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Peroxiredoxin Catalysis at Atomic Resolution

Arden Perkinsa, Derek Parsonageb, Kimberly J. Nelsonb, O. Maduka Ogbac, Paul Ha-Yeon 
Cheongc, Leslie B. Pooleb, and P. Andrew Karplusa,*

aDepartment of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331

bDepartment of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157

cDepartment of Chemistry, Oregon State University, Corvallis, OR 97331

SUMMARY

Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases that guard cells against oxidative 

damage, are virulence factors for pathogens, and are involved in eukaryotic redox regulatory 

pathways. We have analyzed catalytically active crystals to capture atomic resolution snapshots of 

a PrxQ-subfamily enzyme (from Xanthomonas campestris) proceeding through thiolate, sulfenate, 

and sulfinate species. These analyses provide structures of unprecedented accuracy for seeding 

theoretical studies, and show novel conformational intermediates giving insight into the reaction 

pathway. Based on a highly non-standard geometry seen for the sulfenate intermediate, we infer 

that the sulfenate formation itself can strongly promote local unfolding of the active site to 

enhance productive catalysis. Further, these structures reveal that preventing local unfolding, in 

this case via crystal contacts, results in facile hyperoxidative inactivation even for Prxs normally 

resistant to such inactivation. This supports previous proposals that conformation-specific 

inhibitors may be useful for achieving selective inhibition of Prxs that are drug targets.

Graphical Abstract
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INTRODUCTION

Peroxiredoxins (Prxs) are ubiquitous peroxidases and in humans and other mammals they 

modulate peroxide signaling events that regulate biological phenomena such as cortisol 

production, cell senescence, and apoptosis (Hall et al., 2009)(Wood et al., 2003)(Perkins et 

al., 2014)(Rhee et al., 2012)(Kil et al., 2012). Prxs utilize a highly efficient cysteine-based 

mechanism to reduce hydrogen peroxide, organic hydroperoxides, and peroxynitrite at rates 

contants on the order of 103–107 M−1 s−1 (Perkins et al., 2015). Though they perform 

catalysis in diverse ecological niches and redox environments, Prxs share a PxxxT/SxxC 

motif and conserved Arg (Nelson et al., 2010) that form a consistently organized active site 

(Fig. 1A, Fig. S1). The active site cysteine, referred to as the peroxidatic Cys (CP), is 

stabilized as a reactive Cys-thiolate (CP-S−) by the active site environment and attacks a 

bound hydrogen peroxide to form Cys-sulfenate (CP-SO−) and water (Perkins et al., 2015)

(Zeida et al., 2014)(Nagy et al., 2011)(Portillo-Ledesma et al., 2014). Most Prxs then 

undergo a substantial structural rearrangement to a locally unfolded (LU) conformation to 

allow CP to form a disulfide with a second, often distant, resolving Cys (CR). Subsequently, 

the CP-CR disulfide is reduced, commonly by thioredoxin, to regenerate the reactive CP-S− 

in the fully folded (FF) conformation (Perkins et al., 2015).

An additional complexity of Prx catalysis is a regulatory feature associated with further 

oxidation of CP: if the FF active site is sufficiently stabilized and unfolding inhibited, a 

second peroxide can inactivate the enzyme by reacting with the FF CP-SO− to 

“hyperoxidize” it to a Cys-sulfinate (CP-SO2
−) (Wood et al., 2003). So-called ‘sensitive’ 

Prxs of mammals and other eukaryotes that are readily hyperoxidized are thought to use this 

shunt for purposeful substrate-induced inactivation that enhances redox signaling possibly 

through allowing peroxide to persist and oxidatively regulate downstream targets (Wood et 

al., 2003). Such organisms also possess the enzyme sulfiredoxin (Srx) to resurrect 

hyperoxidized Prxs (Perkins et al., 2014). In contrast, ‘robust’ Prxs such as those from 

bacterial pathogens are thought to only be used for oxidative defense and have been 

evolutionarily optimized to resist hyperoxidation, even at millimolar concentrations of 

peroxides (Wood et al., 2003)(Lowther and Haynes, 2010).
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Although previous studies have provided an excellent framework for understanding the Prx 

reaction pathway, important ambiguities remain regarding catalysis and hyperoxidation. 

Analysis of substrate-bound experimental structures (Hall et al., 2010) and computational 

studies (Zeida et al., 2014)(Nagy et al., 2011)(Portillo-Ledesma et al., 2014) have not 

yielded clarity about how the initial peroxidase step achieves a ~102–106 M−1 s−1 

enhancement over free thiol (Nagy et al., 2011), with recent studies proposing differences in 

the key interactions occurring between CP, the substrate, and the conserved Arg and Thr side 

chains (Fig. 1B–D)(Hall et al., 2010)(Zeida et al., 2014)(Portillo-Ledesma et al., 2014). Also 

poorly understood is the extent to which CP-SO− formation may promote local unfolding. 

Structural data for this state is limited to a few structures that do not show consistent 

interactions (Fig. S1), and due to the reactive nature of sulfenate/sulfenic acid, there can be 

uncertainty regarding the true redox state being observed (Perkins et al., 2013). The most 

thorough analysis to date comes from a study of four crystal structures (1.7 – 2.6 Å 

resolution) of the CP-SO− →CP-SO2
− transition in Aeropyrum pernix thiol peroxidase 

(ApTpx) that reported an unexpected CP-sulfurane-His intermediate; but most Prxs do not 

contain this His residue, so such an intermediate cannot be present for the majority of Prxs 

(Nakamura et al., 2008).

