That instance consists of the label of the challenging be-

havior being exhibited and an ordered collection of tokens associated with that label,

with each token being a word from the original description.

Behavior Count

Aggression 462
Disruption 140
Elopement 64
Hoarding 3
Inappropriate Sexual Behavior 11
Lying 5
Noncompliance 221
Obsessive Behaviors 27
Pica 10
Self-Injurious Behavior 88
Stealing 1
Stereotypy 188
Tantrums 252
Teasing/Bullying 11
Other 438

Table 2.1: Challenging Behavior Frequency Counts

These behavioral labels are one of 15 potential categorizations. The frequency counts

of each of these categorizations in the dataset can be found in Table 2.1. One count

corresponds to one row in the dataset indicating a description of an action reported

during an ABA therapy session that was subsequently labeled as that challenging

behavior. Due to the variance of sample size across behaviors, in our model con-

struction we solely focused on the classification of the 7 most commonly occurring

behaviors in the dataset. These behaviors were Aggression, Disruption, Elopement,

Noncompliance, Self-Injurious Behaviors, Sterotypy, and Tantrums. A definition for

each of these select behaviors derived from previous literature can be found in Table

2.2.
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In addition to the behaviors studied in this analysis, it should be noted that behavioral

instances listed as ”Other” are numerous in the dataset. While we do not seek to

analyze these descriptions in this particular study, their prevalence in the dataset

further contributes to the potential value of a classification model as a means to

reduce the occurrence of these ambiguous labels.

Behavior Definition

Aggression Generalized hitting, kicking, biting, punching, scratch-
ing and throwing (i.e. furniture)[13]

Disruption Hitting, kicking, biting, punching, scratching and throw-
ing (i.e. furniture) in response to something non-specific
to the individual[13]

Elopement Wandering, leaving, and running from safe spaces or
adult supervision[14]

Noncompliance Any behavior other than what has been requested within
a specified period of time[15]

Self-Injurious Behavior Behaviors in which individuals cause physical damage to
his or her own body (scratching, biting, head banging,
chin hitting, hair pulling, skin picking, eye pressing or
gouging[16, 17]

Stereotypy Repetitive and non-functional behavior[18, 19]

Tantrums Hitting, kicking, biting, punching, scratching and throw-
ing (i.e. furniture) in response to specific to the
individual[13]

Table 2.2: Challenging Behavior Definitions

6



Chapter 3

Methods

To analyze behavioral descriptions in our data we employ two di↵erent natural lan-

guage processing techniques in order to construct neural word embeddings. The vec-

torization of a natural language data collection adds quantitative depth to otherwise

flat, textual data, allowing for the application of machine learning algorithms.

The first technique used in this thesis is Word2Vec. At its core Word2Vec is the

construction of a vector space that models the semantic and syntactic meaning of

words found within a textual corpus. These vectors are generated through the training

of a neural network either via the Skip-Gram approach or the Continuous Bag of

Words (CBOW) approach. In either approach, word vectors are generated through

back-propagation over a weight matrix after predictions are made given a word and

the context in which that word appears in the text corpus. In this way, Word2Vec

derives the deeper meaning of a word based o↵ of the idea best summarized by the

English linguist J.R. Firth: ”You shall know a word by the company it keeps”.

Following the construction of this vector space, the term frequency - inverse document

frequency (TF-IDF) score for each word in a given document is combined with its
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corresponding word vector representation in order to construct weighted document

vectors. TF-IDF is a commonly used technique in NLP as it considers the overall

frequency of a word in the entire corpus, or its term frequency, as well as the frequency

of that word in the specific document we are currently generating a vector for, its

document frequency. If a word appears more frequently in the corpus this will lower

its TF-IDF score as that word is perhaps a more general stop word. Inversely, if that

word appears frequently in the current document, this will increase its TF-IDF score

as this frequency could indicate the importance of that particular word to the current

document. These scores are then used to generate weighted document vectors for

each behavior report by taking the TF-IDF weighted sum of the neural embedding

of each word that appears in a given document.

The second technique used to analyze behavioral descriptions, Doc2Vec, expands on

the Word2Vec paradigm while eliminating the need for the final step of generating

document vectors through a weighted sum. Doc2Vec again looks to add quantitative

depth to textual data through the repeated adjustment of a weight matrix. However

rather than training exclusively on the words in our corpus and the context in which

they appear, it also learns the neural embeddings of individual documents by using

them as a feature in the weight matrix used to make decisions in the model. In the

scope of this study the documents being modeled are the single behavioral descriptions

recorded during ABA treatment.

Once these neural embeddings are learned, they can be used as input data in su-

pervised machine learning algorithms in order to demonstrate whether or not they

contain enough information to di↵erentiate between behaviors. Commonly referred

to as classification models, supervised learning learns the means by which a label

can be produced given an input through exposure to already labeled data. At their

core, most classification algorithms operate by minimizing incorrect label assignment

8



through an adjustment of features used to predict a label given an input. These

features can be as complex as a deep weight matrix or as simple as coe�cients in a

single, linear function. While the specifics to the construction of classification models

varies, their overall mission remains consistent: given truth data consisting of inputs

and expected labels for those inputs, learn features that will allow us to correctly

classify data we have not seen before.

For this analysis we consider two algorithms to extract meaningful features from our

data. The first, the Support Vector Machine (SVM), is a algorithm which looks to fit

a hyperplane to a set of input data by maximizing the margin that separates classes

within the dataset in order to di↵erentiate between possible labels [20]. In this study

we used SVMs as a means to produce binary classifications. This baseline algorith-

mic analysis of the document vectors generated previously serves to demonstrate the

potential of studying challenging behaviors using neural embeddings. We then move

to a Gaussian Process Classifier in order to build a classification model which dif-

ferentiates beyond binary classification, in this case a 7-class output. Our Gaussian

Process uses Laplace approximation to smooth several one-class-versus-rest Gaussian

Distributions which can then be sampled to determine the final classification of any

one input [21].

In the following subsections we provide a brief mathematical overview of Word2Vec,

Doc2Vec, SVM, and Gaussian Process Classification using Laplace approximation.

