
Chapman University Chapman University 

Chapman University Digital Commons Chapman University Digital Commons 

Psychology Faculty Articles and Research Psychology 

4-24-2019 

Parameterizing and Validating Existing Algorithms for Identifying Parameterizing and Validating Existing Algorithms for Identifying 

Out-of-Bed Time Using Hip-Worn Accelerometer Data from Older Out-of-Bed Time Using Hip-Worn Accelerometer Data from Older 

Women Women 

John Belletierre 
University of California - San Diego 

Yiliang Zhang 
Yale University 

Vincent Berardi 
Chapman University, berardi@chapman.edu 

Kelsie M. Full 
University of California - San Diego 

Jacqueline Kerr 
University of California - San Diego 

See next page for additional authors Follow this and additional works at: https://digitalcommons.chapman.edu/psychology_articles 

 Part of the Equipment and Supplies Commons, Other Psychiatry and Psychology Commons, 

Psychological Phenomena and Processes Commons, and the Women's Health Commons 

Recommended Citation Recommended Citation 
Belletierre, J., Zhang, Y., Berardi, V., Full, K. M., Kerr, J., LaMonte, M. J., Evenson, K. R., Hovell, M., LaCroix, 
A. Z., & Di, C. (2019). Parameterizing and validating existing algorithms for identifying out-of-bed time 
using hip-worn accelerometer data from older women. Physiological Measurement, 40(7): 075008. 
https://doi.org/10.1088/1361-6579/ab1c04 

This Article is brought to you for free and open access by the Psychology at Chapman University Digital Commons. 
It has been accepted for inclusion in Psychology Faculty Articles and Research by an authorized administrator of 
Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chapman University Digital Commons

https://core.ac.uk/display/215799973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/psychology_articles
https://digitalcommons.chapman.edu/psychology
https://digitalcommons.chapman.edu/psychology_articles?utm_source=digitalcommons.chapman.edu%2Fpsychology_articles%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/944?utm_source=digitalcommons.chapman.edu%2Fpsychology_articles%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/992?utm_source=digitalcommons.chapman.edu%2Fpsychology_articles%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/914?utm_source=digitalcommons.chapman.edu%2Fpsychology_articles%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1241?utm_source=digitalcommons.chapman.edu%2Fpsychology_articles%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1088/1361-6579/ab1c04
mailto:laughtin@chapman.edu


Parameterizing and Validating Existing Algorithms for Identifying Out-of-Bed Parameterizing and Validating Existing Algorithms for Identifying Out-of-Bed 
Time Using Hip-Worn Accelerometer Data from Older Women Time Using Hip-Worn Accelerometer Data from Older Women 

Comments Comments 
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Physiological 
Measurement, volume 40, issue 7 in 2019 following peer review. The definitive publisher-authenticated 
version will be available online at DOI: 10.1088/1361-6579/ab1c04. 

Copyright 
Institute of Physics and Engineering in Medicine 

Authors Authors 
John Belletierre, Yiliang Zhang, Vincent Berardi, Kelsie M. Full, Jacqueline Kerr, Michael J. LaMonte, Kelly 
R. Evenson, Melbourne Hovell, Andrea Z. LaCroix, and Chongzhi Di 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/
psychology_articles/151 

https://doi.org/10.1088/1361-6579/ab1c04
https://digitalcommons.chapman.edu/psychology_articles/151
https://digitalcommons.chapman.edu/psychology_articles/151


Physiological Measurement
     

ACCEPTED MANUSCRIPT

Parameterizing and validating existing algorithms for identifying out-of-
bed time using hip-worn accelerometer data from older women
To cite this article before publication: John Bellettiere et al 2019 Physiol. Meas. in press https://doi.org/10.1088/1361-6579/ab1c04

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2018 Institute of Physics and Engineering in Medicine.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 206.211.139.201 on 03/05/2019 at 21:03

https://doi.org/10.1088/1361-6579/ab1c04
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6579/ab1c04


1 
 

Parameterizing and validating existing algorithms for identifying out-of-

bed time using hip-worn accelerometer data from older women 

 

John Bellettiere1,2, Yiliang Zhang3, Vincent Berardi2,4, Kelsie M. Full1, Jacqueline Kerr1, 

Michael J. LaMonte5, Kelly R. Evenson6, Melbourne Hovell2, Andrea Z. LaCroix1*, Chongzhi 

Di7* 

 
*equally contributing senior authors  
 
1 Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, 

USA. 
2 Center for Behavioral Epidemiology and Community Health, Graduate School of Public Health, San 

Diego State University, San Diego, California, USA. 
3 Department of Biostatistics, Yale, New Haven, Connecticut, USA. 
4 Department of Psychology, Chapman University, California, USA 
5 Department of Epidemiology and Environmental Health, School of Public Health and Health 

Professions, University at Buffalo-SUNY, Buffalo, NY, USA. 
6 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina 

Chapel Hill, Chapel Hill, NC, USA. 
7 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 

 

 

Corresponding author: John Bellettiere, University of California, San Diego, 9500 Gilman Drive, 

La Jolla, CA 92093, Tel: 858-822-0627, FAX: 858-534-4642, E-mail: jbellettiere@ucsd.edu  

 

Target journal: Physiological Measurement (research note=3500 word max; original 

research=8000 word max; no reported max for tables/figures) 

 

Word Count: 4378 (max 8000) 

Tables: 5 

Figures: 1  

Abstract Word Count: 249 (max 250) 

Supplemental Material: 7 tables 2 figures 

 

  

Page 1 of 28 AUTHOR SUBMITTED MANUSCRIPT - PMEA-102922.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

mailto:jbellettiere@ucsd.edu


2 
 

ABSTRACT 

Objective: To parameterize and validate two existing algorithms for identifying out-of-bed time 

using 24-hour hip-worn accelerometer data from older women.   

