
Chapman University
Chapman University Digital Commons
Biology, Chemistry, and Environmental Sciences
Faculty Articles and Research

Science and Technology Faculty Articles and
Research

2-7-2018

Automating Data Analysis for Two-Dimensional
Gas Chromatography/Time-of-Flight Mass
Spectrometry Non-Targeted Analysis of
Comparative Samples
Ivan A. Titaley
Oregon State University

O. Maduka Ogba
Chapman University, ogba@chapman.edu

Leah Chibwe
Oregon State University

Eunha Hoh
San Diego State University

Paul H.-Y. Cheong
Oregon State University

See next page for additional authors
Follow this and additional works at: https://digitalcommons.chapman.edu/sees_articles

Part of the Environmental Chemistry Commons, Numerical Analysis and Scientific Computing
Commons, Other Chemistry Commons, Other Computer Sciences Commons, Other Life Sciences
Commons, and the Soil Science Commons

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital
Commons. It has been accepted for inclusion in Biology, Chemistry, and Environmental Sciences Faculty Articles and Research by an authorized
administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
Titaley IA, Ogba OM, Chibwe L, Hoh E, Cheong PHY, Simonich SLM. Automating data analysis for two-dimensional gas
chromatography/time-of-flight mass spectrometry nontargeted analysis of comparative samples. J Chromatog A. 2018;1541:57–62.
doi: 10.1016/j.chroma.2018.02.016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chapman University Digital Commons

https://core.ac.uk/display/215789152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/sees_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/sees_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/sees_articles?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/134?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/141?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/113?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/113?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/163?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Automating Data Analysis for Two-Dimensional Gas Chromatography/
Time-of-Flight Mass Spectrometry Non-Targeted Analysis of
Comparative Samples

Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Chromatography
A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural
formatting, and other quality control mechanisms may not be reflected in this document. Changes may have
been made to this work since it was submitted for publication. A definitive version was subsequently
published in Journal of Chromatography A, volume 1541, in 2018. DOI: 10.1016/j.chroma.2018.02.016

The Creative Commons license below applies only to this version of the article.

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

Copyright
Elsevier

Authors
Ivan A. Titaley, O. Maduka Ogba, Leah Chibwe, Eunha Hoh, Paul H.-Y. Cheong, and Staci L. Massey
Simonich

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/sees_articles/216

https://doi.org/10.1016/j.chroma.2018.02.016
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.chapman.edu/sees_articles/216?utm_source=digitalcommons.chapman.edu%2Fsees_articles%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages


Automating Data Analysis for Two-Dimensional Gas 
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Abstract

Non-targeted analysis of environmental samples, using comprehensive two-dimensional gas 

chromatography coupled with time-of-flight mass spectrometry (GC×GC/ToF-MS), poses 

significant data analysis challenges due to the large number of possible analytes. Non-targeted 

data analysis of complex mixtures is prone to human bias and is laborious, particularly for 

comparative environmental samples such as contaminated soil pre- and post-bioremediation. To 

address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data 

reduction filter to automate GC×GC/ToF-MS data analysis from LECO® ChromaTOF® software 

and facilitates selection of analytes of interest based on peak area comparison between 

comparative samples. We used data from polycyclic aromatic hydrocarbon (PAH) contaminated 

soil, pre- and post-bioremediation, to assess the effectiveness of OCTpy in facilitating the 

selection of analytes that have formed or degraded following treatment. Using datasets from the 

soil extracts pre- and post-bioremediation, OCTpy selected, on average, 18% of the initial 

suggested analytes generated by the LECO® ChromaTOF® software Statistical Compare feature. 

Based on this list, 63–100% of the candidate analytes identified by a highly trained individual 

were also selected by OCTpy. This process was accomplished in several minutes per sample, 

whereas manual data analysis took several hours per sample. OCTpy automates the analysis of 

complex mixtures of comparative samples, reduces the potential for human error during heavy 

data handling and decreases data analysis time by at least tenfold.