We then apply these algorithms and analyze the results in the remaining chapters.

9



3.1 Word2Vec

Consider a corpus of word vectors V , in which each word, i, in the corpus is repre-

sented by a unique one-hot vector vi. Word2Vec takes this collection of words and

generates a new matrix, W , in which each word, i, in the corpus is now represented

by a rich word embedding wi which represents the semantic meaning of that word as

it is used in the given corpus.

This matrix, W , is generated through propagation over a weight matrix in an ar-

chitecture similar to that of a feed-forward Neural Net Language Model where the

non-linear hidden layer has been removed and the projection layer, W , is shared for

all words [22].

The training of the parameters in this modified neural net is handled via two di↵erent

approaches in Word2Vec. In both architectures, described below, the resultant word

embeddings, W , are trained using stochastic gradient descent via back-propagation.

After convergence is achieved these embeddings represent the semantic context in

which each word in our corpus appears. Thus, words used in similar contexts will be

mapped to similar locations in the vector space constructed (i.e. ”run” and ”walk”

might appear near each other due to semantic similarity while ”run” and ”fast”

would appear in di↵erent areas in the vector space because, despite common co-

occurrence, they are semantically used di↵erently). The word embeddings thus give

rich, quantitative depth to otherwise flat, textual data and can be used as input to

machine learning algorithms with great promise.

10



3.1.1 Continuous Bag of Words (CBOW)

The first architecture used to train the weight matrix, W , which will eventually be-

come our neural word embeddings is the Continuous Bag of Words (CBOW) approach.

In this methodology, a window of size C is shifted over the corpus. For each word,

vi, in the current context window, the activated index in the one-hot embedding for

that word will map to a specific column in the weight matrix, W . This vector, wi,

contributes to a summed projection which is used to calculate the word which appears

in the middle of the current context. Thus, for a window of size C we let k = C/2

and use the k words before and after our target word to determine this target.

In short, the goal of training this model, given a sequence of untrained word embed-

dings W such that W = {w1, w2, ..., wT}, is to maximize the average log probability

of predicting a word given the context, C or k ⇥ 2, in which it appears

1

T

T�kX

t=k

log p(wt|wt�k, ..., wt+k)

The prediction is done via a multi-class softmax classifier in which

p(wt|wt�k, ..., wt+k) =
eywt

P
i e

yi

Each yi is an un-normalized log-probability for each output word, i, computed as

y = b+ Uh(wt�k, ..., wt+k;W )

11



3.1.2 Skip-Gram

In the second architecture a weight matrix, W , representing the word embeddings of

our corpus, V is still produced. However, while CBOW takes the context k ⇥ 2 or

wt�k, ..., wt+k in which a word appears as input and predicts that word, wt, Skip-Gram

attempts to maximize the classification of a word, wt, based on another word in the

context, k⇥2 or wt�k, ..., wt+k. In short, for Skip-Gram the target word, wt is used as

input and the context of that word, wt�k, ..., wt+k, is predicted. This is achieved by

using each word in the corpus as an input to a log-linear classifier with a continuous

projection layer as output, in order to predict words that appear within the defined

context, C = k ⇥ 2.

While increasing the size of the window does positively a↵ect the quality of resulting

word embeddings, it also contributes to computational complexity. It should also be

noted that at training time, less weight is given to correctly predicting words that

appear farther away from the input word by sampling less of those words in training

examples.

3.1.3 TF-IDF Scoring

After word embeddings are generated, a TF-IDF score TF � IDFi,j for each word i

in each document, j, in the corpus can be defined as:

TF � IDFi,j = (tf)i,j ⇥ log(T/dfi)

12



This weight is then used to create weighted document vectors made up of the vector

sum of all word embeddings in a specific document multiplied by their corresponding

TF-IDF score.

3.2 Doc2Vec

The Paragraph Vector algorithm, introduced by Le et al. and implemented as

Doc2Vec, is an unsupervised algorithm which learns a fixed-length feature repre-

sentation of documents through representing each document as a dense vector which

is then trained to predict words in the document [23]. For the remainder of this thesis

these produced paragraph vectors will be referred to as document vectors.

This approach derives its origins in word vector learning, namely the CBOW method,

described above, in which word vectors are used as a way to predict the next word

in the sentence, e↵ectively capturing the semantic meaning of words in the produced

embeddings during training despite starting with randomly initialized vectors. This

same methodology is mirrored in the Paragraph Vector algorithm, except document

vectors are now included as a feature in the prediction of the next word given a context

sampled throughout the document. This addition allows for document vectors to be

trained in the same way word vectors are learned.

Thus the objective of the Doc2Vec model is still to maximize the average log proba-

bility equation defined as

1

T

T�kX

t=k

log p(wt|wt�k, ..., wt+k, da)

in which we are predicting the word,wt, which appears in document,da given the

context in which that word appears, wt�k, ..., wt+k. However, now a new feature has

13



been introduced to aide in this prediction: the document vector, da which corresponds

to the document from which this word and context have been sampled.

The prediction task is then conducted via a multi-class softmax classifier in which

p(wt|wt�k, ..., wt+k, da) =
eywt

P
i e

yi

In this, each yi is an un-normalized log-probability for each potential output word

computed as

y = b+ Uh(wt�k, ..., wt+k;W, da;D)

Where U and b are softmax parameters and h is constructed from a word matrix W

which represents a collection of vectors, W = {w1, w2, ..., wq} in which every vector

maps to a unique word in the corpus and a matrix D which represents a collection of

vectors, D = {d1, d2, ..., dp} in which every unique vector maps to a document in the

corpus.

By this design, a document embedding learned by this model can be thought of as

another word in the Word2Vec CBOW model, and acts as memory that tracks what

is still yet to be modeled in the current context of the document.

These contexts used at training time are of fixed length and extracted via a sliding

window of size k ⇥ 2 applied to each document. The document vector produced,

da, representing a single column in the matrix D, is shared across context for the

local document da currently being sampled. However, these contexts are not shared

across documents in the entire corpus. Dissimilarly, the word vector matrix, W , is

shared across documents meaning that the semantic meanings of words are learned

14



and applied at the generalized, corpus level rather than at the document-specific level,

adding generalizability to the model.