To work towards resolving discrepancies in proposed peroxidation mechanisms and 

elucidate the relevant structural details important for unfolding and hyperoxidation, we 

sought a model system that could provide high resolution snapshots of Prx catalysis at all 

stages (e.g. CP-S− ; CP-SO− ; CP-SO2
− ; the CP-CR disulfide ; and FF and LU 

conformations). We chose for this purpose Xanthomonas campestris peroxiredoxin Q 

(XcPrxQ). The PrxQ subgroup (formerly called BCP) is found in diverse organisms 

including bacteria, archaea, plants, and fungi, but not animals (Perkins et al., 2015)(Nelson 

et al., 2010), and some members of this subgroup have been shown to be important for 

pathogen defenses (Perkins et al., 2014). XcPrxQ was attractive for several reasons: (1) it 

possesses active site features common to the majority of Prxs; (2) as a monomeric Prx, it is 

more amenable to NMR and computational analyses; (3) it has yielded high resolution 

structures of an FF form (a CP/CR→Ser double mutant at 1.5 Å, PDB entry 3gkm), and an 

LU disulfide form (1.8 Å, PDB entry 3gkk) (Liao et al., 2009); and (4) the FF crystal form 

had an accessible active site, potentially enabling in-crystal studies of ligand binding and 

catalysis. XcPrxQ has its CR residue in helix α3, and undergoes a FF→LU conformation 

change involving the flipping of the CP side chain and an unraveling of α3 (Liao et al., 

2009) (see Figure 3A).

Using this system, we have recently published the NMR backbone assignments for the 

reduced and oxidized states (Buchko et al., 2015) and here we report crystallographic studies 

that include analysis of wild-type crystals that are catalytically active and diffract better than 

anticipated. We have been able to capture at atomic resolution a full series of novel wild-

type XcPrxQ structures that encompass the complete CP-S− → CP-SO− → CP-SO2
− 

transition and provide novel insights into Prx catalysis. The in-crystal behavior also 

demonstrates the extent to which even a robust bacterial Prx can be made highly sensitive to 

hyperoxidative inactivation.
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RESULTS AND DISCUSSION

Recombinant wild type XcPrxQ as well as its CP → Ser (C48S) and CR → Ser (C84S) 

mutants were prepared in good yields and behaved well in analyses (see Experimental 

Procedures). In addition to basic functional characterization of the wild type enzyme we 

report 15 crystal structures refined at resolutions of 1.0 – 1.35 Å (Table 1, Table S1) that 

include a series of 12 novel structures of the catalytically active crystals of the FF wild type 

enzyme at various stages along the catalytic cycle, and one novel structure each of the C48S 

and C84S mutants, and the wild type enzyme disulfide form solved at ~0.5 Å higher than in 

a previous study (Liao et al., 2009).

Basic functional characterization of XcPrxQ

In a standard Prx assay system, recombinant XcPrxQ reduced hydrogen peroxide and 

organic peroxides with kcat/Km values of ~3 × 104 M−1 s−1 (Fig. 2A–B, Table S2). This level 

of activity is typical for PrxQ representatives, which range from 0.8 × 104 to 4 × 104 M−1 

s−1 (Reeves et al., 2011)(Rouhier et al., 2004)(Horta et al., 2010). The recombinant XcPrxQ 

was also relatively resistant to hyperoxidation in solution as is typical for bacterial Prxs (Fig. 

2C–F) (Nelson et al., 2013). Quantifying the sensitivity using the Chyp1% metric, which 

indicates the peroxide concentration at which 1% of the enzyme molecules will be 

oxidatively inactivated per turnover (Nelson et al., 2013), XcPrxQ has a value of 1.4 mM, 

and so is roughly 20-times more robust than human Prx I and 7 times less robust than S. 
typhimurium AhpC (Fig. 2F, Table S2).

High Precision Views of the FF and LU Active Sites

By pretreating the recombinant enzyme with dithiothreitol (DTT) we were able to grow FF 

crystals of the authentic reduced wild type form (Fig. 3A). These crystals diffracted to ~1.0 

Å resolution, the best resolution so far for any Prx (Fig. S1). We were also able to replicate 

the crystals of the LU disulfide form (Fig. 3A) and extend their resolution to ~1.3 Å. For 

these structures, the high-quality electron density (Fig. 3B–C) clearly defines the active site 

geometry and allows us to precisely define, in the context of this model system, the active 

site interactions present in the substrate-ready FF active site (Fig. 1A–B) as well as those 

present in the disulfide form. In the unreacted protein, CP (Cys48) interacts closely with the 

Arg123 side chain, the Lys42 backbone NH, and two water molecules that roughly mimic 

the oxygens of a peroxide substrate (Fig. 1A & 3B). The structure of C48S (i.e. CP→Ser) 

looks nearly the same but has a bound phosphate that displaces the waters to similarly mimic 

substrate binding (see Fig. 5C). Like other Prx crystal structures (Hall et al., 2010), the wild 

type structure has the Thr45 side chain positioned to donate a hydrogen bond to the Lys42 

carbonyl oxygen and not to the Cys48-Sγ (O···O distance of 2.9 Å, Thr-CB-Oγ···O-Lys42 

angle = 114°) (Fig. 1A & 3B). This consistent high precision positioning of Thr45 matches 

that seen in previous Prx structures (Hall et al., 2010), but contrasts with computational 

studies that have modeled the conserved Thr as donating a hydrogen bond to the Cys thiolate 

and/or substrate oxygen (Zeida et al., 2014)(Portillo-Ledesma et al., 2014) (Fig. 1B–D). We 

further observe that rather than bonding directly to the thiolate or ligand, the distal Arg NH 

is oriented at an intermediary position where it could stabilize the transition of the peroxide 

oxygen to the Cys Sγ (Fig. 1B–C, Fig. 3B).
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Structures along the Reaction Path