*Corresponding Authors: paulc@science.oregonstate.edu, staci.simonich@oregonstate.edu phones: +1 (541) 737-6760 (PH-YC), +1 
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1Present address: Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, 
SE-70182 Örebro, Sweden
2Present address: Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada
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1. Introduction

Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass 

spectrometry (GC×GC/ToF-MS) is a versatile tool capable of elucidating organic analytes in 

complex environmental mixtures.[1–3] GC×GC/ToF-MS is also useful in non-targeted 

analysis[4–6] to help narrow down or identify analytes of interest, due to its higher peak 

capacity, sensitivity, and selectivity.[7–11] However, GC×GC/ToF-MS generates a large 

amount of data, which can be a major bottleneck in data analysis. Handling large volumes of 

data is not only time-consuming, particularly in non-targeted analysis, but is also prone to 

inter-laboratory discrepancies due to human error, regardless of the sample matrix.

[3,7,12,13] For these reasons, an automated approach for GC×GC/ToF-MS data analysis is 

desired.

Historically, Microsoft® VBScripts,[1] C++,[2] MathWorks® MATLAB[14], and 

Guineu[15] have been the programming language or computer programs of choice for the 

development of data analysis scripts. Python™ has not been applied for the analysis of 

GC×GC/ToF-MS data despite its widespread use,[16–18] including for GC/MS data 

analysis.[19–21] Furthermore, most of the programming tools available for non-targeted 

analysis focus on environmental monitoring and not comparative samples, such as samples 

with and without treatment or exposure. An automated data analysis tool, which compares 

analyte concentrations before and after treatment or exposure to determine analyte formation 
or degradation, is also not currently available. Therefore, there is a need to automate 

GC×GC/ToF-MS data analysis of comparative samples.

In non-targeted analysis, a workflow to prioritize the identification and confirmation of 

candidate compounds is needed. Studies using GC×GC/ToF-MS analysis to screen for 

halogenated organic compounds in marine environments relied on halogenated isotopic 

clusters, fragmentation patterns indicating loss of halogen, and mass spectral library matches 

to identify, prioritize, and confirm candidate compounds [10,22,23]. The prioritization of 

chemicals can be based on several factors, including whether there is fragmentation data for 

known standards, electron impact (EI) mass spectral databases (such as NIST EI mass 

spectral library), previously published mass spectra data, and retention time match with 

known standards [11,23–25]. For EI, there are well developed strategies to predict 

compounds based on mass fragments, several fragments indicating unique functional groups, 

or chemical structures [26].

The objective of this study was to develop an automated method to streamline data analysis 

for GC×GC/ToF-MS non-targeted analysis of comparative samples by reducing the data 

analysis time. We developed a user-friendly Python™ script (OCTpy) that automates 

GC×GC/ToF-MS data interpretation by refining the list of suggested analytes generated by 

the LECO® ChromaTOF® software. In a previous study, coal tar-contaminated soil samples 

were aerobically remediated in a laboratory-scale bioreactor and measured for toxicity pre- 
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and post-bioremediation [27]. Although concentrations of parent-PAHs, which are 

environmental contaminants with human health implications,[28–30] decreased post-

bioremediation, the soil toxicity increased, as evidenced by increase in genotoxicity from the 

DT40 chicken lymphocyte bioassay and observed morphological malformations from the 

zebrafish (Danio rerio) developmental toxicity testing.[27] We used OCTpy to determine 

analytes formed during bioremediation of soil samples with data generated by GC×GC/ToF-

MS.[27] We benchmarked the OCTpy results with those obtained through human manual 

analysis to establish the reliability of OCTpy results and the effectiveness of OCTpy in 

reducing GC×GC/ToF-MS data analysis time.