The vectors in W and D are learned during training using stochastic gradient decent

obtained via back-propagation across the two weight matrices. Thus, if there are N

documents in the corpus, M total words in the vocabulary, the model is aiming to

learn document vectors of dimension q, and each word is mapped to the dimension

p, the model will be trained across a total of N ⇥ q +M ⇥ p parameters.

A core strength of this algorithm is that the input documents can be of variable length

whereas in previous models, namely word2vec, the window used in training is kept

static rather than considering the varying length of input word vectors.

After training, these document vectors can then be used as input to a variety of

machine learning algorithms. Such algorithms will be explored in the remainder of

this chapter and the application of these document vectors to these algorithms will

be discussed in Chapter 4.

3.2.1 Negative Sampling

To address the large number of parameters to be adjusted during training time, neg-

ative sampling has been proposed as an optimization over the softmax layer generally

used to determine outputs [22]. In the original model the objective function seeks

to maximize the log probability of predicting a word or context (wO), given an in-

put (wI) word or context, depending on the architecture being implemented. With

negative sampling, the objective function instead looks to maximize the dot product

of wO and wI while also minimizing the dot product of wI and randomly sampled

”negative” words.
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Negative sampling has been found to improve e�ciency at training time while also

producing better word vectors on average [22]. Nonetheless, our dataset consists of

documents made up of fewer words than those used as benchmarks in previous evalu-

ations. As such, eliminating training adjustments to all but the negative and positive

vectors results in too drastic of a loss in information for this particular dataset due to

the size of each document being learned. Due to this loss, Doc2Vec embeddings con-

structed using the default softmax output at training time outperform those created

using Negative sampling in our classification models, as discussed in Chapter 4.

3.3 Support Vector Machines

Upon construction of vector embeddings, consider a data matrix, D, of dimensionm⇥

n. D can then be represented as a collection of vectors, D = {X1, X2, ..., Xm}. Each

vector, Xi, represents a unique data instance, in this case a document embedding,

and each vector element, Xi,j, a specific measurement (attribute) for that embedding.

An SVM classifier takes in D as input and outputs a set of weightsW = {w1, w2, ..., wn},

one for each feature, m, in the input such that for each vector Xi its corresponding

label yi will be 1 for positive samples and �1 for negative samples. Thus, we can

state that

yi(W ·Xi + b)� 1 � 0

The linear combination of Xi and W predicts the class label, yi for any given data

point Xi. These weights are determined through the approximation of the best hy-

perplane which maximizes the margin between two classifications. This margin, L,
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can be defined as:

L =
X

i

↵i �
1

2

X

i

X

j

↵i↵jyiyjXi ⇥Xj

Upon maximizing L for the training inputs we are left with our weight vector, W .

Given these weights, W , and an unknown data points, u, if W · u+ b � 0 then u is a

positive classification.

While SVMs provide an algorithmically simple way to di↵erentiate between two

classes in a convex space which avoids local maxima, when data points are not lin-

early separable the mechanism struggles. This can be addressed by introducing a

Kernel method K which represents the dot product between two input vectors into

a new space such that KXi,Xj = �(Xi)·�(Xj). Some common Kernels include linear

and radial basis kernels. In this thesis each SVM model is fitted using a radial-basis

function (rbf) as the kernel.

3.4 Gaussian Process Classifier

Again, consider a data matrix, D, of dimension m⇥n. D can then be represented as

a collection of vectors, D = {X1, X2, ..., Xm}. Each vector, Xi, represents a unique

data instance, and each vector element, Xi,j, a specific measurement (attribute) for

that point.

A Gaussian Process defines a non-parametric distribution over functions, p(f), such

that for any finite subset fs�w{fs, fs+1, ...., fw�1, fw} ⇢ D the marginal distribution

over that subset has a multivariate Gaussian distribution.
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In the Gaussian Process Classification (GPC) used in this thesis, during training

a one versus rest Gaussian Distribution for each of the C classes, C1, C2, ..., CC is

constructed. These distributions model the trend of the data, D, while maximizing

the space between classes, C, and, once trained, can be leveraged in classification.

Given a previously unseen input vector Xi we determine the most likely classification

by sampling our constructed Gaussians and choosing the closest fit. While compu-

tationally expensive to train due to GPC’s foundation in Bayesian inference, when

applied to small, unbalanced datasets, like the one studied in this thesis, this method

models multiple classes with great success. For an in-depth treatment of GPC see

work outlined by Rasmussen et al. [21].

3.4.1 Laplace approximation in GPC

It should be noted that in this function approximation the approximate log marginal

likelihood across multiple classes combined with the Gaussian prior is non-Gaussian

and thus the resultant non-Gaussian posterior process must be smoothed using Laplace

approximation [21].
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Chapter 4

Results

Previous analysis of the topography of challenging behaviors have manifested as

largely qualitative in nature [3]. These studies e↵ectively underline the di�culty

as well as the necessity of the consistent and reliable labeling of challenging behaviors

exhibited by individuals with ASD. In this labeling, one must distinguish between

behaviors which, at times, can only be separated based on the implied function of

these actions as is the case with Disruptions and Tantrums [3]. In this thesis we look

to diverge from a qualitative analysis into the quantitative, allowing for the discovery

of patterns and features in behavioral data that could only be extracted through ma-

chine learning algorithms. Below we will discuss the results of applying the methods

examined in Chapter 3 to the challenging behavior descriptions and their labels intro-

duced in Chapter 2. We present these findings in this chapter with the hope that in

the future clinicians can use feedback from similar models to identify the most likely

behavioral label given actions exhibited in therapy sessions. For a more in depth

treatment of the statistical underpinnings of these methods, refer back to Chapter 3.
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4.1 Construction of Neural Document Embeddings

In analyzing the CARDS skills data of challenging behavior descriptions and their

labels, we constructed a neural embedding for each challenging behavior report using

three methods: Doc2Vec with negative sampling, Doc2Vec with hierarchical softmax,

and a TF-IDF weighted sum of Word2Vec word vectors. Each set of embeddings

serve as input to the classification algorithms discussed in Chapter 3, namely Support

Vector Machines and Gaussian Process Classifiers. All computations were done using

the computing software Python.

