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Abstract

The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric

light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational

change. The mechanism by which a blue-light driven covalent bond formation leads to a

global conformational change remains unclear, which hinders the further development of

VVD as an optogenetic tool. We answered this question through a novel computational plat-

form integrating Markov state models, machine learning methods, and newly developed

community analysis algorithms. Applying this new integrative approach, we provided a

quantitative evaluation of the contribution from the covalent bond to the protein global con-

formational change, and proposed an atomistic allosteric mechanism leading to the discov-

ery of the unexpected importance of A’α/Aβ and previously overlooked Eα/Fα loops in the

conformational change. This approach could be applicable to other allosteric proteins in

general to provide interpretable atomistic representations of their otherwise elusive alloste-

ric mechanisms.

Author summary

Allostery is an important but elusive property that governs critical functionality of many

proteins. Quantitative analysis is needed to provide significant insight into protein allo-

stery and lead to better prediction power of this ubiquitous phenomenon. We developed

machine learning methods based on robust Markov state model to delineate allosteric

mechanism of Vivid as an allosteric protein in the filamentous fungus Neurospora crassa,

regulating circadian rhythm of this organism. We accurately reconstructed the equilib-

rium distributions for two allosteric configurations of Vivid, and determined structural

differences among these states. Intriguingly, the novel community analysis derived from

machine learning methods reveals the importance of two loop regions for Vivid allostery

through quantitative evaluations with statistical significance.
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Introduction

Light, oxygen, or voltage (LOV) domains are small, commutable elements that couple blue-

light activation to protein conformational changes for blue-light responses in bacteria, archaea,

fungi and plants. One common feature shared by all LOV domains is that a cofactor, flavin

adenine dinucleotide (FAD), flavin mononucleotide (FMN) or riboflavin,[1] forms a covalent

bond with a conserved cysteine residue upon external light activation. Covalent adduct forma-

tion, subsequently facilitates a large conformational change in the protein leading to alteration

in enzyme activity and/or protein-protein interactions.[2, 3] The mechanism of LOV domain

global conformational change induced by covalent bond is widely accepted as an allosteric pro-

cess and remains as a focal point of LOV domain studies with an aim of developing novel

optogenetic tool through manipulating LOV domain allostery.

Vivid (VVD) is a LOV-domain containing photoreceptor from the filamentous fungus

Neurospora crassa that modulates circadian rhythms in this organism. In Neurospora, circa-

dian-clock regulated gene expression is dictated by a heterodimeric complex involving the

photosensitive protein White Collar-1 (WC-1) and the non-photosensitive protein WC-2.

Upon blue-light exposure it is believed that an additional copy of WC-1 is recruited to light-

responsive elements (LRE’s) to form a hetero-trimeric complex involving a WC-1 homodimer

(WCC). One of the blue-light induced gene products is VVD, which competes for binding to

WC-1 to disrupt the WCC and modulate light-induced gene expression.[4] VVD activity is

dependent upon activation through blue light, where Cys108 of VVD forms a covalent bond

between its sulfur and C4a position of co-factor FAD, which in-turn induces N terminus con-

formational change of VVD necessary for WCC regulation. Based on previous experimental

and computational studies, VVD serves as a good candidate for optogenetic tool developing.

However the mechanism of VVD allostery correlated with its global conformational change

upon covalent bond formation is still an open question.