2. Material and Methods

2.1 Sample Extraction and Analysis

It was hypothesized that the increase in soil toxicity was due to the formation of oxygenated 

transformation products of 3- and 4-ringed parent PAHs and other unknown analytes during 

bioremediation.[27] To test this hypothesis, extracts of pre- and post-bioremediation soil 

samples were analyzed using GC×GC/ToF-MS. Briefly, soil samples were extracted in 

hexane:acetone (75:25 v/v) using pressurized liquid extraction and fractionated into six 

fractions (A–F) based on polarity.[27] Laboratory blanks (consisting of sodium sulfate) also 

went through the same extraction procedures. To analyze analytes of interest that were not 

GC amenable, such as hydroxy-PAHs, aliquots of soil fractions were derivatized with N-tert-
Butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA).[31] Both underivatized and 

derivatized fractions were analyzed in triplicate. Further details of the analytical procedures 

are available elsewhere.[11,27]

Pre- and post-bioremediation soil fraction extracts, along with blanks, were analyzed using 

an Agilent 7890 GC (Palo Alto, CA) coupled to a LECO® Pegasus® 4D time-of-flight mass 

spectrometer (St. Joseph, MI) with Restek Rtx-5 (35 m × 0.25 mm I.D. × 0.1 μm film 

thickness with 5-m integrated guard column) and Rxi-17 (1 m × 0.1 mm I.D. × 0.1 μm film 

thickness) (Bellefonte, PA) as the first and second dimension columns, respectively.

[11,32,33] The injection volume for each sample was 2 μL, and the inlet temperature was 

held at 300 °C. For the first dimension, the oven was held at 60 °C for 1 min, ramped at 

6 °C/min to 300 °C, held for 3 min, ramped at 20 °C/min to a final temperature of 320 °C, 

and held for 15 min. For the second dimension, the oven was first held at 85 °C for 1 min, 

ramped at 6 °C/min to 320 °C, held for 3 min, ramped at 20 °C/min to 340 °C, and held for 

15 min. The non-moving quad-jet dual-stage modulator temperature was 35 °C higher than 

the temperature in the first-dimension column, with a modulation period of 3.5 s. Transfer 

line and ion source were kept at 285 °C and 250 °C, respectively.

GC×GC/ToF-MS data for the soil bioremediation extracts were analyzed using LECO® 

ChromaTOF® software (St. Joseph, MI)[7,14,34] version 4.50. LECO® ChromaTOF® 

software has peak alignment, baseline correction, and peak deconvolution capability, but the 

program does not automate peak area difference calculations in chromatograms from 

comparative samples, resulting in additional data analysis time. Matches between the second 

dimension peaks and peaks from individual replicates were set at 500 (50%).[35] The 

minimum signal-to-noise (S/N) ratio for peak finding was 50. The LECO® ChromaTOF® 
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software’s add-in feature, Statistical Compare (SC) (St. Joseph, MI), [34,36,37] was used in 

the soil bioremediation study. The LECO® ChromaTOF® software returned a list of 

suggested analytes based on mass spectral similarity matches to the National Institute of 

Standard and Technology (NIST) 2011 library. Based on the SC’s feature that identifies 

statistical differences in groups, we compared peaks assigned to three groups: blank, pre-, 

and post-bioremediation soil extracts. The output files, containing potential analytes of 

interest, were exported as text files (*.txt). Henceforth in this manuscript, “suggested 

analytes” refers to the list of analytes from the LECO® ChromaTOF® software’s SC output 

based on MS NIST 2011 library matches, while “candidate analytes” refers to the list of 

analytes from manual analysis or as an OCTpy output.

3. Theory

3.1 Manual Data Analysis

Figure 1 shows the workflow for manual data analysis. If a peak in the post-bioremediation 

extract increased by 1.5 fold, the analyte was interpreted as a candidate analyte formed 

during bioremediation and could potentially be responsible for the observed increase in 

toxicity post-bioremediation. These peaks were visually inspected, and only those peaks that 

were chromatographically resolved, and without severe tailing, were selected as candidate 

peaks. This manual workflow was repeated for each analyte, in each derivatized and 

underivatized fraction, and took many hours to accomplish.