The creation of Word2Vec embeddings on behavioral descriptions was conducted us-

ing the gensim ”word2vec” package [24]. The embeddings were produced using the

Skip-Gram architecture. The optimal embedding size to allow for su�cient infor-

mation capture was empirically chosen to be 50. In order to ensure that instance

specific words do not a↵ect behavioral classification a minimum frequency of 5 was

set, meaning that a vector embedding was only constructed for a word if it appeared

at least 5 times across the corpus. From scikitlearn, the ”TfidfVectorizer” was used

to generate TF-IDF scores for each of the tokenized words in the corpus [25]. In

order to generate the weighted Word2Vec embeddings, for each row in the dataset

the Word2Vec modeled was queried for that word and multiplied by it’s correspond-

ing TF-IDF weight. This product was then summed across all of the words in that

specific row and the final sum was the resultant document vector.

The creation of Doc2Vec document embeddings was done using the gensim ”doc2vec”

package [26]. These embeddings were made to be vectors of size 50 in order to

match those created in our weighted Word2Vec process and were constructed with a

minimum word frequency count of zero, as in this process we are not directly summing

the word vectors in the construction of the document vectors. For the Doc2Vec model
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trained with negative sampling our negative word count was 5. For both Doc2Vec

models the initial learning rate ↵ was set to 0.025 with ↵min set to 0.001, the optimal

parameter settings empirically determined for this architecture by [27].

4.2 Analysis of Neural Document Embeddings

Once the construction of 3 document embeddings was completed, the information

captured by these embeddings was evaluated in order to determine if this method

can be used to successfully di↵erentiate between challenging behaviors in ASD. First,

binary classification of the document embeddings was conducted using SVMs. A

multi-class classification model was then constructed using GPC. In both of these

explorations, the test accuracy resultant from classification models built on an 80/20

training/testing split was used as a metric for e↵ectiveness of neural embedding.

Ultimately, while all three embedding types were found to hold a depth of information,

the Doc2Vec embedding trained using hierarchical softmax was determined to be the

most e↵ective in classification. These classifications will be discussed in the sections

to follow.

4.2.1 Binary Classification using Support Vector Machines

The first classification model applied to each of these embeddings was a Support

Vector Machine (SVM) using a Radial Basis Function kernel. To apply the SVM

classifier to the document vectors for the purposes of binary classification, we use

the ”SVC” class in the ”sklearn” Python package [28]. Table 4.1 outlines the results

of each unweighted, binary SVM classification. For each classification, the model

was trained on an 80/20 stratified split of the weighted W2V, D2V with Negative
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Sampling, and D2V with Hierarchical Softmax document embeddings respectively.

The highest classification accuracy achieved on these three separate inputs has been

bolded; in cases where two embedding input types produced equal test accuracy both

metrics have been bolded.

Class A Class B Test Accuracy
Elopement Self-Injurious Behavior 96.77, 100, 100
Aggression Noncompliance 97.8, 94.1, 99.3
Aggression Elopement 97.1, 92.4, 97.1

Noncompliance Self-Injurious Behavior 95.16, 93.5, 96.8
Sterotypy Self-Injurious Behavior 87.5, 92.9, 96.4
Elopement Stereotypy 88.2, 88.2, 96.1
Aggression Disruption 92.5, 93.3, 95.8
Elopement Tantrums 93.3, 90.5, 95.6
Aggression Stereotypy 93.1, 93.1, 94.6
Sterotypy Tantrums 93.2, 94.3, 94.3

Noncompliance Stereotypy 89.0, 92.7, 93.9
Disruption Self-Injurious Behavior 93.5, 89.1, 93.5
Disruption Noncompliance 87.5, 84.7, 93.1
Aggression Tantrums 88.0, 90.8, 93.0

Noncompliance Elopement 88.7, 84.2, 91.2
Aggression Self-Injurious Behavior 83.6, 86.3, 90.9
Disruption Elopement 90.2, 80.5, 90.2
Disruption Stereotypy 81.8, 87.9, 89.4

Noncompliance Tantrums 81.9, 84.0, 87.2
Disruption Tantrums 66.7, 70.5, 78.2

Table 4.1: SVM Classifier Results sorted by test accuracy
Test Accuracy displayed is for inputs of TF-IDF Weighted Vec, Doc2Vec with

Negative Sampling, Doc2Vec with Hierarchical Softmax respectively. The highest
classification accuracy has been bolded.

These accuracy metrics make clear that there is separation between neural embed-

dings given any two behavioral classes in our dataset. This bears particular promise

as previous qualitative analysis of these descriptions has highlighted the di�culty of

separating challenging behaviors when considering the topography of these descrip-

tions.
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Hong et al. used a part-of-speech analysis on bag-of-words representations of chal-

lenging behavior descriptions to identify the top 20 verb terms used to define the

topography of each challenging behavior[3]. Their findings, in particular the qualita-

tive overlap between challenging behaviors when studying the verbiage used in clinical

descriptions, can be used as a counter-point to our quantitative analysis of the vector

space created by neural embeddings constructed from similar descriptions.

Self-Injurious Behavior (SIB) and Aggression shared 38.5% overlap in their descrip-

tional verbiage. This is unsurprising when one considers these behaviors only truly

diverge in regard to their target, SIB targeting onesself while Aggression targets an

outside entity. Our model distinguishes between these behaviors with a testing accu-

racy of 90.9%.

Noncompliance and Tantrums also bore many similarities in the verbiage used to

describe them in a clinical setting. Specifically, 37.9% of the 20 most common verb

terms used in describing them were shared between these two behaviors. Our SVM

model distinguishes between the two behaviors with a test accuracy of 87.2%.