Approach: Overall, 628 women (80±6 years old) wore ActiGraph GT3X+ accelerometers 24 

hours/day for up to 7 days and concurrently completed sleep-logs. Trained staff used a validated 

visual analysis protocol to measure in-bed periods on accelerometer tracings (criterion). The 

Tracy and McVeigh algorithms were adapted for optimal use in older adults. A training set of 

314 women was used to choose two key thresholds by maximizing the sum of sensitivity and 

specificity for each algorithm and data (vertical axis, VA, and vector magnitude, VM) 

combination. Data from the remaining 314 women were then used to test agreement in waking 

wear time (i.e., out-of-bed time while wearing the accelerometer) by computing sensitivity, 

specificity, and kappa comparing the algorithm output with the criterion. Waking wear time-

adjusted means of sedentary time, light-intensity physical activity (light PA) and moderate-to-

vigorous-intensity physical activity (MVPA) were then estimated and compared.   

Main results: Waking wear time agreement with the criterion was high for Tracy_VA, Tracy_VM, 

McVeigh_VA, and highest for McVeigh_VM.  Compared to the criterion, McVeigh_VM had mean 

sensitivity=0.92, specificity=0.87, kappa=0.80, and overall mean difference (±SD) of-0.04±2.5 

hours/day. Minutes of sedentary time, light PA, and MVPA adjusted for waking wear time using 

the criterion measure and McVeigh_VM were not statistically different (p >0.43 | all). 

Significance: The McVeigh algorithm with optimal parameters using VM performed best 

compared to criterion sleep-log assisted visual analysis and is suitable for automated 

identification of waking wear time in older women when visual analysis is not feasible. 
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INTRODUCTION 

Accelerometers have been used to measure human movement beginning in 1983 

(Montoye et al 1983) and have since become the most used sensor in physical activity research 

(Chen et al 2012). Early research protocols required accelerometers be worn only while awake, 

often requiring participants to remove devices when they were likely to get wet (e.g., during 

showers or while swimming), and while sleeping [eg, (Diaz et al 2017)]. One problem with this 

waking-wear protocol is that taking devices off before bed and putting them on after waking 

presents opportunities for participants to forget to wear devices while awake, which can result in 

incomplete assessment of physical activity and sedentary times (Troiano et al 2014).  This non-

wear results in missing data (Tudor-Locke et al 2015) that is more likely to occur just before and 

just after sleep—a pattern that is not missing at random.  Furthermore, systematically requiring 

device removal creates missed opportunities to assess sleep duration and several other 

dimensions of sleep that can be measured using hip-worn or wrist-worn accelerometers, though 

accuracy of some sleep dimensions measured with hip-worn accelerometry remains unclear 

(Zinkhan et al 2014, Weiss et al 2010).   

For the assessment of time spent in physical activity, accelerometers are commonly worn 

on the hip to measure whole-body acceleration in three dimensions 30 to 100 times per second 

(Migueles et al 2017). Raw acceleration data are summarized to manageable sampling time 

intervals, or “epochs” (commonly 1 minute) using proprietary algorithms built into 

manufacturer-provided software resulting in activity measures known as “counts per minute” 

(cpm). The resulting cpm data can be used to classify each minute of the day into one of four 

categories: sedentary behavior; physical activity (light, moderate, vigorous); sleep; or non-wear.  
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Data processing techniques for classifying sedentary behavior and physical activity that 

rely solely on cpm data are widely used (Freedson et al 1998, Troiano et al 2008, Matthews et al 

2008). These techniques use cpm thresholds, also called “cutpoints”, that are established often in 

laboratory studies that calibrate cpm data to directly measured energy expenditure (e.g., oxygen 

uptake) while participants perform various tasks such as walking on a treadmill, folding laundry, 

mopping, and watching TV (Evenson et al 2015).  Automated algorithms to classify non-wear 

time (Choi et al 2011) are also pervasively used. The identification of in-bed time (sometimes a 

proxy for sleep duration) using automated algorithms is common when accelerometers are worn 

on the wrist (Ancoli-Israel et al 2003).  Identifying in-bed time using data from hip-worn 

accelerometers is more challenging because differences in whole-body movement patterns 

between sedentary behavior and sleep are not as clearly distinct as those observed on wrist-worn 

accelerometers.  Despite the added difficulty, several automated in-bed detection algorithms for 

hip-worn accelerometer data have been developed and validated against whole-room calorimetry 

(Tracy et al 2014), parent-reported sleep logs (Barreira et al 2015) and expert visual analysis of 

cpm data (Tudor-locke et al 2014, McVeigh et al 2016a). Two of the algorithms—Tracy et al.’s 

bed-rest algorithm (referred to as the “Tracy algorithm”) and McVeigh et al.’s waking wear time 

algorithm (referred to as the “McVeigh algorithm)—rely solely on cpm output from ActiGraph 

accelerometers (McVeigh et al 2016a, Tracy et al 2014).  The simplicity of the cpm algorithms 

makes their application in large epidemiologic studies more feasible than other time intensive 

approaches.   

Algorithms designed to categorize out-of-bed time from hip-worn accelerometry rely on 

temporal patterns of whole-body physical activity that occur while out of bed and while in 

bed/asleep. The algorithms are heavily influenced by physical activity profiles during the waking 
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period. For example, a person who is consistently active throughout their out-of-bed period will 

have cpm readings that are distinctly different than the cpm readings during their in-bed period, 

making the distinction between the two periods clear.  For someone who spends the vast majority 

of their out-of-bed periods sedentary (e.g., sitting at a computer, watching television), 

distinctions between in-bed and out-of-bed periods would be more difficult to ascertain. The 

Tracy and McVeigh algorithms were developed and validated using data from youth aged 10-18 

and young adults aged ~22 years, respectively. Since sleep patterns (Yoon et al 2003) and 

activity intensity profiles (Troiano et al 2008) are highly variable by age, there is good reason to 

believe that the algorithms developed for adolescents and young adults are not directly 

generalizable to older adults (McVeigh et al 2016a).  However, both the Tracy and McVeigh 

algorithms were originally designed with parameters that could be modified to fit different 

population subgroups.   