3.2 Automated Data Analysis

Figure 2 shows the workflow for automated data analysis with OCTpy, which relies on SC 

and acquired data input files from LECO® ChromaTOF® software. The SC input files 

contain data on the average peak area, for every suggested analyte, in every treatment group. 

For the purpose of this script, it is necessary to export the following four properties into a 

text file for every sample: (1) Analyte name (“Name”), (2) Quantifying mass-to-charge 

(m/z) ion (“Mass”), (3) Average quantifying peak area (“Area Average”), and (4) Average 

retention time (“R.T. Average (s)”). Having the area and RT average parameters in the 

datasets are advantageous because different experimental designs can have different numbers 

of replicates. There were three SC input files for every fraction in the soil bioremediation 

study (i.e., blank, pre-, and post-bioremediation files).

OCTpy also requires an acquired sample input file prior to the SC feature analysis from one 

replicate, in one of the treatment groups, in order for the script to run. Serving as a quality 

control step, the acquired file is a reference file that verifies the presence and precision of the 

quantifying m/z ion and second dimension RT for each suggested analyte. The second 

dimension RT is used because there can be variations in the first dimension RT that arises 

from modulation time differences if different chromatogram slice is used as the base. The 

following three properties are pertinent for the script: (1) Molecular weight of the suggested 

analyte (“Exact Mass”), (2) First and second dimension retention times (“R.T. (s)”), and (3) 

Quantifying MS ion (“Quant Masses”). We used a replicate from the post-bioremediation 

sample for the acquired sample input file. Instructions for obtaining the SC input and the 

acquired sample input files for OCTpy are available in Appendix A.
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4. Results and Discussions

OCTpy automates peak area comparisons of suggested analytes between comparative 

samples from the SC feature in LECO® ChromaTOF® software, thereby facilitating analyte 

selection by the analyst and shortening the data analysis times. Depending on the number of 

candidate analytes identified by the SC feature, the script returned results within seconds 

(Intel® Core™2 Quad CPU, 8 GB RAM, Windows® 7, 64-bit), whereas manual data 

analysis required several hours for the same candidate analytes. Although preparing input 

files for OCTpy can take several minutes, analysts would still spend less time analyzing the 

peak area data by using OCTpy, compared to manual analysis. This is because OCTpy filters 

out suggested analytes that do not satisfy the desired criteria, such as those for which peak 

areas decreased following soil bioremediation. Following peak area comparison in a manual 

analysis, the analyst must meet additional criteria for identification by comparing the peak 

shapes of candidate analytes (Figure 1). However, we found that peak shape did not alter the 

results of OCTpy outputs and peak shape is not correlated with the toxicity of an analyte. 

Therefore, peak shape was excluded from the OCTpy script. The choice to either further 

review the peak shapes of candidate analytes from OCTpy with LECO® ChromaTOF®, or to 

use the output from OCTpy as the final result, is left to the discretion of the analyst. Once 

peak areas are compared, OCTpy parses through the acquired sample input file and checks 

each candidate analyte for the presence of the quantifying m/z ion or second dimension RT 

to the nearest tenth of a second (with an adjusted range of ±0.1 s to accommodate RT shift). 

For instance, if a candidate analyte has RTs of 100.789 s and 2.34 s, and the reference 

dataset contains RTs of 100.789 s and 2.429 s, then the candidate analyte will be included in 

the output. We successfully tested OCTpy on computers with Microsoft Windows®, Mac®, 

and Linux® operating systems. The OCTpy source code and instructions for running OCTpy 
from the Windows® command prompt are available in Supplementary materials section.