Investigating protein allostery through computational means is effective and is under con-

stant development. Various studies were conducted to reveal the underlining mechanisms for

different allosteric proteins.[5–7] One method developed, named rigid residue scan (RRS), has

been applied in several systems including PDZ3[8] and PDZ2 domains.[9] Other methods

including dynamical network analysis[10], elastic network model[11], relative entropy based

allostery network[12], sequence and structural analysis[13], correlation based analysis[14] etc.

have been widely applied on many allosteric systems. Markov state model (MSM) of molecular

kinetics has been widely used in recent years to estimate long-time kinetic information from

short trajectories.[15–17] Molecular dynamics (MD) simulations often involve long time sam-

plings or enhanced sampling to detect rare events with statistical significance.[17] Implement-

ing predefined order parameters as reaction coordinates is a useful means to analyze protein

simulations. However, the possibilities for neglecting the true kinetic information underlying

the simulations with hidden important barriers remain as one intrinsic limitation of the prede-

fined order parameters approaches.[18, 19] Although Markov state analysis could be applied

to separate the structures based on their kinetic information, a quantitative strategy to measure

the primary differences among different states is still absent. Long-time scale molecular

dynamics simulations could provide sufficient sampling of the conformational landscape of

proteins. But obtaining statistically significant insights into protein dynamics from massive

simulation datasets presents a major challenge[20–22].

Artificial neural networks (ANN)[23, 24], tree based model including decision tree (DT)

[25], and random forest (RT)[26] are widely applied as classification methods in machine

learning. ANN mimics neural networks consisting of neurons in the brain, and has been

applied in many classification problems to achieve high accuracy[27]. Decision tree was

Allosteric mechanism of the circadian protein Vivid
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constructed to quantify the importance for making decisions or predictions of each dimension

in the input data that is statistically relevant to relative entropy metrics in distinguishing

between different distributions.[28–30] Recently, we demonstrated significant effectiveness of

DT and ANN methods to build allostery classification models and identify allosterically

important residues.[31, 32]

To gain further insight into VVD allosteric mechanism, more quantitative description

would be necessary in addition to normal qualitative analysis of protein allostery. In this work,

we developed a novel computational framework that can significantly boost the applicability of

molecular simulation techniques to probe dynamic allostery in protein systems, and applied

this approach on VVD. Specifically, we combined machine learning and dynamic community

analysis of the residue interaction networks to obtain robust quantitative descriptions of con-

formational ensembles and protein states, and to rigorously correlate variations in conforma-

tional ensembles to underlying allosteric mechanisms. Both methods are enabled by a new

application of machine learning and network modeling to the analysis of thermodynamic and

kinetic information from MSM. The proposed models are applied to (a) rapidly recognize and

identify structural and dynamic patterns of complex conformational ensembles; (b) identify

key functional states that are hidden in the conformational ensembles, and (c) reconstruct the

mechanisms of dynamics driven allostery through integration of machine learning and net-

work analysis.

Using the proposed computational framework, we examined allosteric mechanisms of

VVD and verified the impacts of the key local covalent bond upon photo excitation to global

motions of VVD, and revealed the importance of A’α/Aβ and Eα/Fα loops in the conforma-

tional change. A good agreement between our analysis and experimental observations of VVD

validated the applicability of the proposed approach, and provided structural insights into

mechanism of conformational changes and allostery in allosteric proteins. Our methodology

could facilitate the usage of VVD as an optogenetic tool by providing quantitative measure-

ment of individual residues’ contribution to protein allostery.

Results

Markov states analysis of VVD simulation

There are two native crystallographic structures of VVD: dark structure (without covalent

bond formed between FAD and VVD residue Cys108) and light structure (with such covalent

bond). We referred to these two states as native dark (non-bonded) and native light (bonded)

configurations (Fig 1). To probe the response from protein with regard to the covalent bond

between FAD and VVD, two new configurations were constructed: dark structure with the

above covalent bond, and light state without the above covalent bond. We referred to these

two states as transient dark (bonded) and transient light (non-bonded) configurations, respec-

tively. Three independent 1 μs simulations were carried out for each configuration, leading to

12 μs production trajectories. All 12 μs trajectories of VVD are projected onto a two dimen-

sional (2D) plot of root-mean-square deviation (RMSD) of VVD backbone alpha carbon

atoms (Cα) with reference to the native dark and light structures, respectively (Fig 2A). The

plot reveals that the simulations of light state configurations may reach the native dark state

structure. On the contrary, the simulations of dark state configurations show less fluctuation

than the light state configurations in simulations.