 The first objective of this study was to identify parameter values that optimized the Tracy 

and McVeigh algorithms for identifying waking wear time in older women. Waking wear time 

was defined as the daily out-of-bed time during accelerometer wear, and is the key variable used 

for adjustment in studies of physical activity and sedentary behavior that collect data over the 24-

hour day. The second objective was to validate both algorithms in a separate sample of older 

women using the newly-identified optimal parameters. An algorithm parameterized for older 

adults, if sufficiently valid, could measurably reduce the resource burden of data processing, 

making it more feasible for large epidemiologic studies to include 24-hour accelerometry 

measures.    

METHODS 

Sample 
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 Accelerometer and sleep log data from a subsample of Women’s Health Initiative (WHI) 

participants who enrolled in the WHI Long Life Study (2012-2013) and the ancillary Objective 

Physical Activity and Cardiovascular Health Study (OPACH) were used (LaCroix et al 2017). 

Participants were between 63 and 99 years old (average age 79 ± 7 years), community-living, 

ambulatory, and cognitively able to both provide consent to the Long Life Study home 

examination, during which accelerometers were deployed in the majority of women, and provide 

consent into OAPCH. About half (49.4%) were non-Hispanic white, 33.7% were non-Hispanic 

black, and 16.9% were Hispanic/Latina. ActiGraph GT3X+ accelerometers were worn over the 

right hip for 24 hours per day (removed only when showering or swimming) over a 7-day 

measurement period.  Sleep logs were concurrently distributed to collect in-bed and out-of-bed 

times during accelerometer wear; the sleep logs have been published elsewhere (Rillamas-Sun et 

al 2015). Of the 6489 women who wore accelerometers for at least one day, 6114 (94%) also 

completed sleep logs for at least one day.  

 The first 628 participants whose accelerometer data went through a validated sleep log-

assisted visual inspection (described below) were included in the present study.  Participants 

were randomly assigned to either a “parameterization subsample” that was used to determine 

optimal parameters or a “validation subsample” that was a separate sample used only to evaluate 

the optimal parameters.  

 Parameters for the Tracy and the McVeigh algorithms were largely dependent on in-bed 

and out-of-bed body movement.  Sleep duration (short <7 hr/night, average 7-9 hr/night, and 

long >9 hr/night) and total physical activity (high and low, determined by a median split to 

accelerometer cpm) were used as proxies for this movement. To ensure sufficient variation in 

sleep and physical activity patterns in the parameterization and validation subsamples, the 628 
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women were stratified into the 6 mutually exclusive categories based on sleep duration and total 

physical activity.  Then 50% of women from each category were randomly sampled without 

replacement for the parameterization subsample; the remaining women formed the validation 

subsample.  The parameterization and validation subsamples each had 18 high activity short 

sleepers, 119 high activity average sleepers, 21 high activity long sleepers, 15 low activity 

average sleepers, 96 low activity average sleepers, and 45 low activity long sleepers.   

Accelerometer data processing 

 ActiGraph GT3X+ accelerometers measured acceleration at 30 Hz. Raw acceleration data 

were converted into counts per 15-second epoch using the low frequency filter in ActiLife v6.11. 

This filter was used by McVeigh and colleagues and is designed so that activity at the lower end 

of the activity intensity spectrum can be detected with similar consistency as older ActiGraph 

accelerometer models such as those used by Tracy and colleagues (Tracy et al 2014, McVeigh et 

al 2016a, ActiGraphcorp.com 2015).  Data were then aggregated to 1-minute epochs to represent 

cpm. Vector magnitude counts for each 1-minute epoch was computed as the square root of the 

sum of the vertical axis cpm squared, the horizontal axis cpm squared, and the perpendicular axis 

cpm squared.  Non-wear time was identified by a commonly used automated algorithm which 

identified periods with ≥ 90 minutes of consecutive vector magnitude cpm of zero, allowing for 

up to 2 consecutive minutes of nonzero counts (to account for movement of the unworn device) 

conditional on there being 30 minute windows of zero cpm before and after the device was 

moved (Choi et al 2011, 2012).  

Sleep log-assisted visual analysis  

 Similar to the procedures used by McVeigh et al., two raters were trained to visually 

identify in-bed periods by systematically observing cpm data on accelerometer tracings in the 
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context of self-reported in-bed periods.  Using ActiLife V6.11.8, raters created 60-sec condensed 

AGD files and scored each participant’s 24-hour accelerometer data using the software’s sleep 

analysis tab. Raters identified in-bed periods by inputting self-reported in-bed and out-of-bed 

times from completed sleep logs into the software and visually inspecting the accelerometer 

tracings (in cpm) for changes in physical activity that would indicate that the participant 

transitioned from in-bed to out-of-bed or vice versa. If the visually identified transition was 

different from the self-reported time by ≥ 15 minutes, then the self-reported sleep period was 

adjusted based on the observed accelerometer data. The 15-minute requirement was determined 

by raters and investigators during the protocol development process in part to give the self-

reported times priority when raters’ and reporters’ times were ‘close’ and as pragmatic step to 

reduce coder burden. Raters identified the start of the in-bed period as the first zero count 

following a significant and persistent reduction in activity (<100 cpm) and defined the end of the 

in-bed period as a significant and persistent increase in activity (>100 cpm).  The resulting in-bed 

periods, from visual inspection, were used as the criterion for algorithm parameterization and for 

validation. This protocol was developed based on a method used by sleep researchers shown 

previously to have high inter-rater reliability with mean absolute differences between raters and 

experts of 3.4±5.4 minutes and interclass correlations ranging from 0.84 to 0.99 (Blackwell et al 

2005). 