OCTpy outputs are available in the SI. We contrasted the candidate analytes identified using 

OCTpy to those identified by manual analysis, which included peak area comparison and 

individual peak review. Only analytes with chemical names (i.e., minimum similarity match 

with 2011 NIST library before name assigned > 700 (70%)) were selected for further 

analysis. There were a total of eight paired datasets, each consisting of a blank, pre-, and 

post-bioremediation samples from four soil extract fractions. Only four soil extract fractions 

were analyzed using GC×GC/ToF-MS, because increases in toxicity post-bioremediation 

were only measured in these four fractions.[11,27] Four of the eight datasets were from 

derivatized extracts, while four were from underivatized extracts. Among the eight paired 

datasets, the number of suggested analytes from the SC feature ranged from 170 (Fraction 

D) to 1,650 (Fraction C Derivatized) (Table 1). From the initial SC lists, OCTpy selected 20 

(Fraction D) to 307 (Fraction D Derivatized) analytes having increased peak areas following 

bioremediation. As mentioned, once a list of candidate analytes is generated by OCTpy, the 

analyst is left with the option to either further examine the peak shape of each suggested 

analyte with the LECO® ChromaTOF® software or to proceed with the existing data and to 

look for specific groups of analytes, such as PAH transformation products.

In contrast, manual analysis identified 6 (Fraction F) to 27 (Fraction D Derivatized) 

candidate analytes with increased peak areas following bioremediation. The manual lists of 
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candidate analytes were shorter than the OCTpy list of candidate analytes because they 

underwent manual peak shape review with the LECO® ChromaTOF® software and OCTpy 
did not. For all eight data sets, OCTpy results contained 63–100% of the final list of 

candidate analytes (n = 87) generated by manual data analysis (Table 1). OCTpy generated 

more candidate analytes than manual data analysis of the initial list of suggested analytes 

from the SC feature, because peak shape was not included in the analyte selection criteria by 

OCTpy. OCTpy was able to select, on average, 18% of candidate analytes from the initial 

SC list output in a matter of several minutes. Even if an OCTpy user chooses to examine the 

peak shapes of the candidate analytes, the number of analytes to be examined is significantly 

reduced by executing OCTpy first, which results in decreased data analysis time. For 

example, the number of suggested analytes, from the SC feature analysis, in fraction D-

Derivatized were reduced four fold once OCTpy was executed, which allowed the analyst to 

start the analysis with much fewer suggested analytes.

Twenty nine candidate analytes from manual analysis of the eight soil bioremediation data 

sets were not found in the OCTpy outputs. Several factors contributed to this. First, no peak 

areas (no value) in the chromatograms were replaced with the value “0” manually, whereas 

in the LECO® ChromaTOF® software SC input files, used in the OCTpy script, the fields 

were left blank. For example, for a dataset in which a given treatment group has three peaks 

with area values and one peak without, the analyst would manually calculate the average 

with n = 4, whereas LECO® ChromaTOF® and, consequently, OCTpy, would calculate the 

average with n = 3. This difference in how the average peak area was calculated explained 

why the seven candidate analytes that were selected manually in Fraction C were omitted by 

OCTpy. Given that different analysts treat missing values differently, it is imperative to 

create a standard method to analyze data that contain peak areas with no values. We 

recommend to using empty fields instead of inserting “0”. Since LECO® ChromaTOF® 

software calculates average peak areas without replacing any with zero, we propose OCTpy 
as the method of choice when analyzing LECO® ChromaTOF® software data, because it 

standardizes the calculation of average peak area.

Following close examination of the raw data, OCTpy excluded the remaining twenty two 

candidate analytes identified by the manual data analysis for one of the two following 

reasons (both of which were largely attributed to human error during data analysis): 1) the 

peak areas in the blank fractions were higher than those in the pre-bioremediation fractions, 

or 2) the peak areas in the pre-bioremediation fractions were higher than the post-

bioremediation fractions (Appendix B). Detection of these discrepancies demonstrated 

OCTpy’s ability to account for human errors prior to qualitative identification of candidate 

analyte structures. However, future studies that use OCTpy should consider an assessment 

where manual and automated methods are compared, using a number of authentic standards 

with two different known concentrations, to reduce the potential for discrepancy between the 

two methods.