Additionally, the di�culty of qualitatively distinguishing between Aggression, Dis-

ruption, and Tantrums was presented in that they overlapped by 33%, sharing ll

of 20 most common verb terms used to describe them including crying, screaming,

throwing, and protesting. In our results the classification accuracy achieved when

fitting a hyperplane to an Aggression vs. Tantrum and Aggression vs. Disruption

vector space was 93.0% and 95.8% respectively. The worst accuracy presented by

the pairwise binary classification between these three classes was 78.2%, which was

achieved when classifying between disruption and tantrums. This classification accu-

racy provides further insight to the shared action between Disruptions and Tantrums.

The process of demonstrating disruptive behavior is often the same process followed

in the manifestation of a tantrum, an empirical truth reinforced by the interchange-
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able use of these terms in the behavioral analysis of ASD,[3], as well as in the finding

that of the top 10 verbs used to describe these two behaviors in a clinical setting,

four were shared between disruption and tantrums (crying, screaming, throwing, and

yelling). Thus, our hypothesis holds true in that a quantitative analysis of challeng-

ing behaviors, even those found to be qualitatively indistinguishable at times, will

produce deeper insight and perhaps provide a mechanism to aide clinicians in their

analysis of behavioral manifestations during treatment.

In order to further demonstrate the linear separability of the neural embeddings con-

structed in this analysis a pairwise comparison of skills has been visualized for the

four most successful classifications (see Figure 4.1) and the four least successful clas-

sifications (see Figure 4.2) in our SVM model. Here, given the document embeddings

of two challenging behaviors, t-Distributed Stochastic Neighbor Embedding (t-SNE)

was used to reduce the 50-D vector space constructed to a 2-D, graphically-feasible

entity. The document vector space used in this reduction and visualization was gen-

erated by doc2vec trained using hierarchical softmax as an output layer.

Per these visualizations we can see that challenging behaviors are distinguishable in

our constructed vector space, even when the frequency of classes is unbalanced in

our dataset. This separation is universal across each binary classification presented,

whether the classification accuracy was amongst the best or the worst scoring, with

the exception of Disruption vs Tantrums seen in Figure 4.2(a). In this plot, separation

is inconsistent and the resultant classification accuracy of 78.2% can be expected upon

inspection.
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(a) Elopement vs SIB - 100% (b) Aggression vs Noncompliance - 99.3%

(c) Aggression vs Elopement - 97.1% (d) Noncompliance vs SIB - 96.8%

Figure 4.1: Visualization of the four most accurate binary classifications and their
corresponding test accuracy.
The SVM model used in classificaiton was trained using our Doc2Vec embeddings

built with hierarchical softmax
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(a) Disruption vs Tantrums - 78.2% (b) Noncompliance vs Tantrums - 87.2%

(c) Disruption vs Stereotypy - 89.4% (d) Disruption vs Elopement - 90.2%

Figure 4.2: Visualization of the four least accurate binary classifications and their
corresponding test accuracy.
The SVM model used in classification was trained using our Doc2Vec embeddings

built with hierarchical softmax

26



4.2.2 Multi-Class Classification using Gaussian Processes

Binary classification within the behavioral dataset provides a promising first analysis

of challenging behaviors as well as a counter-point to previous qualitative analysis.

Nonetheless, in order to be leveraged in practice a multi-class classification model

is needed to di↵erentiate between the many behaviors the could possibly manifest

during behavioral treatment.

To achieve this, a Gaussian Process Classifier (GPC) was built to generate clas-

sifications across 7 challenging behaviors. This model was constructed using the

”GaussianProcessClassifier” function in the scikit learn Python package [29] and was

trained on an 80/20 stratified split of each document embedding method. Each model

took approximately two minutes to converge. Figure 4.3 displays the confusion ma-

trices produced when using Weighted Word2Vec, Doc2Vec with Negative Sampling,

and Doc2Vec with Hierarchical Softmax embeddings as input. The GPC trained on

Doc2Vec with Hierarchical Softmax embeddings as input performs the best across all

seven classes with a training accuracy of 88.8% and a testing accuracy of 82.7%.

A weakness of the classifier to identify Disruption, Elopement, and Self-Injurious

Behavior is revealed in the confusion matrix in Figure 4.3c. These exemplars were

classified with 46%, 69%, and 61% accuracy, respectively. In the case of Disruption,

this class was misclassified as Tantrums 8 times and Aggression 3 times, a reason-

able failing when considering these behaviors overlap in their topographic definition

and share common descriptive verbiage [13, 3]. The misclassification of Disruption

could be attributed to the ambiguous nature of challenging behavior labeling and the

overlap that exists across these behaviors. Elopement and SIB were most commonly

misclassified as Aggression, 3 times and 5 times respectively. Again, both of these

true behavioral classifications could be seen to manifest as Aggression as well when
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(a) TF-IDF Weighted Word2Vec (b) Doc2Vec with Negative Sampling

(c) Doc2Vec with Hierarchical Softmax

Figure 4.3: The confusion matrices of the classifications produced by a Gaussian
Process Classifier trained with three di↵erent neural embeddings as input
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one considers their generalized definitions. These misclassifications could addition-

ally be contributed to by the frequency of Aggression document vectors in the dataset

compared to any other class. In this particular comparison, outweighing SIB 4 to 1

and Elopement by nearly 5 to 1.

Through the analysis of these three neural embeddings via two classification model

architectures, we demonstrate that the semantic and syntactic queues extracted dur-

ing neural embedding construction allows for the di↵erentiation between challenging

behaviors. Oftentimes, these di↵erentiations have been made between classes that

qualitatively have been found to be nearly indistinguishable.
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Chapter 5

Discussion

Currently, there is no cure for ASD; however, early intervention and treatment have

been shown to facilitate the future success of a child diagnosed with ASD [30]. Be-

havioral intervention is largely a part of this equation. In the treatment of ASD,

behavioral intervention has been found to reduce the manifestation of challenging

behaviors in individuals by 80-90% [4]. In some cases these treatments succeed in vir-

tually eliminating all appearances of challenging behaviors [31, 32]. As such, aiding

in the reliability of this treatment by providing a mechanism which lends additional

insight into behavioral classifications, holds great value.