Since the crystalline wild type protein, unlike the CP→Ser mutant, is theoretically capable 

of catalysis if permitted by the crystal environment, we soaked the crystals with hydrogen 

peroxide, cumene hydroperoxide, and t-butyl hydroperoxide and found no loss in diffraction 

quality and conversion of CP to the CP-SO2
− form (Fig. 4A,D and Fig. S2). After conducting 

initial experiments at pH 7.0, we performed additional substrate soaks varying peroxide 

concentrations and soak time, and also adjusted the pH to 4.5 speculating that a higher 

portion of protonated CP (CP-SH) could slow the reaction and allow us to better capture 

intermediates along the reaction pathway. This was successful and from a large set of 

structures solved, we selected a series of nine ~1 Å resolution structures – named FF0 

through FF8 – that provide representative details of the transition of this Prx from CP-S− 

through CP-SO− to CP-SO2
− (Fig. 4; Tables 1 and S1); a tenth structure, FF9, provides a 

fully-occupied CP-SO2
− reference structure at pH=7. The FF0, FF3, FF5 and FF8 structures 

(Table 1) provide the best views of the CP-S− (occupancy ~1), CP-SO− (occupancy ~0.5), 

‘inverted’ CP-SO− (occupancy ~0.1), and CP-SO2
− (occupancy ~1) forms. The atomic 

resolution of these structures, with coordinate uncertainties of <0.05 Å, allow for a powerful 

dissection of the details of catalysis, including the reliable recognition of low occupancy 

intermediates and alternative conformations of active site residues.

Peroxidation (FF1 through FF3)—A known value of ultra-high resolution 

crystallography is its ability to provide definitive evidence for unexpected structures. Here, 

we were surprised that the clearly defined putative SO− intermediate is stabilized in the 

crystal with a Cβ-Sγ-Oδ bond angle of 153° (compared to the expected ~110 degrees (Engh 

and Huber, 1991)) and a short 1.38 Å Sγ-Oδ bond length (Fig. 5A,B). To our knowledge, 

such a bond angle has not been previously observed for a Cys-sulfenate. This is a reliable 

crystallographic result as we observed it in seven independent crystal structures: five H2O2 

soaks at pH 4.5, one H2O2 soak at pH 7.0, and one t-butyl hydroperoxide soak at pH 7.0. 

The only standard hydrogen bond visible to the SO− oxygen is from Arg123, but the moiety 

as a whole is fully surrounded by a tightly packed and well-ordered active site with low B-

factors (Figs. 5A and 3A) that changes little between oxidation states. The presence of the 

sulfenate Oδ causes a conformation change of Pro41, which flexes from an exo to an endo 

rotamer to avoid a steric clash (Fig. 5B). Importantly, the change in Pro41 is also at half 

occupancy matching that of the SO− oxygen. Interestingly, with this change the Pro41-CδH 

atom is positioned to make a C-H hydrogen bond (Derewenda et al., 1995) to the SO− 

oxygen (Fig. 5A). In a fortuitous related result, the structure of the C48S mutant contains a 

fully bound water in roughly the same position as the SO− oxygen, and it similarly induces 

the Pro41 conformation change (Fig. 5C). This C48S structure provides evidence that 

despite the lack of multiple strong conventional hydrogen bonds, this is a 

thermodynamically favorable position for oxygen binding.

To better understand how this intermediate could adopt such an unexpected bond angle and 

length, we performed gas phase quantum mechanical (QM) computations of a variety of 

model methyl SOH and SO− species (Figs. 5D, S4 and S5). These species incurred severe 

energetic penalties to adopt the observed geometry (~40–50 kcal/mol). Interestingly, a 

doubly protonated methyl SH2O− sulfenate species only exhibited ~9 kcal/mol of energetic 
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penalty for adopting the 153° angle (Fig. 5D). As we mentioned above, an Arg123-NH and a 

backbone amide (Lys42) provide universally conserved hydrogen bond interactions to the Sγ 
atom (Figs. 1A and 5A), and the geometry of these hydrogen bonding interactions are such 

that they may cause electronic effects that are similar to those caused by the double 

protonation. So while further studies are certainly needed to fully understand the nature of 

the structure seen, we hypothesize that the electrostatic (including hydrogen bonding) 

environment of the active site may help make this structure energetically accessible.

Hyperoxidation (FF4 through FF8)—Fortuitously, our model system allowed us to not 

only capture each chemical state of the catalytic cycle, but also aspects of the transition from 

CP-SO− to the hyperoxidized CP-SO2
− state (Fig. 4). In particular, structures FF4 through 

FF7 give evidence of a predicted (Hall et al., 2010) intermediate along this reaction pathway 

in which the SO− rotates inward toward Arg123 to adopt what we call an ‘inverted’ position, 

and vacates the substrate binding site to permit reaction with a second peroxide. To 

accommodate the inverted sulfenate oxygen the side chain of Arg123 flips out of the active 

site and away from CP (Fig 4C). Upon reaction with the second peroxide, Arg123 

repositions to a third conformation to coordinate with the oxygens of the newly formed CP-

SO2
− (Fig. 4D). Interestingly, we note for this bacterial Prx that both the inverted CP-SO− 

and CP-SO2
− reaction states along the hyperoxidation pathway perturb the Arg from its 

normal catalytic position.