OCTpy’s capacity to reduce the number of candidate analytes within several minutes, along 

with its ability to reduce the potential for human error, represents a significant improvement 

over manual analysis that can take several hours. OCTpy gives the user the flexibility to not 

only identify analytes with increased peak areas following treatment in comparative 
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samples, but also those with decreased peak areas. In addition, the user can also choose to 

either analyze differences between two groups, such as pre- and post-bioremediation, or 

three groups, such as blank, pre-, and post-bioremediation.

Once candidate compounds are identified, the analyst must confirm the structure of 

compounds using pure standards [24,38,39]. Using standards, Chibwe et al. identified N-(5-

amino-4-cyano-1-pyrazolyl)phthalimide and 4-methylphthalic anhydride as the two 

compounds in fraction F with increased peak area post-bioremediation based on GC×GC/

ToF-MS analysis.

5. Conclusions

OCTpy is a python script designed to automate analysis of GC×GC/ToF-MS data obtained 

from LECO® ChromaTOF® software. OCTpy uses SC feature input files that were 

generated by the LECO® ChromaTOF® software. Automated data analysis can now be 

completed within several minutes using OCTpy, making OCTpy an efficient platform that 

can be adopted by analysts who are using GC×GC/ToF-MS and the SC feature from the 

LECO® ChromaTOF® software. Because the list of candidate analytes are curated using the 

SC feature, only the most statistically significant analytes are included. However, the analyst 

should ensure that the MS fragmentation pattern of the candidate analyte is the same as the 

NIST EI mass spectral library.

While the decision to review peak shape following OCTpy analysis is left to the analysts, 

OCTpy provides assistance by making the analysis of large datasets practical and less time-

consuming [41]. In cases when there are a significant number of candidate compounds that 

need to be confirmed for their toxicity, high throughput screening, such as the zebrafish 

developmental toxicity testing [42,43], or in silico search using the U.S. Environmental 

Protection Agency’s Tox 21 approach [44,45], are useful to reduce testing time. OCTpy also 

reduces human error, which is considered the most common source of error in quantitative 

analysis.[46] OCTpy’s capabilities are also unique, because the script aids researchers in 

data analysis and screening of candidate analytes with increased or decreased peak areas for 

comparative samples. In the spirit of open-source,[47] OCTpy is available on request, 

allowing further developments by users who are interested in examining the source code. 

Integrating OCTpy into the overall workflow of GC×GC/ToF-MS for non-targeted 

analysis[24] can also provide a standard method, across laboratories and research groups, for 

data analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manual Analysis Workflow
The manual workflow used to select candidate analytes from a given GC×GC/ToF-MS data 

output analysis from the LECO® ChromaTOF® software’s Statistical Compare feature. This 

process can take several hours per sample, depending on the complexity of the sample.
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Figure 2. Automated Analysis Workflow
The automated workflow used to select candidate analytes from a given GC×GC/ToF-MS 

data output analysis from the LECO® ChromaTOF® software’s Statistical Compare feature. 

This process only take several minutes per sample, depending on the complexity of the 

sample.
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Table 1
Manuals vs. Automated Result Comparisons

Comparisons of candidate analytes selected by either manual analysis or OCTpy from the the LECO® 

ChromaTOF® software’s Statistical Compare (SC) feature list. Percent match between manual analysis and 

OCTpy was calculated based on the percent of the ratio between the number of candidate analytes that were 

selected in both OCTpy and manual analysis. For example, in fraction D, although OCTpy selected 20 

candidate analytes, the 7 candidate analytes selected from manual analysis were also included in the OCTpy 
candidate analytes list, which resulted in 100% match.

Remediated Soil Fractions
Initial Number of 

Suggested Analytes 
from SC

Number of Candidate 
Analytes Identified by 

Manual Analysis

Number of Candidate 
Analytes Identified by 

OCTpy

Percent Match between 
Manual Analysis and 

OCTpy (%)

C 205 23 38 70

C-Derivatized 1,650 24 277 63

D 170 7 20 100

D-Derivatized 1,240 27 307 63

E 1,060 10 195 90

E-Derivatized 1,010 12 168 83

F 750 6 93 83

F-Derivatized 560 7 151 100
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