 For 20 participants, a second rater coded data for the same days.  The double-coded data 

were used to assess the degree to which the criterion data was reliable by computing percent 

agreement allowing for in-bed and out-of-bed times to differ by ±5 minutes. The inter-rater 

agreement was 88.2%.   

The Tracy and McVeigh algorithms 
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 Generally, both the Tracy and McVeigh algorithms work by first identifying long periods 

of relatively low intensity activity, to operationalize an in-bed period.  The algorithms then 

search the beginning and end of each period for a more precise in-bed and out-of-bed time. Both 

steps rely on cpm cutpoints that were applied to data from the vertical axis only.  Our study 

extends this by also using data from all three axes, summarized as the vector magnitude. 

The Tracy and McVeigh algorithms were designed with modifiable parameters enabling 

them to be tuned to work in samples different from those used in their development and 

validation. Both algorithms are described in detail elsewhere (McVeigh et al 2016a, Tracy et al 

2014).  The Tracy algorithm has three modifiable parameters (CP0, CP1, and CP2), with CP1 

and CP2 having the largest influence on the accuracy of the algorithm.  CP1 is the cpm cutpoint 

that differentiates high from low intensity activity and is used to identify what the authors call 

“bedtime rest periods”. CP2 is the cpm cutpoint used to find a more precise end time for the bed 

rest period.  The validated cpm cutpoints supplied by the authors—determined by examining 

receiver operation curves for different options and optimizing for sensitivity and specificity—for 

CP1 and CP2 were 20 cpm and 500 cpm, respectively (Tracy et al 2014). CP0 – a parameter to 

identify precise start times for the bedtime rest period – was fixed at 50 cpm.  The McVeigh 

algorithm had five modifiable parameters (slthres, prslthresh1, prslthresh2, prwkthresh1, and 

prwkthresh2), with slthres and prwkthresh2 being central to its functioning.  Slthres was used to 

define period of prolonged low activity that indicated participants were either in bed or the 

device was not being worn (called in-bed/non-wear [BNW] periods); McVeigh et al. set this 

equal to 88 cpm.  Prslthresh1 and prslthresh2 are parameters used to identify the precise 

beginning time for a BNW, while prwkthresh1 and prwkthresh2 are parameters used to identify 

the precise ending time of a BNW. McVeigh et al determined the parameter values by repeatedly 
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changing values, graphing the results, then visually inspecting the results in relation to their 

criterion. McVeigh et al. set the parameters as follows: prslthresh1=89, prslthresh2=50, 

prwkthresh1=91, prwkthresh2=200 (McVeigh et al 2016a).   

Selecting optimal parameters for each algorithm 

 For the Tracy and McVeigh algorithms, optimal parameters were selected separately using 

both the vertical axis (VA) and the vector magnitude (VM) data.  A range of possible cpm 

cutpoints was prespecified for the two key modifiable parameters for each algorithm. We then 

choose 10 to 50 grid points within the plausible range for each parameter. The ranges of 

plausible values [low:high, by gridpoint] were [VA=10:120, by 10; VM=90:300, by 10] for CP1, 

[VA=60:200, by 20; VM=200:700, by 50] for CP2, [VA=50:150, by 10; VM=150:300, by 10] 

for slthres, and [VA=120:400, by 40; VM=300:700, by 50] for prwkthresh2, based on the 

literature (Evenson et al 2015, Tracy et al 2014) and our practical experiences.  

 Each combination of parameters was applied to data from participants in the 

parameterization subsample, one participant at a time, to implement the Tracy and McVeigh 

algorithms.  One-minute epochs were classified as either out-of-bed or in-bed and/or non-wear 

time. After each implementation, the newly classified minutes were compared with minutes 

classified using the criterion sleep-log guided visual inspection method by computing sensitivity 

and specificity. Sensitivity was defined as the proportion of algorithm-identified out-of-bed 

minutes in agreement with out-of-bed minutes classified using the criterion method.  Specificity 

was defined as the proportion of algorithm-identified in-bed minutes in agreement with in-bed 

minutes classified using the criterion method. The above procedures were repeated for all unique 

combinations of modifiable parameters. Sensitivity and specificity were computed for each 

participant first, and then the medians across all participants were calculated. The parameter 
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combination with the highest median sensitivity plus specificity was selected.   

 To reduce the computational resources needed for the parameterization process, the 

following parameters, which based on our experience from systematically deconstructing both 

algorithms and on results from early exploratory sensitivity analyses were determined to be less 

influential for algorithm accuracy than the varied parameters, were fixed for all analytic steps: 

CP0=50 cpm; prslthresh2=50 cpm; prslthresh1=slthresh+1; and prwkthresh1=slthresh+10. 

Validation 

 The parameterization process resulted in 4 optimal cpm cutpoint combinations: Tracy_VA; 

Tracy_VM; McVeigh_VA; and McVeigh_VM.  The Tracy and McVeigh algorithms were then 

implemented on data from the validation sample using the 4 optimal cutpoint combinations and 

the two originally validated cutpoint combinations supplied by the authors (Tracy_original and 

McVeigh_original). Agreement in daily out-of-bed time between the criterion measure and all 6 

implementations of the algorithms was assessed using sensitivity, specificity, and Cohen’s 

kappa.   

 For each participant and each algorithm implementation, waking wear time was computed 

as the average number of out-of-bed minutes per day. Agreement in waking wear time was 

assessed by computing mean bias (i.e., the overall mean difference) and 95% limits of 

agreement.  Bland-Altman plots displayed differences in waking wear time between the 

algorithm-identified measures and the criterion measure.   