In order to apply MSM analysis, k-means clustering analysis was applied to divide the sam-

pling space into 300 microstates based on structural differences (Fig 3A). The transition proba-

bilities were estimated among microstates at a specified interval of time named as lag time. An

adequate lag time should be selected based on the convergence of the estimated relaxation

Allosteric mechanism of the circadian protein Vivid
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timescale.[33] The data plotted in Fig 2B suggest that the estimated timescale is converged

after 30 nanoseconds (dashed grey line), which is chosen as the lag time for the MSM analysis.

The number of macrostates should be rigorously chosen to better represent the free energy

landscape. Overall, having eight macrostates will result in the best separation to represent

kinetically meaningful states on the free energy surface as shown in Fig 3A.

Perron-cluster cluster analysis (PCCA) was applied to map microstates onto macrostates

based on the eigenfunction structure of transition probability matrix (Fig 3A and 3B). The rep-

resentative structure for each macrostate is illustrated in Fig 3C. The averaged RMSDs of the

macrostates 2, 3 and 7 with reference to the crystal dark and light structures of VVD are 2.84Å
and 4.38Å, respectively. Similarly, the averaged RMSDs for the macrostates 1, 4, 5 and 8 are

4.69Å and 3.31Å with reference to the crystal dark and light structures, respectively. Locating

at the top right corner of the 2D RMSD plot, macrostate 6 is far away from both crystal dark

and light conformations of VVD, with the averaged RMSD values as 6.47Å and 4.62Å,

Fig 1. Two native states of VVD: (a) native dark state (PDB code: 2PD7) and (b) native light state (PDB code: 3RH8).

The blue light could activate the dark state and lead to the formation of covalent bond circled in the native light state.

The main conformational change lies in the N-terminal structure, which is highlighted in red.

https://doi.org/10.1371/journal.pcbi.1006801.g001

Fig 2. Molecular dynamics simulations of VVD protein with four different configurations, native dark and native light configurations, and transient

dark and transient light configurations. (a) 2D-RMSD plot of the simulations with different configurations with reference to the native dark and light

structures, respectively, (each contour in different color represents the samplings from three trajectories with the same configuration); (b) Estimated relaxation

timescale based on transition probabilities among different microstates regarding with the different lag time as interval for analysis.

https://doi.org/10.1371/journal.pcbi.1006801.g002

Allosteric mechanism of the circadian protein Vivid

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006801 February 19, 2019 4 / 28

https://doi.org/10.1371/journal.pcbi.1006801.g001
https://doi.org/10.1371/journal.pcbi.1006801.g002
https://doi.org/10.1371/journal.pcbi.1006801


respectively. As the sampling of macrostate 6 only occurs in transient light configuration simu-

lations, the macrostate 6 is referred to as a “hidden” state, which cannot be reached in the sim-

ulation of native states.

To assess the effectiveness of the above analysis for VVD, we carried out time-structure

independent components analysis (t-ICA) and principal component analysis (PCA) to verify

that the markovian property is well maintained using MSM. For comparison purpose, 30ns as

the lag time and total of eight macrostates are used for both t-ICA and PCA. The results for the

comparison shown in S1(A)–S1(C) Fig represent the projection of VVD simulations onto the

surfaces of 2D-RMSD, t-ICA and PCA, respectively. The relaxation timescales of these MSM

models are shown in S1(E)–S1(G) Fig. The relaxation timescale estimated from t-ICA is signif-

icantly higher than the ones with 2D-RMSD and PCA, which indicates that t-ICA may capture

slow kinetic components better than 2D-RMSD and PCA. However, the connectivity of

microstates on the projection surface of t-ICA is lower than the one on 2D-RMSD or PCA sur-

faces. Thus the identified “strongest connected subgraph”[34] on the t-ICA surface does not

contain all microstates. Based on the ergodic cutoff criterion, during the construction phase of