Since XcPrxQ in solution is rather robust against hyperoxidation (Fig. 2F, Table S3), it was 

surprising that the protein in the crystal was so readily hyperoxidized and that the CP-SO− 

only accumulated to a maximal level of ~50%. In fact, for crystalline XcPrxQ the protein 

becomes fully hyperoxidized (with no disulfide formation) in a single turnover whereas only 

~7 % would be expected to become hyperoxidized in solution at the same peroxide 

concentration (Fig. 2F). This can be easily understood in that crystal contacts block the 

protein from ever unfolding, effectively dropping the rate of disulfide bond formation to zero 

in the crystal compared with the solution rate of ~27 s−1 (Table S2). In fact, crystal contact 

interactions occur at all four regions involved in local unfolding (Fig. 6A). While we cannot 

dissect how much each crystal contact contributes, we note that at one contact, Arg103 of a 

symmetry mate directly blocks disulfide formation by preventing rearrangement of the CR-

containing α3 helix (Fig. 6B).

Modulating the switch between local unfolding and hyperoxidation pathways

Susceptibility of Prxs to hyperoxidation and inactivation is of broad biological signicance, as 

to survive pathogens must avoid having their Prxs inactivated by host-secreted reactive 

oxygen species, and inactivation is required as part of eukaryotic signaling pathways 

(Perkins et al., 2014). The structures reported here provide insight into the structural features 

involved in determining whether the protein in the CP-SO− state will undergo local 

unfolding or become hyperoxidized. For bacterial XcPrxQ, several lines of evidence indicate 

that sulfenate formation is destabilizing to the active site and promotes local unfolding. 

Initial formation of the sulfenate in XcPrxQ resulted in a high energy CP-SO− structure. As 

to why this sulfenate deviates so significantly from its ground state geometry, the main thing 

we notice is that the FF active site changes minimally between the thiolate (S−) and 
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sulfenate (SO−) forms (Fig. 5C), and that within an unperturbed FF active site, the CP-SO− 

sulfenate oxygen appears to be sterically and electrostatically hindered by the Thr45 side 

chain from adopting a relaxed position (Fig. 5A). We expect that in solution the unfavorable 

interactions would be releaved by local unfolding of the active site and facilitate formation 

of the CP-CR disulfide, and we only observe this high energy conformation in the crystalline 

enzyme because of the stabilization of the FF active site conferred by the crystal contacts. 

Stated another way, for sulfenate formation there are two possibilities: the CP-SO− adopts a 

relaxed geometry while perturbing the FF active site (i.e. promoting local unfolding) or the 

FF active site remains intact and the CP-SO− adopts a high energy conformation compatible 

with its environment.

Interestingly, it has been observed that adopting a ground state sulfenate geometry perturbs 

the active site for Prxs from two other subfamilies. For human Prx6 (PDB entry 1prx)(Cao et 

al., 2011) the conserved Arg is swung away to make room for the modification, and for 

Mycobacterium tuberculosis AhpE (PDB entry 1xwv), a 1-Cys Prx, changes occur for both 

Arg and Thr positions (Li et al., 2005). Lastly, the tradeoff between sulfenate conformation 

and active site stability may explain the origin of the unusual hypervalent CP-sulfurane-His 

intermediate formed in peroxide soaks of crystals of the A. pernix thiol peroxidase 

(Nakamura et al., 2008); perhaps the intermediate is a high energy structure that forms in the 

crystal only because crystal contacts hinder the local unfolding that would normally be 

promoted by CP-SO− formation.

A second structural determinant revealed in the XcPrxQ structures is how the transient 

inverted CP-SO− affects the active site of a robust bacterial Prx. The rotation of the sulfenate 

oxygen to point back into the tightly packed active site causes the Arg to flip outward. 

Similar to the unfavorable geometry observed following initial peroxidation, these 

rearrangements would appear to promote local unfolding for the protein, and could also 

reduce the rate of hyperoxidation by removing the Arg’s contributions to substrate binding 

and activation. Interestingly, we do not see the Arg to shift in response to an inverted oxygen 

position in sulfinate structures from sensitive Prx enzymes, such as human PrxII (PDB entry 

1qmv)(Kitano et al., 2005), implying that sensitive Prxs could in part favor hyperoxidation 

over local unfolding by having evolved to better accommodate the inverted oxygen position 

in an FF active site.

Overall, the hyperoxidation pathway observed in the XcPrxQ structures reveal there are at 

least three ways the sensitivity of a Prx isoform can be tuned. First, hyperoxidation can be 

hindered if CP-sulfenate formation directly destabilizes the FF active site through 

unfavorable steric and electrostatic interactions, favoring local unfolding and promoting 

disulfide formation. Second, hyperoxidation can independently be further disfavored if the 

FF active site is destabilized when the sulfenate oxygen rotates to the inverted position and 

makes room for the second peroxide substrate to bind. Third, an enhancement of 

hyperoxidation can be accomplished through any set of interactions that disfavor local 

unfolding. In naturally sensitive Prx1 subfamily enzymes, a C-terminal extension buttresses 

and stabilizes the FF active site to inhibit unfolding and disulfide formation (Wood et al., 

2003)(Perkins et al., 2014), and in the XcPrxQ crystals the functional equivalent of these 

interactions are the crystal contacts. An intriguing possibility is that this functionality could 
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be exploited to design conformation-trapping inhibitors to selectively target pathogen Prxs 

(Perkins et al., 2014) (Perkins et al., 2013). The advantage conferred by this strategy is that 

differences in FF↔LU conformational changes between human and pathogen isoforms 

could be leveraged to design inhibitors that bind regions other than the conserved active site, 

avoiding the potential for toxicity from disrupting human Prx function.