 Each epoch of waking wear time was separated into “activity measure” categories 

identified as sedentary behavior, light intensity physical activity (light PA), and moderate-to-

vigorous intensity physical activity (MVPA) using vector magnitude cutpoints previously 

established in the OPACH Calibration Study (sedentary time <39 counts/15-seconds, light PA 
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40-573 counts/15-seconds, MVPA > 573 counts/15-seconds) (Evenson et al 2015). A confusion 

matrix comparing activity measures for data processed using the criterion method to data 

processed using all 6 algorithm implementations was then tabulated to identify where 

misclassification occurred. 

 Estimates of sedentary time, light PA, and MVPA were computed for the validation sample 

after adjusting for waking wear time, which is consistent with the analytic method used by many 

studies of accelerometer-measured physical activity and sedentary behavior.  The residuals 

method (Willett and Stampfer 1986) was used to adjust the activity measures for differences in 

waking wear time, and differences were analyzed using generalized estimating equations. 

 Simple linear regression was used to assess how the waking wear time computation 

method influenced associations between waking wear time-adjusted activity measures and 

health-related characteristics.  The health-related characteristics at the time of accelerometry 

included age, body mass index (BMI) calculated from measured height and weight, physical 

functioning assessed using the short physical performance battery (SPPB), and resting blood 

pressure. The SPPB is a series of three timed tests—balance in three standing position, one 4-

meter usual gait speed test, and 5 unassisted chair stands—that are each given a score from 0 to 4 

based on previously validated thresholds and are summarized to a score ranging from 0 to 12 

with 12 being highly functioning (Guralnik et al 1994). Beta coefficients from regression models 

were compared using the Horton method (Horton and Fitzmaurice 2004) with and without 

Bonforoni correction for multiple testing.  

 All analyses were conducted in R (R Foundation for Statistical Computing; Vienna, 

Austria) using two-tailed statistical tests with p<0.05 considered statistically significant.  

RESULTS 
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The parameterization and validation subsamples had similar ages (mean=80±6 years; 

p=0.75) and similar racial-ethnic variation with the majority of each sample being White (60% 

and 57%; p=0.71).  BMI was slightly higher in the parameterization subsample (29 vs 27 kg/m2; 

p=0.01), while SPPB and blood pressure were slightly higher in the validation subsample (Table 

1; p-values all > 0.05).    

Table 1. Participant characteristics by subsample 

 

Parameterization 

subsample  

(n=314) 

Validation 

Subsample  

(n=314) 

p-

value 

Age (years) 80 ± 6 80 ± 6 0.75 

Race-ethnicity, %   0.71 

White 60% 57%  
Black 23% 24%  
Hispanic 17% 19%  

BMI (kg/m2) 29 ± 6 27 ± 6  0.01 

SPPB 8.0 ± 2.6 8.2 ± 2.5 0.37 

Diastolic BP 

(mmHg) 71 ± 8 72 ± 9 0.38 

Systolic BP (mmHg) 125 ± 14 127 ± 15 0.10 

Abbreviations: BMI = body mass index; SPPB = short 

physical performance battery; BP = blood pressure 

Data are mean ± sd for continuous variables, percentages for 

categorical variables 

 

For all analyses, only days with complete accelerometer data and self-reported sleep logs 

were used, resulting in 314 women with 1436 days in the parameterization subsample and 307 

women with 1402 days in the validation subsample. The ROC curves show joint distributions of 

sensitivity and (1-specificity) for each combination of algorithm parameters (Supplemental 

Figure 1). Optimal (CP1, CP2) cutpoints (cpm) maximizing the sum of sensitivity and specificity 

were (60, 100) for Tracy_VA  and (210, 350) for Tracy_VM, and optimal McVeigh (slthres, 

prwkthresh2) cutpoints were (90, 280) for McVeigh_VA and (210, 600) for McVeigh_VM. 

 Agreement in waking wear time comparing the criterion method to the Tracy and 

McVeigh algorithms implemented using the original, optimal VA and optimal VM thresholds for 
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each calendar day in the validation subsample are in Table 2.  In general, agreement was high 

with day-level agreements across all algorithm implementations ranging from 84 to 91% 

agreement, 85 to 92% for sensitivity, 81 to 89% for specificity, and 67 to 80 for kappa. Between 

87 and 94% of all calendar days, on average, had moderate to excellent kappa values.  

For nearly all agreement metrics, the McVeigh_VM performed best. Seventy-two percent 

of days had excellent kappa values.  When average waking wear times were computed, the mean 

bias was near zero (-0.04 hours/day) with 95% levels of agreement ranging from -5.0 hours/day 

to 4.9 hours/day.  The Bland-Altman plot of waking wear time agreement between the 

McVeigh_VM and the visual analysis approach is show in Figure 1. Bland-Altman plots for all 

algorithm implementations are in Supplemental Figure 2. 

 

 

Table 2: Agreement in awake wear time relative to sleep log-assisted visual analysis; validation subsample (1402 days 

from 307 women) 

 

Tracy 

original 

Tracy  

VA 

Tracy  

VM 

McVeigh 

original 

McVeigh 

VA 

McVeigh 

VM 

Day-level agreement     

Percent agreement, mean (sd) 84.8 (11.7) 85.3 (12.2) 87.0 (11.5) 86.3 (14.9) 86.0 (15.0) 90.5 (11.1) 

Sensitivity, mean (sd) 0.87 (0.2) 0.85 (0.2) 0.86 (0.2) 0.86 (0.2) 0.85 (0.2) 0.92 (0.2) 

Specificity, mean (sd) 0.81 (0.2) 0.86 (0.2) 0.89 (0.1) 0.87 (0.2) 0.87 (0.2) 0.87 (0.2) 

Kappa, mean (sd) 0.67 (0.2) 0.69 (0.2) 0.73 (0.2) 0.72 (0.3) 0.71 (0.3) 0.80 (0.2) 

Kappa category       

Poor (<0.4), n (%) 184 (13%) 169 (12%) 110 (8%) 179 (13%) 186 (13%) 86 (6%) 