MSM, 173 out of 300 microstates on t-ICA surface were discarded because they are weakly

connected to other microstates. The highly disconnected communities indicate that the major

t-ICs could be the spurious collective variables due to high dimensionality. Therefore, we

selected top five features identified in Table 1 (which will be discussed later) and construct

t-ICA surface only on those features. The projection surface is shown in S1(D) Fig and the

relaxation timescale is shown in S1(H) Fig. Microstates grouped in eight macrostates on

2D-RMSD, t-ICA, PCA, and t-ICA with five features are illustrated in S1(I)–S1(L) Fig, respec-

tively. With only five selected features, the t-ICA results are much improved, suggesting that

t-ICA method works better with reduced dimensionality. The results of 2D-RMSD, PCA, and

t-ICA with five selected features are similar with each other. However the axis of 2D-RMSD

could better represent structural information than PCA or t-ICA with direct measurement of

difference from the two key structures of VVD.

Fig 3. Markov state model (MSM) construction of eight macrostates based on the 300 microstates generated using k-means clustering analysis of VVD

MD simulations. (a) Plot of 300 microstates on 2D RMSD surface belonging to eight macrostates with different colors representing different macrostates; (b)

Distribution of each macrostate on the 2D RMSD surface; (c) Representative structures of eight macrostates.

https://doi.org/10.1371/journal.pcbi.1006801.g003

Table 1. Top 5 features in overall importance to distinguish difference states.

features OVERALL Rank: 1 Rank: 2 Rank: 3 Rank: 4

213 (T38 –G105) 2.83% S3-S5: 4.28% S1-S7: 4.03% S5-S6: 4.00% S2-S6: 4.00%

227 (T38 –K119) 2.38% S2-S4: 4.55% S3-S4: 4.00% S1-S3: 4.00% S2-S6: 4.00%

189 (T38 –K81) 1.75% S3-S7: 4.28% S2-S5: 4.08% S3-S5: 4.05% S1-S7: 4.02%

29 (H37 –V67) 1.52% S1-S7: 4.05% S3-S6: 4.00% S2-S8: 3.99% S3-S8: 3.99%

355 (L39 –E102) 1.51% S5-S6: 5.72% S4-S7: 5.48% S1-S6: 5.31% S4-S5: 4.44%

https://doi.org/10.1371/journal.pcbi.1006801.t001
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To ensure the kinetic similarity within the microstates during the clustering, the averaged

RMSD in each microstate is plotted for 2D-RMSD, t-ICA, PCA and t-ICA with five selected

features models in S2 Fig, respectively. It is assumed that the conformations with small

RMSDs may interchange quickly. Practically, averaged RMSD inside each microstate smaller

than 2.0Å is sufficient to imply the kinetic similarity within that microstate.[33] The averaged

RMSDs are smaller than 2.0Å for all microstates using three models, indicating that the kinetic

similarity within each microstate is well maintained. In addition, the markovian property

using 2D-RMSD was also tested using Chapman-Kolmogorov test [17] by comparing the

probability directly observed in the simulation with the estimated probability using lag time as

30ns (S3 Fig). To avoid spurious large error bar due to the difference of saving coordinates fre-

quency between the reference study (0.2ps) and the current study (100ps), the denominator in

the reference paper [17] equation 66 was replaced by the ratio of all transition count to the

actual transition counts in the simulation. Therefore, the error bar is less dependent on the sav-

ing frequency of the simulation. The similarity between these two probabilities shown in S3

Fig suggests that the markovian property using 2D-RMSD as reaction coordinates for MSM

model is well maintained.