CONCLUSION

In summary, the ultra-high resolution structures reported here reveal in the context of 

bacterial XcPrxQ an unprecedented level of detail about active site interactions covering the 

full cycle of Prx catalysis (Fig. 6C). These structures directly add to our knowledge of the 

Prx mechanism, and will serve as ideal starting models for future computational studies of 

both the initial peroxidation reaction and hyperoxidative inactivation. An unusual Cys-

sulfenate geometry is observed (<Cβ-Sγ-Oδ = 153º) that quantum mechanical computations 

reveal incurs a severe energetic penalty that may be made more energetically accessible in 

the presence of strong hydrogen-bonds to the Sγ. From these results, we hypothesize that 

formation of the high energy sulfenate potently induces the active site to locally unfold. 

Additionally, although several computational studies by others have modeled the conserved 

Thr as donating a hydrogen bond to the Cys thiolate and/or substrate oxygen (Zeida et al., 

2014)(Portillo-Ledesma et al., 2014), consistent with previous structural studies of other 

Prxs (Hall et al., 2010) we find no evidence for such an interaction in the atomic resolution 

structures of XcPrxQ. Perhaps some of these discrepencies may be due to the exclusion of 

the universally conserved Pro and surrounding residues in earlier computational studies. 

Indeed, as with all model systems, the beneficial ease and simplicity of analysis conferred by 

aspects of XcPrxQ functionality come at the cost of limitations that some Prxs, a family that 

includes members separated by billions of years of evolution, may behave differently. Our 

structures here most directly represent the behavior of a robust bacterial Prx and further 

work will be required to explore how similar our observations are across the very diverse Prx 

family. However, we note that the XcPrxQ model system has the key Pro, Thr, Cys, and Arg 

residues conserved across all Prxs, and so we expect should be representative of the 

peroxidatic step, even though isoforms vary in the manner they locally unfold and in their 

susceptibility to hyperoxidation.

EXPERIMENTAL PROCEDURES

Materials & Methods

Cloning, Expression, and Purification—The gene for XcPrxQ, codon-optimized for 

expression in E. coli and synthesized by GenScript (Piscataway, NJ), was cloned between 

the NcoI and HindIII sites of pTHCm(Nelson et al., 2008) to express a non-His-tagged 

protein. Mutations were created using the QuikChange II method (Agilent). Expression was 

carried out in strain B834, using ZYM-5052 auto-induction medium at 37 °C (Studier, 

2005). Purifications were done at 4 °C. Cells were disrupted using an Avestin C5 

homogenizer, nucleic acids removed using streptomycin sulfate, and after overnight dialysis 

against 10 mM Tris-Cl, pH 8.0, 0.5 mM EDTA and centrifugation, the supernatant was 

loaded onto a 75 mL Q-Sepharose HP (GE Healthcare) column. XcPrxQ was eluted using a 
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0→1 M NaCl gradient, with XcPrxQ-containing fractions precipitated at 75 % saturating 

ammonium sulfate. The protein pellet was dissolved in a minimal volume of 25 mM 

potassium phosphate, pH 7.0, 1 mM EDTA and 0.1 M NaCl, and loaded onto a 250 mL 

Superose 12PG (GE Healthcare) column equilibrated with the same buffer. For assays, pure 

protein was buffer-exchanged into 20 mM Tris-Cl, pH 8.0, 1 mM EDTA, and concentrated 

to 10 mg ml−1 by ultrafiltration, and frozen at −80 °C in aliquots. E. coli thioredoxin 1 

(TrxA) and thioredoxin reductase (TrxR) were expressed and purified as previously 

described (Reeves et al., 2011).

Crystallography

Crystallization: After exchanging the wild type protein into 20 mM Tris pH 7.0, 20 mM 

sodium chloride, 1 mM EDTA, protein at 10 mg/ml was initially crystallized using 

conditions from Liao et al. (Liao et al., 2009). Crystal seeding greatly increased crystal size 

and growth rate. For wild type XcPrxQ in the locally unfolded disulfide form (LUss) optimal 

growth at 300 K occurred within three days in 4:1 protein:reservoir drops with a reservoir of 

1.0 M ammonium sulfate, 0.2 M sodium chloride, 0.1 M sodium cacodylate, pH 6.8. From 

stacks of plate-like crystals, single plates were extracted into a 10 μL drop of AML 

containing a cryoprotectant of 4.5 M sodium formate, equilibrated for three minutes, then 

scooped and plunged into liquid nitrogen. Attempts at reducing the disulfide by chemical 

reductants were unsuccessful.

For initially crystallizing wild type XcPrxQ in the fully folded form (FF), the protein was 

pre-treated for 10 minutes with 10 mM DTT, and 10 mM fresh DTT was added to the 

condition previously reported to crystallize the C48S/C84S double mutant (Liao et al., 

2009). After optimization, crystals were grown at 300 K in 6:2 μl protein:reservoir hanging 

drops with 8 mg/ml protein stock and a reservoir of 30% PEG 4000, 0.1 M sodium acetate 

pH 5.5, 10 mM DTT. Individual crystals were transferred to fresh 10 μL drops containing an 

AML of 18% PEG 4000, 0.1 M Tris, pH 7.0, and 4.5 M sodium formate, equilibrated for 

three minutes, scooped and plunged in liquid nitrogen.