Moderate (0.4-0.75), n (%) 590 (42%) 560 (40%) 517 (37%) 403 (29%) 400 (29%) 310 (22%) 

Excellent (>0.75), n (%) 626 (45%) 671 (48%) 773 (55%) 818 (58%) 814 (58%) 1004 (72%) 

Person-level agreement       

Mean bias (hr/day), mean (sd) -0.28 (2.5) -1.06 (2.6) -1.28 (2.5) -1.00 (3.3) -1.20 (3.4) -0.04 (2.5) 

95% Limits of agreement -4.9, 4.8 -5.2, 5.1 -5.0, 4.9 -6.5, 6.5 -6.6, 6.5 -5.0, 4.9 
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Figure 1. Bland-Altman plot of agreement in average daily waking wear time for each 

participant in the validation subsample. The mean difference (solid line) was computed by 

subtracting the average daily waking wear time measured by criterion method from the average 

daily waking wear time measured by the McVeigh algorithm using the optimal vector magnitude 

(VM) cutpoints; upper and lower limits of agreement are shown with dotted lines. The x-axis is 

the average waking wear time between criterion method and McVeigh_VM.  

 
 

The confusion matrix in Table 3 shows minute-level epoch classifications for the 

McVeigh_VM implementation and the criterion method. Matrices for all other algorithm 

implementations are in the Supplemental Tables 1-5. Cells on the downward-sloping diagonal 

indicated perfect agreement for 90.5% of all 1-minute epochs in the validation subsample.  

Nearly all misclassification occurred between the in-bed/non-wear classifications and sedentary 

time.  For 4.3% of the 1-minute epochs, sedentary time was classified as in-bed/non-wear by the 

McVeigh_VM.  Similarly, 4.1% of the 1-minute epochs that were classified as in-bed/non-wear 

by the criterion method were classified as sedentary time by the McVeigh_VM.  Few light PA or 

MVPA 1-minute epochs were differentially classified, less than 2% of all epochs in total.   
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Table 3. Confusion matrix for the McVeigh algorithm implemented using 

the optimal vector magnitude cutpoints showing activity measures and in-

bed/non wear.  Data are the number of 1-minute epochs (percentages). 

Validation subsample (n=307).  

 Sleep-log-assisted visual inspection (criterion method) 

  

In-bed / non 

wear time 

Sedentary 

time 
Light PA MVPA 

In-bed / non 

wear time 

635540 

(31.6) 

85865  

(4.3) 

10738  

(0.5) 

967  

(0.0) 

Sedentary time 
81812  

(4.1) 

716989 

(35.6) 

0  

(0.0) 

0  

(0.0) 

Light PA 
10009  

(0.5) 

0  

(0.0) 

390413 

(19.4) 

0  

(0.0) 

MVPA 
1754  

(0.1) 

0  

(0.0) 

0  

(0.0) 

77830 

(3.9) 

Abbreviations: PA = Physical activity, MVPA = Moderate-to-vigorous 

intensity physical activity 

 

The average number of minutes per day spent in sedentary time, light PA, and MVPA 

were adjusted for waking wear time, as is typically done in studies of sedentary time and 

physical activity (Table 4).  Women in the validation sample were sedentary for 574 

minutes/day, in light PA for 286 minutes/day, and were in MVPA for 56 minutes/day.  Across 

the 6 algorithm implementations, the magnitude of mean differences was highest for sedentary 

time and lowest for MVPA. Activity time estimates were most similar between the McVeigh_VM 

and the criterion method, with no significant differences for sedentary time (p=0.43), light PA 

(p=0.82), or MVPA (p=0.51). MVPA estimates adjusted for awake wear time computed using all 

6 algorithms were not significantly different from MVPA adjusted using the criterion method (p 

>0.27 | all). 
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Inferences about the statistical significance and, when significant, the direction of 

associations between sedentary time and age, BMI, SPPB, and diastolic blood pressure were 

similar when sedentary time was adjusted for waking wear time using the criterion method and 

all 6 implementations of the Tracy and McVeigh algorithms (Table 5).  Qualitatively, the 

magnitude of associations with health-related characteristics were generally most similar when 

sedentary time was adjusted for the waking wear time computed using the criterion method and 

McVeigh_VM. Quantitatively, the beta coefficients for age estimated using all algorithm-derived 

waking wear times were different from the beta coefficients adjusted for waking wear time 

computed using the criterion method (p<0.05 | all) with and without Bonforoni correction. When 

using the Bonforoni method to correct for possible inflation of Type 1 error due to multiple 

testing, the beta coefficients for BMI, SPPB, and diastolic blood pressure estimated using all 

algorithm-derived waking wear times were not significantly different from the beta coefficients 

estimated using the criterion method (except Tracy_VM and BMI).  Similar patterns were 

Table 4: Average minutes per day spent in sedentary time, light physical activity (PA), and moderate to vigorous physical 

activity (PA) after adjustment for awake wear time. Validation subsample (n=307).  

  

Criterion 

method 

Tracy 

original 

Tracy  
VA 

Tracy  
VM 

McVeigh 
original 

McVeigh  
VA 

McVeigh  
VM 

Sedentary timea 574 (99) 559 (86) 513 (79) 499 (71) 529 (82) 519 (81) 572 (82) 

mean difference - -15.1 -61.2 -75.2 -45.6 -54.7 -2.3 

95% CI - (-20.5, -9.7) (-67.3, -55.0) (-82.5, -67.9) (-51.5, -39.7) (-60.8, -48.7) (-8.1, 3.4) 

p-value - <.001 <.001 <.001 <.001 <.001 0.428 

light PAa 286 (75) 283 (66) 282 (62) 283 (56) 271 (65) 269 (64) 285 (64) 

mean difference - -2.7 -3.2 -2.4 -14.2 -16.6 -0.5 

95% CI - (-6.6, 1.1) (-7.5, 1.1) (-7.7, 2.8) (-18.2, -10.3) (-20.7, -12.6) (-4.6, 3.6) 

p-value - 0.162 0.140 0.361 <.001 <.001 0.820 

MVPAa 56 (41) 56 (38) 57 (37) 56 (36) 55 (36) 55 (36) 56 (38) 

mean difference - 0.8 1.1 0.5 -0.3 -0.5 0.6 

95% CI - (-0.8, 2.4) (-0.8, 3.0) (-1.6, 2.6) (-2.3, 1.8) (-2.6, 1.6) (-1.1, 2.3) 

p-value - 0.347 0.275 0.612 0.808 0.638 0.508 

a Data are mean (sd)        
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observed for associations with light PA and with MVPA (Supplemental Tables 6 and 7).  