A topographical analysis of challenging behaviors has highlighted the ambiguity of

behavioral descriptions due to shared similarity in verbiage [3]. Nonetheless, in our

analysis of the neural embeddings created from this textual data we were able to e↵ec-

tively and consistently di↵erentiate between challenging behaviors. The importance

of our work can thus be highlighted in the provision of a quantifiable mechanism for

di↵erentiating between behaviors that have qualitative overlap.
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It should be noted that in providing quantifiable separation between behaviors we

have also added greater depth to the ongoing discourse surrounding the existence of

Disruption and Tantrums as two separate behavioral labels. These labels are believed

to describe very similar actions which can only be di↵erentiated by their implied func-

tion. As such, consistently labeling these behaviors calls for a functional analysis, a

utility that is separate from the behavioral analysis being conducted during ABA

therapy. To this end we present our findings, specifically the lack of quantifiable sep-

aration between the semantic structures used to describe Tantrums and Disruption,

as further evidence that these behaviors should be revisited and a single label should

be o↵ered to cover this subset of behavioral patterns.

In addition to providing additional insight to therapists labeling demonstrated behav-

iors in treatment, the prevalence of behaviors labeled as ”Other” within the dataset,

which represents the second highest occurring label at 438 instances, provides an

interesting aside to the classification presented in this thesis. This demonstrated

presence of ambiguity in challenging behavior representation only further reinforces

the need for a supplemental, quantitative metric when analyzing behaviors. Addi-

tionally it provides an opportunity to give greater depth to existing files by providing

a sub-label to behavioral reports already labeled as ”Other”.

In short, the classification success achieved in this thesis not only demonstrates the

quantifiable di↵erences in observational descriptions of challenging behaviors during

behavioral therapy but also provides the potential for increasing the e�cacy of this

crucial form of intervention.
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Chapter 6

Related & Future Work

6.1 Creation of Neural Embeddings

The construction of word embeddings in order to produce a richer representation of

textual data was first introduced by Bengio et al. in their presentation of a feed-

forward neural network language model [33]. Later, Mikolov et al. would introduce

the architecture leveraged in this thesis which removes the hidden layer from the

NNLM proposed in [33] without significant loss of information in the final embeddings

constructed [22]. Other architectures would be proposed such as GloVe embeddings

presented in [34].

These word embeddings are often then used in machine learning algorithms, as is

done in this thesis, due to the ease with which the vector representations produced

can serve as input to many common architectures and applications such as the ini-

tialization of neural networks, [35], and machine translation [36]. Additionally, word

embeddings have produced significant findings in isolation as they model word to

word relationships, a feature leveraged by [37, 38, 39].
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Paragraph vectors were first introduced by Mikolov et al. as an improvement to

the word2vec paradigm [22]. This architecture learns fixed length vector embeddings

of variable length pieces of text or documents. This extension of word embeddings

constructs these document embeddings by using them as an additional feature to

the weight matrix adjusted at training time and has been widely leveraged since

its introduction in a wide-range of domains including automatic video analysis [40],

tailored user profile construction [41], and unsupervised classification of sentiment

[42].

While doc2vec was the implementation of the architecture introduced in [22] and

used in this thesis, others have introduced additional means to extract document em-

beddings. Kiros et al introduced skip-thought which uses an encoder-decoder neural

network architecture to learn dense representations of sentences in a document and

then deconstruct this representation to predict words in surrounding sentences [43].

In [44] pp, a mechanism for learning document embeddings based o↵ of paraphase

pairs extracted from a large-scale paraphase database, was introduced. While both of

these architectures serve a similar purpose as doc2vec, in their review of doc2vec, Lau

et al. found that the skip-thought approach under-performed in all applied domains

and while pp showed promise in some applications, in studies that require domain

specific training of document emebddings, as is the case in this thesis, doc2vec is

still most capable of constructing meaningful vector representations of documents in

a corpus [27].
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6.2 Machine Learning in Autism Spectrum Disor-

der

To the best of our knowledge this study presents the first application of machine

learning to ASD to derive meaning from textual data, however machine learning has

been applied to ASD treatment in a broad range of previous studies. In [45] and [46],

models capable of aiding in the diagnosis of ASD through a reduction of evaluations

necessary to converge on a diagnosis are presented. [47] used SVMs in order to

improve the evaluation of individuals progress during the use of ASD intervention

tools throughout therapy. [48] and [49] present artificial neural networks able to

model the relationship between treatment intensity and outcomes in ASD while [50]

applied a random forest classifier to evaluations order to determine case status in

Autism Developmental Disability Monitoring.

In ASD diagnosis, the presence of challenging behaviors is not considered a core fea-

ture [18]. Nonetheless, an understanding of how challenging behaviors can manifest in

individuals with ASD has been the pursuit of many studies. [1] explored contributions

to the understanding of the relationship between challenging behaviors and psychi-

atric disorders through a compilation of current findings related to the assessment

and treatment of challenging behaviors. [51] and [4] conducted similarly structured

studies in order to quantify the presence and frequency of challenging behaviors in

young children with ASD, finding that the prevalence of these behaviors was high

across data sources although their findings diverged when quantifying the most com-

monly tracked behaviors in their respective datasets. In [52] a phenotopic analysis

on the challenging behaviors exhibited by individuals participating in ABA therapy

was carried out.
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While this study was conducted on a similar dataset as the one used in this thesis,

Stevens et al. considered behavior frequency counts across patients as their input

rather than the particular behavioral descriptions, demonstrating in the phenotypes

generated that a mix of challenging behaviors characterize each, but generally a dom-

inant behavioral theme could be extracted. Another in-depth analysis of challenging

behaviors [53] aggregated and statistically analyzed challenging behavior data from

22 studies conducted over 20 years predating 2003. In their work, the scarcity of

data available to be leveraged in a statistically robust setting was highlighted, further

motivating the need for a public ASD dataset in the research community.