For the wild type FF crystals, time courses at pH 7.0 were conducted with 10 mM t-butyl 

hydroperoxide or cumene hydroperoxide, and at pH 4.5 or 7.0 with 10 mM hydrogen 

peroxide, in a 10 μL drop. Substrate soaks were performed at 300 K by adding 1.0 μL of an 

100 mM peroxide stock to a crystal-containing drop of 9 μL of AML with either 0.1 M 

sodium acetate (pH 4.5) or 0.1 M Tris (pH 7.0), and after between 5 s and 10 mins scooping 

and plunging the crystal into liquid nitrogen. A 10 mM substrate concentration was chosen 

as an amount that would not readily oxidize other residues non-specifically (Drozdź et al., 

1988) but was enough to readily oxidize CP. That lower concentrations such a 1 mM did not 

consistently succeed can be explained by recognizing that for average crystals of ~1 × 0.5 × 

0.2 mm3 (containing ca. 1.4 × 1015 XcPrxQ molecules), 1 mM peroxide in a 10 μL drop 

only provides roughly a 4:1 ratio of peroxide to protein. Due to the varying size and shapes 

of crystals, soak duration was only roughly correlated with the redox state observed in the 

structure. For this reason, we collected data on crystals with many different soak times to 

obtain structures for reaction intermediates.

Perkins et al. Page 9

Structure. Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The C48S and C84S single mutants crystallized in similar conditions to the wild type FF, in 

a protein buffer of 25 mM potassium phosphate, pH 7.0, 1 mM EDTA and 0.1 M NaCl. 

Optimal conditions for C48S were 3:1 μL protein:reservoir drops using a 6 mg/ml protein 

stock and a 40% PEG 4000, 0.1 M sodium acetate pH 5.5 reservoir. C84S crystallized in 4:1 

μL protein:reservoir drops with 9.2 mg/ml protein stock and a reservoir of 35% PEG 4000, 

0.1 M sodium acetate pH 5.5, 1 mM DTT. The C84S structure demonstrated no major 

differences other than a shift in the Ser position relative to the wild type Cys (Fig. S3), but 

we have included it here as it is the highest resolution structure for a CR mutant form and 

may be useful for future studies. As for wild type, these crystals were generally equilibrated 

in a 10 μL drop of AML at pH 7.0 prior to freezing. The one exception was a C48S crystal 

harvested directly from its drop (at pH 5.5) that yielded the phosphate-bound structure. 

Crystals of wild type and C84S scooped directly from their drops did not yield phosphate-

bound structures.

Data Collection: Data were collected at the Advanced Light Source at Lawrence Berkeley 

National Labs on beamlines 5.0.1, 5.02, and 5.03 at cryo-temperatures. Data were indexed 

and integrated with iMosflm 7.0.9 (Battye et al., 2011), and found to be in the two expected 

P21 crystal forms for LUss (wild type) and FF crystals (yielding wild type, C48S, and C84S 

structures) (Table 1, Table S1)(Liao et al., 2009). Though both crystal forms coincidently 

have P21 symmetry, they have different unit cells and crystal packing interactions.

Refinement: For the FF structures, the main initial changes from entry 3gkm were the 

addition of ca. 100 water molecules now visible with the improved resolution and an 

alternate chain path for residues 65–67. Additionally, mass spectrometry implied the N-

terminal methionine had been lost and an acetyl group gained, and this modification was 

reasonably clear in the electron density and was modeled. Several solvent sites exhibiting 

strong electron density and close bond distances of ~2.1 Å were modeled as Na+ ions, 

present in the protein buffer, crystallization conditions, and cryoprotectant. Continuous 

density near Cys84 may be a disordered PEG molecule, but was left unmodeled. Strong 

density for a tetragonal ligand was seen in the C48S active site at pH 5.5. This was modeled 

as a phosphate since the protein buffer contained 25 mM phosphate and because anomalous 

maps showed strong peaks for cysteine sulfur atoms but no signal at the ligand peak. In late 

stages of refinement, riding hydrogens were added, reducing Rfree by ~1 %. Subsequently, 

individual anisotropic B-factors were introduced for all non-hydrogen atoms, reducing Rfree 

by a further 2–3 %.

For wild type structures treated with substrate, the occupancies of oxygen adducts were 

estimated from the relative strength of the electron density, with the expectation that B-

factors would be slightly higher for the oxygen positions than the Sγ, the requirement that 

occupancies must add to 100%, the knowledge of the atom positions in the thiolate, 

sulfenate, and sulfinic acid forms based on clear high occupancy structures for each of those, 

and also using information from active site rearrangements that appear to be correlated with 

the redox changes at CP. The final occupancies chosen also minimized residual difference 

peaks. We could not explicitly distinguish between sulfenate and sulfenic acid forms which 

differ by only a hydrogen (for example between alternate conformations of sulfenate and 
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low occupancy sulfinate). We tested if the extended sulfenate angle could be the result of 

radiation damage from data collection, but analysis of only the first 90 diffraction images 

still show the clearly-defined adduct.

Quantum mechanical computations—All quantum mechanical computations were 

performed in the gas phase using M06-2X(Zhao and Truhlar, 2008)/6-31G*(Miertuš et al., 

1981) level of theory as implemented in Gaussian 09.(Frisch et al., 2009) Ten methyl 

sulfenate (SO−) and sulfenic acid (SOH) species of varying oxidation and protonation states 

were computed for a series of geometries with varying C-S-O angles from 95º to 155º in 5º 

increments (Figs. 5D, S4, & S5). For the methyl SOH species, the torsional angle around the 

S-O bond was rotated 360º in 10º increments for each C-S-O angle increment to capture the 

minimum energy pathway We benchmarked M06-2X/6-31G* results against energies from 

fifteen quantum mechanical methods including the high accuracy DLPNO-CCSD(T) (Fig. 