Analyses were repeated for systolic blood pressure and results were similar to those for diastolic 

blood pressure (data not shown).    
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Table 5: Simple linear regression results for associations between 1 hour of sedentary time (adjusted for awake wear time) and 

health-related characteristics. Validation subsample (n=307). 

  

Criterion 

method 

(1) 

Tracy 

original 

(2) 

Tracy  

VA 

(3) 

Tracy  

VM 

(4) 

McVeigh 

original 

(5) 

McVeigh  

VA 

(6) 

McVeigh  

VM 

(7) 

Age (years)         
beta 0.86 0.57 0.52 0.55 0.64 0.65 0.76 

95% CI (0.48,1.24) (0.12,1.02) (0.03,1.01) (0.00,1.10) (0.17,1.11) (0.18,1.13) (0.29,1.23) 

p-value <.001 0.013 0.037 0.050 0.008 0.007 0.002 

Δ betaa 2,3,4,5,6,7 1 1,7 1,7 1 1 1,3,4 

Δ beta (corrected)b 2,3,4,5,6,7 1 1,7 1,7 1 1 1,3,4 

BMI (kg/m2)               

beta 1.10 1.36 1.47 1.26 1.54 1.53 1.21 

95% CI (0.75,1.46) (0.95,1.76) (1.03,1.91) (0.75,1.76) (1.12,1.97) (1.10,1.96) (0.77,1.65) 

p-value <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Δ betaa 4,7 4,7 4 1,2,3,5,6,7 4,6,7 4,5,7 1,2,4,5,6 

Δ beta (corrected)b 4 4 4 1,2,3,5,6,7 4,6,7 4,5,7 4,5,6 

SPPB               

beta -0.35 -0.41 -0.35 -0.33 -0.30 -0.30 -0.30 

95% CI (-0.54,-0.17) (-0.63,-0.20) (-0.58,-0.12) (-0.60,-0.07) (-0.53,-0.08) (-0.53,-0.07) (-0.52,-0.07) 

p-value <.001 <.001 0.003 0.013 0.009 0.012 0.010 

Δ betaa 4,5,6,7 3,4,5,6,7 2,4 1,2,3 1,2 1,2 1,2 

Δ beta (corrected)b - 3,4,6 2 2 - 2 - 

Diastolic BP (mmHg)               

beta -0.10 0.05 -0.15 0.08 -0.10 -0.10 -0.10 

95% CI (-0.70,0.50) (-0.64,0.74) (-0.90,0.59) (-0.75,0.92) (-0.81,0.62) (-0.82,0.62) (-0.83,0.62) 

p-value 0.740 0.882 0.683 0.848 0.788 0.792 0.777 

Δ betaa - - - - - - - 

Δ beta (corrected)b - - - - - - - 

Abbreviations: CI = confidence interval; BMI = body mass index; SPPB = short physical performance battery; BP = blood pressure 
a Differences between betas tested using the Horton method with p<0.05 considered significant. 
b Differences between betas tested using the Horton method with p-values corrected for multiple tests using the Bonforoni method 

(i.e., p<0.05/7 considered significant). 
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DISCUSSION 

This project intended to parameterize and validate two existing algorithms to identify in-bed 

time to accurately measure waking wear time using data from hip-worn accelerometers worn 24 

hours/day by older adults. Automation reduces errors from human visual inspection and 

drastically reduces the resources needed to process accelerometer data collected using a 24-hour 

wear protocol, making these approaches more scalable. Our results showed an overall high 

agreement between the criterion visual inspection method and all 6 implementations of the Tracy 

and McVeigh automated algorithms, with the highest agreement achieved by the McVeigh_VM 

with optimized parameters.  The McVeigh_VM implementation provided unbiased estimates of 

average waking wear time though with high variation around the mean (±5 hours). Other 

implementations had mean biases ranging from -0.28 to -1.28 hours.  Sedentary time was the 

activity most often misclassified by the algorithms, with fewer instances of misclassification on 

light PA and MVPA. After adjusting sedentary time, light PA, and MVPA for waking wear time, 

there were no differences in average estimates between the criterion method and McVeigh_VM, 

but other implementations including the McVeigh_original significantly underestimated sedentary 

time and, in some instances, light PA as well. Similar overall inferences were generally made 

between health-related characteristics and sedentary time, light PA, and MVPA regardless of the 

method used to quantify awake wear time.  In most tests, estimates based on McVeigh_VM were 

closest to those based on the criterion method than all other implementations, although there 

were few significant differences between algorithm implementations.  Of particular note, the 

direction of associations were similar between the criterion method and McVeigh_VM for all 

health-related variables, and there was statistically significant differences in the magnitude of 

associations of sedentary time, light PA, and MVPA only with age. 
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Similar to McVeigh and colleagues, our study objective was to advance available methods 

for accurate and efficient identification of waking accelerometer wear time. The objective of 

Tracy and colleagues was to identify bedrest time which they measured directly using energy 

expenditure from whole-room calorimetry and movement-related mechanical work measured 

using a force plate in the floor of the whole room calorimeter.  This focus on bedrest, which the 

authors note has also been referred to as sleep or sleep-period, could account for why the 

McVeigh algorithm outperformed the Tracy algorithm when compared to our criterion measure.  