When looking to future expansions of the findings outlined in this study, limitations

imposed by dataset availability is evident. While the application of deep architectures

to classification tasks certainly is not a prerequisite to e↵ective analysis of data[54],

the inability to explore these architectures in this analysis due to the low number

of digitally recorded behavioral observations is a limitation of our work. In future

studies we hope to address this short-coming through the artificial generation of neural

document embeddings given the vector space already constructed in this study.
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Chapter 7

Conclusion

Despite the significant likelihood that individuals with ASD demonstrate challenging

behaviors [4], there is still great variability in the definitions of these behaviors,[55],

potentially contributing to degrees of uncertainty when facilitating behavioral inter-

ventions. This variability can be attributed to the tendency of challenging behaviors

to manifest di↵erently across individuals with ASD and even within individuals over

contexts and/or time [1, 10]. This reality is taken into account during ABA therapy in

which behavioral definitions are constructed on a case by case basis [9]. Despite this

demonstrated variability, in this thesis we show that neural document embeddings

are capable of synthesizing clinical descriptions into highly classifiable entities.

Within this thesis, we take the clinical descriptions of challenging behaviors and their

corresponding labels and generate neural document embeddings via three methods:

TF-IDF weighted word2vec, doc2vec using negative sampling, and doc2vec using

hierarchical softmax. The resultant embeddings are then independently analyzed

through both binary and multi-class classification via SVM models and multi-class
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GPC respectively, the latter of which achieves a classification accuracy of 82.7% over

seven behavioral labels.

It should be noted that even as the application of Machine Learning to clinical ASD

data continues to gain momentum, the lack of an Internet-scale, public repository

of longitudinal data still remains. This dataset could serve as a baseline for more

exploratory research in big data. In understanding this it becomes evident that while

this thesis lays the foundation for other studies to follow, the most obvious of these

future works lies in the continued analysis of challenging behavior descriptions on a

larger scale data repository.

In a more general sense, the analysis of textual data curated in the clinical treatment

of ASD using neural word embeddings is still a largely unexplored direction of ASD

research. The quantitative representations of otherwise highly qualitative information

in ASD presents the opportunity to analyze a new dimension of data and, when

possible, leverage this analysis to make informed decisions about treatment. The

work in this thesis represents a modest contribution toward that goal.
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# CARD Skills Dataset

# Behavioral Descriptions and Labels

## ------------------------------------------------------------

# Preproccessing and tokenization

import pandas as pd

from nltk.tokenize import TweetTokenizer

#Script to strip all non alphabetic (or space) characters

#and tokenize the result

def tokenize(passage):

tokenizer = TweetTokenizer(preserve_case=False)

try:

passage = re.sub(’[^a-zA-Z ]+’, ’’, passage)

passage = tokenizer.tokenize(passage)

print(passage)

return passage

except:

return ’NC’

#Script to tokenize a pandas dataframe with definition column

def process(data):

data[’tokens’] = data[’definition’].progress_map(tokenize)

#remove all data points for which tokenization failed

data = data[data.tokens != ’NC’]

data.reset_index(inplace=True)

return data

data = pd.read_csv(’Document location of csv file

organized as categoryName,definition’)

data = process(data)

Figure A.1: Processing and tokenization of behavioral descriptions
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## ------------------------------------------------------------

# Word2Vec Generation

from gensim.models.word2vec import Word2Vec

#Keep only the 7 categories we will be studying

categoriesToInclude = ["Aggression","Disruption",

"Noncompliance","Stereotypy",

"Tantrums","Self-Injurious Behavior",

"Elopement"]

df = data.loc[(data[’categoryName’].isin(categoriesToInclude))]

#Build Word2Vec Model

w2vModel = Word2Vec(size=50, min_count=5, sg=1, workers=5)

w2vModel.build_vocab(df[’tokens’].tolist())

w2vModel.train(df[’tokens’].tolist(),

total_examples=w2vModel.corpus_count,

epochs=w2vModel.iter)

#Find the most similar vectors to the vector representing word

word = "some string we want to analyze"

w2vModel.wv.most_similar(word)

Figure A.2: Word2Vec Generation
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## ------------------------------------------------------------

# TF-IDF Score calculation from W2V model created above

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

vectorizer = TfidfVectorizer()

response = vectorizer.fit_transform(" ".join(obj)

for obj in df[’tokens’])

index_value={i[1]:i[0] for i in vectorizer.vocabulary_.items()}

tfidfTokens = []

for row in response:

tfidfTokens.append({index_value[column]:value

for (column,value) in

zip(row.indices,row.data)})

tfidfs = np.asarray(tfidfTokens)

df[’tfIdf’] = tfidfs

## ------------------------------------------------------------

# Weighted W2V generation from W2V model and TF-IDF scores

weightedW2VDocumentVectors = []

sizeOfW2V = 50

for document in df[’tfIdf’]:

currentVector = np.zeros(sizeOfW2V)

for word, tfidf in document.items():

try:

currentVector += w2vModel[word] * tfidf

except:

print(word,"not included in model")

#document vector has been built

weightedW2VDocumentVectors.append(currentVector)

df[’weightedWord2Vec’] = weightedW2VDocumentVectors

#saving dataframe

df.to_pickle("ASD_Behaviors")

Figure A.3: Weighted Word2Vec Document Generation
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## ------------------------------------------------------------

# Doc2Vec generation from dataframe created above

import pandas as pd

#preproc

from sklearn import datasets

from sklearn import preprocessing

from sklearn.model_selection import StratifiedShuffleSplit

from gensim.models.doc2vec import TaggedDocument

data = pd.read_pickle("ASD_Behaviors")

X = data[’tokens’]

Y = data[’categoryName’]

sss = StratifiedShuffleSplit(n_splits = 1, test_size=0.2,

random_state = 0)

train_index, test_index = sss.split(X,Y):

test = data.iloc[test_index]

train = data.iloc[train_index]

#Visualize the label splits

print(y_train.value_counts())

print(y_test.value_counts())