S5). The employed method yields consistent results at a lesser computational expense.

Measurement of Kinetic Properties—XcPrxQ activity was measured by following the 

decrease in fluorescence of E. coli thioredoxin, TrxA, as the reductant of XcPrxQ in reaction 

mixtures with H2O2 or cumene hydroperoxide, as described by Parsonage et al (2010) 

(Parsonage et al., 2010). Values for Vmax and Km for both peroxide and TrxA substrates 

were calculated directly from global fits of all of the data for each peroxide substrate by 

using the multiple-function nonlinear regression capability of SigmaPlot (SYSTAT software)

(Parsonage et al., 2010). The kinetic data using were fit to a model of saturable interactions 

(defined KM) for each substrate, but the KM for interaction of EcTrxA with XcPrxQ is not 

well determined given the concentrations used (Table S2). Steady state kinetic parameters 

from these global fits are reported in Table S2.

Hyperoxidation of XcPrxQ (1 μM) was measured in the presence of 1 μM EcTrxA, 0.1 μM 

EcTrxR, 150 μM NADPH, and either CHP or H2O2 (0.1, 0.2, 0.5, 1, 2, and 5 mM) in 25 mM 

potassium phosphate, pH 7.0, 1 mM EDTA, 100 mM ammonium sulfate at 25 °C with a 

Varian Cary 50 UV-Vis spectrophotometer by monitoring absorbance at 340 nm. As the Prx 

protein becomes hyperoxidized over the course of the reaction (with a fraction inactivated 

during each turnover), the absorbance change over time increasingly deviates from linear 

kinetics. The kinetic trace was fit to an exponential decay model to describe inactivation 

sensitivity using the previously introduced Chyp1% metric, which indicates the peroxide 

concentration at which 1% of the enzyme molecules will be oxidatively inactivated per 

turnover(Nelson et al., 2013). Steady state kinetic parameters from these global fits are 

reported in Table S2. Inactivation of XcPrxQ over 15 min during turnover with peroxide 

concentrations in excess of 0.1 mM was detectable and yielded a Chyp1% value of 1.43 mM 

for H2O2 (Table S3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

Prx peroxiredoxin

TrxA thioredoxin 1

Srx sulfiredoxin

PDB protein databank

CP peroxidatic cysteine

CR resolving cysteine

FF fully folded

LU locally unfolded

XcPrxQ Xanthomonas campestris peroxiredoxin Q

ML mother liquor

AML artificial mother liquor

ρrms root-mean-square electron density
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Figure 1. 
Summary of proposed mechanisms of Prx peroxidation. A. Overlay of active sites of DTT-

bound human PrxV (light blue) and peroxide-bound ApTpx (green) with water-bound wild-

type XcPrxQ (white), with ligands colored cyan (DTT), lime (H2O2), and dark gray 

(waters), respectively. Dashed lines indicate active site interactions for XcPrxQ, including a 

contact between the CδH of Tyr40 with the thiolate that would also contribute weak 

electrostatic stabilization to the thiolate. This appears to be a conserved interaction in FF Prx 

structures and involves either a Tyr or His. B–D. Previous studies do not provide a consensus 

on how Prx catalysis proceeds, as evident by the many different hydrogen bond interactions 

and residue shifts proposed. Hydrogen bonds seen in the XcPrxQ structures in this study 

(dark gray arrows pointing from donor to acceptor) for the substrate-bound state, the inferred 

transition state (based on relative rigidity of active site residues), and the product states, are 

compared with those proposed by previous studies: brown arrows for Hall et al. (Hall et al., 

2010), blue arrows for Portillo et al. (Portillo-Ledesma et al., 2014), green arrows for Zeida 

et al. (Zeida et al., 2014), and pink arrows for Nagy et al. (Nagy et al., 2011). Shifts in 

residue positions are noted by thick arrows (Thr shift in blue panels C/D and Pro shift in 

dark gray in panel D). Forming and breaking covalent bonds are depicted as double dashed 

lines. Atoms not incorporated into previous QM simulations, presumably because they were 
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not thought to play key roles in the chemistry of catalysis, are highlighted in yellow in panel 

B. The circled hydrogen and dashed arrow in panel D notes a predicted proton transfer by 

Portillo et al. (Portillo-Ledesma et al., 2014). See also Fig. S1 for an analysis of available 

Prx crystal structures.

Perkins et al. Page 16

Structure. Author manuscript; available in PMC 2017 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
In solution kinetics of XcPrxQ. A. Bisubstrate kinetics of XcPrxQ (0.2 μM) with hydrogen 

peroxide and EcTrxA at 5 μM (black), 10 μM (red), 20 μM (green) and 40 μM (blue). The 

curves are the results of the global fitting of all four data sets. B. Same as A, but for cumene 

peroxide and EcTrxA at 5 μM (black), 10 μM (red), 20 μM (green) and 50 μM (blue). C–D. 
Time courses showing XcPrxQ hyperoxidative activity loss during reactions with varying 

concentrations (as indicated) of hydrogen peroxide and cumene hydroperoxide, respectively. 