Tracy et al. reported bedrest time sensitivity and specificity in their adolescent validation sample 

(n=40) of 0.97 and 0.97, respectively. The authors subsequently adapted their algorithm to 

function using data from adults (using a sample of 141 men and women aged 40±14) and 

achieved bedrest time sensitivity and specificity of 0.82 and 0.97, respectively (Tracy et al 

2018).  McVeigh et al. reported waking wear time sensitivity and specificity in their validation 

sample (n=97) of 0.97 and 0.96, respectively. The mean bias and 95% limits of agreement 

reported in their study was (3.6 min/day and -2.3 to 2.5 h/day). The waking wear time sensitivity 

and specificity observed in our study for the best performing algorithm implementation 

(McVeigh_VM) was comparable, although lower, at 0.92 and 0.87, respectively, and 

McVeigh_VM mean bias and 95% limits of agreement were (0 min/day and -5 to 4.9 h/day).  It is 

noteworthy that McVeigh_VM outperformed the McVeigh_original demonstrating that 

parameterizing for older adults and/or using signals from the vector magnitude was an 

improvement over using only the vertical axis .  

Our criterion method was similar to the one used to develop and validate the McVeigh 

algorithm and is the approach commonly used by researchers when processing sleep-related 

actigraphy data from wrist-worn devices. The protocol used was originally developed for 
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systematic visual inspection of raw data from wrist-worn accelerometers to determine in-bed 

periods (Blackwell et al 2005) and was modified for use on hip-worn accelerometers; the full 

protocol is available upon request.  While visual inspection is the standard method in the field of 

sleep research, it is resource intensive, taking approximately 15 minutes per participant in the 

present study, and can lead to error. In our analysis, the error was small with inter-rater 

agreement of 88%. Furthermore, in our sleep-log assisted visual analysis, when the in-bed and 

out-of-bed time appeared to be within 15 minutes of the participants’ self-reported in-bed or out-

of-bed time, the in-bed period was defined by self-report. This protocol decision was made, in 

part, to reduce rater burden. The 15-minute buffer combined with the inter-rater error could 

account for some of the observed differences in waking wear time observed between the criterion 

method and all 6 algorithm implementations.   

The use of automated algorithms can greatly reduce the resources needed to accomplish 

repetitive tasks in a large scale study setting, especially when set-up time, which sometimes can 

be long, is reduced by the availability of ready-to-use software. When working with intensive 

longitudinal data, it is always good practice to visually inspect how algorithms perform (Bolger 

and Laurenceau 2013).  This can be accomplished for a randomly chosen subset of data and/or 

for the days with unusually long and unusually short waking wear times.  In some instances, 

manually correcting the data following algorithm implementation may be needed.  In the present 

study, we did not manually correct any data. However, we strongly recommend that all 

researchers implementing this algorithm visually inspect the results. In practice, an example 

workflow would be to implement the Choi algorithm to identify non-wear, then the McVeigh_VM 

algorithm to identify awake wear time, plot the results of both overlaid on the VM cpm data for 

each valid day, then make modifications to the McVeigh_VM results as needed. The McVeigh_VM 
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algorithm can also be used to perform sensitivity analyses when other in-bed period imputation 

methods are used such as mean imputation [eg, (Bellettiere et al 2019)].  If desired, the 

McVeigh_VM parameters can be further changed to improve the algorithms’ accuracy for 

different samples.    

This study is not without limitations.  Our focus was on identifying waking wear time and 

not sleep, primarily because sleep is a construct characterized by physiologic states that is 

difficult to proxy using only accelerometer data from hip-worn devices. In-bed time (a proxy for 

sleep duration) is output by the McVeigh algorithm, but this was not the focus of our 

parameterization or validation. The algorithms were originally designed then newly optimized 

and validated using data from ActiGraph accelerometers; caution should be taken when applying 

them to accelerometer data from other devices.  New algorithms were published after the design 

and implementation of our study protocol and were therefore not evaluated [eg, (Tracy et al 

2018)]. Our study was conducted among older community-living, ambulatory women and we are 

not sure whether the results can be generalized to the entire older adult population.  Finally, we 

modified only two parameters for each algorithm to conserve computational resources.  It is 

unlikely that this had an appreciable negative effect on parameterization, considering the overall 

waking wear time agreement was relatively high and that some optimal parameters (specifically 

the McVeigh_VM) tended to outperform the original parameters.   

Strengths of our study include the sample size that was more than twice the size of other 

comparative studies. We had sufficient numbers to parameterize and validate the optimal 

parameters on two separate datasets, each with over 300 participants.  We also parameterized and 

compared algorithm performance to data from a sleep-log assisted visualization process that is 

thought to be better than using un-augmented self-reported bed times (Lockley et al 1999).   
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Using only hip-worn accelerometer data collected 24-hours/day from older women, the 

McVeigh algorithm with the optimal VM parameters provided unbiased estimates of waking 

wear time.  Adjustment for waking wear time computed using McVeigh_VM can introduce error 

into measures of sedentary time, light PA, and MVPA, which could lead to biased associations 

with health indicators or other factors of interest.  However, most of the associations tested in the 

validation subsample were not qualitatively different when adjusting for waking wear time 

computed using the criterion method or McVeigh_VM.  We also observed unbiased estimates of 

wear time-adjusted sedentary time, light PA, and MVPA when the McVeigh_VM implementation 

was used.  We therefore conclude that the McVeigh_VM implementation is suitable for 

identifying awake wear time among older adults.  Caution should be used when implementing 

automated algorithms on intensive longitudinal data, and users of this algorithm should take 

appropriate precautions, such as visually inspecting the results as needed and manually making 

changes where appropriate.   
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