#Build a dictionary of the number labels for all classes

tagsAsNumbers = {}

num = 0

for tag in sorted(y_train.unique()):

tagsAsNumbers[tag] = num

num += 1

trainDocs = [TaggedDocument(words, [tagsAsNumbers[tag]])

for words, tag in

zip(train[’tokens’],train[’categoryName’])]

testDocs = [TaggedDocument(words, [tagsAsNumbers[tag]])

for words, tag in

zip(test[’tokens’],test[’categoryName’])]
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#doc2vec

from gensim.models.doc2vec import Doc2Vec, TaggedDocument

import multiprocessing

cores = multiprocessing.cpu_count()

#dm ({0,1}, optional) 1: PV-DM, 0: PV-DBOW

#vector_size how big the paragraph vectors will be

#hs ({1,0}, optional) If 1, hierarchical softmax will be used

# If set to 0, and negative is non-zero,

# negative sampling will be used.

#negative - if negative sampling, how many noise words to use

d2vModel = Doc2Vec(dm=0,

vector_size=50,

hs=0, negative=5,

min_count=2,

sample = 0,

workers = cores,

alpha=0.025,

min_alpha=0.001)

#initialize model weights

d2vModel.build_vocab([doc for doc in trainDocs])

d2vModel.train(trainDocs,

total_examples=len(trainDocs), epochs=30)

#Given a Doc2Vec model and a list of TaggedDocuments as input

#vectorLearning returns y(targets), x(inputs) to be used in ML

def vectorLearning(model, inputDocs):

targets, vectors = zip(*[(doc.tags[0],

model.infer_vector(doc.words,

epochs=20))

for doc in inputDocs])

return targets, vectors

#example

ytrain, xtrain = vectorLearning(d2vModel, trainDocs)

ytest, xtest = vectorLearning(d2vModel, testDocs)

Figure A.4: Doc2Vec Generation
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## ------------------------------------------------------------

####SVM classification on Document Vectors

from sklearn.svm import SVC

import numpy as np

def runSVM(XTrain, yTrain, XTest, yTest, title=None):

#Build SVM on training set

svm = SVC()

svm.fit(XTrain, yTrain)

#Generate predictions

yTrainPred = svm.predict(XTrain)

yTestPred = svm.predict(XTest)

if title:

print(title)

#Output confusion matrix

print(metrics.confusion_matrix(yTest, yTestPred))

#Output testing and training accuracies

trainAccuracy = np.mean(np.asarray(yTrainPred).ravel() ==

np.asarray(yTrain).ravel()) * 100

testAccuracy = np.mean(np.asarray(yTestPred).ravel() ==

np.asarray(yTest).ravel()) * 100

print(’Train accuracy: %.1f’ % trainAccuracy)

print(’Test accuracy: %.1f’ % testAccuracy)

#example on train and test pandas df

#with 2 class labels in ’Label’ and document vectors in ’D2V’

yTrain = train[’Label’].to_list()

yTest = test[’Label’].to_list()

XTrain = train[’D2V’].to_list()

XTest = test[’D2V’].to_list()

runSVM(XTrain, yTrain, XTest, yTest)

Figure A.5: SVM Training and Testing
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## ------------------------------------------------------------

####GPC on Document Vectors

#Gaussian

from sklearn.gaussian_process import GaussianProcessClassifier

from sklearn.gaussian_process.kernels import RBF

from sklearn import metrics

#Default kernel is RBF, explicitly stated here

kernel = 1 * RBF()

gpc = GaussianProcessClassifier(kernel = kernel,

random_state = 2)

#Fit GPC to a dataframe with document vectors column ’D2VVectors’

#and numeric behavioral labels in column ’Label’

gpc.fit(train[’D2VVectors’].to_list(),train[’Label’].to_list())

##Prediction

yPredTrain = gp_neg.predict(train[’D2VVectors’].to_list())

yPredTest = gp_neg.predict(test[’D2VVectors’].to_list())

trainAccuracy = np.mean(np.asarray(yPredTrain).ravel() ==

np.asarray(train[’Label’].to_list()).ravel())

print(’Train accuracy: %.1f’ % trainAccuracy*100)

testAccuracy = np.mean(np.asarray(yPredTest).ravel() ==

np.asarray(test[’Label’].to_list()).ravel())

print(’Test accuracy: %.1f’ % testAccuracy*100)

#Generate confusion matrix

metrics.confusion_matrix(test[’Label’].to_list(), yPredTest)

Figure A.6: Gaussian Process Classification
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from sklearn.manifold import TSNE

import matplotlib.pyplot as plt

import matplotlib.lines as mlines

import matplotlib

#Given a pandas dataframe, dataSet, with a

#column of document vectors called ’D2V’ and a

#column of corresponding labels called ’categoryName’

#Generate a scatter plot and save at the file location saveAt

def plotDocVecs2(dataSet,saveAt):

labels = list(dataSet[’categoryName’])

vectors = dataSet[’D2V’].as_matrix().tolist()

uniqueLabels = list(set(labels))

#Reduce vectors down to a vector space of 2

tsne_model = TSNE(perplexity=40, n_components=2, init=’pca’,

n_iter=2500, random_state=23)

new_values = tsne_model.fit_transform(vectors)

print("Data reduction complete")

x = [value[0] for value in new_values]

y = [value[1] for value in new_values]

plt.figure(figsize=(16,16))

#Plot each point as either class 1 or class 2

for i in range(len(x)):

if labels[i] == uniqueLabels[0]:

plt.scatter(x[i],y[i],c="red",marker="o")

elif labels[i] == uniqueLabels[1]:

plt.scatter(x[i],y[i],c="black",marker="x")

#Generate legend (not used in visualizations in this paper)

redCircle = mlines.Line2D([],[],color="red",marker="o",

linestyle = "None",label=uniqueLabels[0])

blueSquare = mlines.Line2D([],[],color="black",marker="x",

linestyle = "None",label=uniqueLabels[1])

plt.legend(handles=[redCircle,blueSquare],fontsize=’xx-large’)

#Save the figure as an eps file

plt.savefig(saveAt, format=’eps’, dpi=500,bbox_inches = ’tight’)

#Display figure

plt.show()

Figure A.7: T-SNE Visualization
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