E. The fraction of protein inactivated per turnover (Wood et al., 2003) (finact) is plotted as a 

function of peroxide concentration for XcPrxQ hyperoxidation by hydrogen peroxide 

(closed circles) and cumene peroxide (open circles). F. Sensitivity of XcPrxQ to 

hyperoxidation by hydrogen peroxide (closed circles) is compared to literature data (Nelson 

et al., 2013) for human PrxI (open squares) and Salmonella typhimurium AhpC (open 

circles). See also Table S2 and Table S3.
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Figure 3. 
Fully Folded and Locally Unfolded Conformations of XcPrxQ. A. The active FF 

conformation (left) and the LU disulfide conformation are shown (right) as cartoons colored 

by local mobility as indicated by B-factor, and with sticks for CP, CR and the conserved 

active site Pro, Thr and Arg. The largest conformation changes involve the helix 3 region 

that is highlighted in yellow. This structural rearrangement moves CP away from the active 

site pocket, disrupting all of its hydrogen bonding interactions, as described by Liao et al. 

(Liao et al., 2009). B. The active site of the XcPrxQ FF structure with 2FO-FC density (thin 

blue mesh 1.5 ρrms pink mesh 3.5 ρrms). C. Same as B but for the LU CP-CR disulfide 

structure.
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Figure 4. 
Atomic resolution snapshots of XcPrxQ catalysis. A–D. Structures FF0, FF3, FF5 and FF8, 

respectively, are shown with their 2FO-FC electron density (blue contoured at 1.0 ρrms) and 

difference electron density between the structure of interest and FF0 (green and red 

contoured at ±3.0 ρrms). In panels B–D, key shifts in active site residues are indicated by 

brown arrows with the conserved Pro flipping between two positions (noted as P1 and P2) 

and the Arg transitioning among three positions (R1, R2, R3). E. CP is shown with 

occupancies of its oxygen adducts indicated by color (from light to dark red). 2FO-FC 

density is shown (blue contoured at 1.0 ρrms and for the sulfenate oxygen in FF1 olive 

contoured at 0.3 ρrms). Density near the top of the image in structures FF4–FF7 is from a 

partially-occupied Arg conformation that occurs as the protein converts from the sulfenate to 

sulfinate state. F. A single image showing the 2FO-FC electron density peaks for CP oxygens 

from all structures as single planes (solid colors at 1.0 ρrms, red outline 0.3 ρrms). The 

overlay shows the progression of the oxidation of CP: from 10% SO− (red outline; FF1), 

45% SO− (orange; FF2), 50% SO− (yellow; FF3), 10% SO2
− (light green; FF4), 20% SO2

− 

(cyan; FF5), 20% SO2
− (blue; FF6), 35% SO2

− (dark blue; FF7), 100% SO2
−, (purple; FF8). 

All structural images were prepared using Pymol. See also Figure S3 and Figure S4.
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Figure 5. 
Unusual Cys-sulfenate geometry. A. Packing interactions of the Cys-sulfenate are shown for 

structure FF3, highlighting interactions with the Cys-Sγ (gray dashes and distances in Å), 

with the sulfenate oxygen (black dashes and distances), and a possibly unfavorable 

interaction between Thr45-OH and the CP-SO− (red dash and distance). 2FO-FC electron 

density evidence for the sulfenate position is also shown (blue contoured at 1.0 ρrms). B. 
Interaction of the CP-thiolate with Pro41 (upper image) compared with that of the CP-

sulfenate (at 0.5 occupancy and labeled with its unusual bond angle and distance reported; 

lower image). A brown arrow shows the shift of Pro41-Cγ accommodating the sulfenate 

formation by relieving a steric clash (red double-headed arrow) to increase the Pro41-Cγ to 

sulfenate oxygen distance to 3.6 Å. C. Structure of C48S XcPrxQ including bound water 

and phosphate (pink model) is compared with the XcPrxQ thiolate (FF0) and XcPrxQ 

sulfenate (FF3) forms (similar models both with white carbons; FF0 waters are gray spheres) 

and peroxide bound ApTpx (PDB code 3a2v, green carbons). Shift of the Pro is noted with a 

brown arrow. Notable observations are the C48S water and phosphate being near the FF3 

Cys-sulfenate oxygen and the ApTpx peroxide, respectively. D. Gas phase quantum 

mechanical calculations (Zhao and Truhlar, 2008) of methyl SO−, SH2O+, and SH2O− 

species showing their energies as a function of their C-S-O bond angle (upper panel) as well 

as the optimized geometries and energies for the structures constrained to have a C-S-O 
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angle of 155º. 3D figures were generated using CYLview (Legault, 2009). See Figures S4 

and S5 for supporting details.
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Figure 6. 
Non-covalent stabilization of the FF conformation can promote hyperoxidation. A. Protein 

surface area buried by crystal contacts (gray) has substantial overlap with magnitudes of 

conformation change (red) on a per residue basis along the chain. The CP (Cys48) and CR 

(Cys84) positions are denoted (*). Residues 79–81, not well defined in the LU structure, 

were assigned a shift of 10 Å based on their neighbors. B. One crystal contact region in the 

FF XcPrxQ crystals (white for main molecule and gray for symmetry mate) overlaid with 

LU structure (black) shows FF→LU movement (brown arrows) of Phe83 is prevented by a 

steric clash with Arg103 of the symmetry mate (red) because the two side chains would be 

1.3 Å apart. C. A general mechanism for Prx catalysis and hyperoxidation is shown, as has 

been previously proposed (Sevilla et al., 2015)(Perkins et al., 2015)(Perkins et al., 2014), 

that highlights the key physiologically-relevant redox states that have been captured at 

atomic resolution for XcPrxQ. Also emphasized is that inhibiting facile unfolding enhances 

inactivation. This has been observed to occur for sensitive Prx1-subfamily members by 

stabilization by the C-terminal tail (Wood et al., 2003). In the case of XcPrxQ, the FF crystal 

form can be conceptually considered as a large non-covalent FF-conformation-stabilizing 

inhibitor, trapping the enzyme as FF and promoting inactivation.
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