After the construction of MSM, the transition probabilities estimated among adjacent

macrostates are shown in Fig 4. For each state, the probability to remain in the current state is

higher than switching to other states, which suggests that each macrostate is a minimum on

free energy surface, and the kinetic barriers prevent the switching to other states. The above

transition probability matrix was calculated based on all 12 μs MD trajectories. To further

explore the cofactor covalent bond effect, the transition probability matrices were calculated

separately for six non-bonded (for native dark and transient light configurations) and six

bonded trajectories (for native light and transient dark configurations). As shown in Fig 4B

and 4C, forming of covalent bond has significant impact on the transition probabilities among

macrostates, which suggests that the covalent bond could alter the free energy surface and

energy barriers among different states.

The steady state distribution that the system may reach at the infinite time could be esti-

mated based on the calculated transition probabilities. The eigenvector associated with the

eigenvalue 1.0 for the transition probability matrix is the stationary distribution for each state.

This is only an approximation, because after discretizing the phase space into microstates, the

markovian properties may not hold precisely.[35] However, it is still valuable to investigate the

distribution at infinite time (referred to as steady state thereafter) to obtain an overall picture

regarding to the long time behavior. The steady state distributions based on the non-bonded

Fig 4. The transition probabilities estimated based on Markov state model among macrostates. (a) The transition probabilities estimated using all

trajectories; (b) The transition probabilities estimated using non-bonded trajectories; (c) The transition probabilities estimated using bonded trajectories. State

6 only appears in the non-bonded configurations. State 8 only appears in the bonded configurations. The transition probability among macrostates are

significantly different, showing that the formation of photo-induced covalent bond could mediate the kinetics of the system.

https://doi.org/10.1371/journal.pcbi.1006801.g004
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(Fig 5A) and bonded trajectories (Fig 5B) are illustrated separately. For comparison purpose,

the distributions based on non-bonded and bonded MD trajectories, which are referred to as

ensemble distributions, are illustrated in S4 Fig. Overall, the steady state distribution differ-

ences between non-bonded and bonded configurations are significant (Fig 5C). The light state

sampling is significantly enhanced in the bonded configuration, primarily in the state 8. In the

non-bonded configuration, the samplings of dark state conformations including states 2, 3,

and 7 are more extensive than the bonded configuration (Fig 5C). The hidden state (state 6) is

only sampled in the bonded configurations. Similar with the Fig 4B and 4C comparison, these

results indicate that the bonded configurations favor the native light state structure and the

non-bonded configurations favor the native dark state structure. The convergence of simula-

tions is verified by RMSD and configurational entropy in S5 Fig. The plot of configurational

entropy (S5B Fig) indicates that the simulations are well converged after ~600ns samplings.

The sampled conformational space in the 12μs MD simulations has a remarkable agree-

ment with our previous study of VVD through perturbed MD simulations.[36] Our analyses

show that the MD simulations of transient light and dark configurations sampled larger con-

formational space than the native light and dark configurations. These results conform that

the covalent bond could facilitate the conversion of dark state to the light state, agreeing with

the experimental observations.[4, 37, 38] Markov state analysis provides more quantitative

descriptions than intuitive interpretation based on sampling space. The covalent bond affects

the transition probabilities among macrostates and the steady states/equilibrium distributions

significantly. The steady states distribution can be considered as the free energy for each state.

Therefore, the changes of steady states distribution can be regarded as the changes of free

energy surface of the protein dynamics due to the formation of covalent bond. The transition

probabilities between state3-state2, state7-state5, state5-state4 increase from (3%, 4%, 11%) to

(14%, 10%, 14%), respectively, comparing the non-bonded and bonded configurations. The

increase of the transition probability is significant, which lead to the estimated steady states

distribution differences in dark and light states. These differences suggest that the transitions

from dark state to light state could be triggered mainly by the formation of covalent bond with-

out excitation energy dissipation.

Another difference is the behavior of conformations dwelling in state 1. Based on the non-

bonded configuration simulations, starting from state 1, the probability for protein directly

changing to state 8 is 0%, and to state 6 is 16%. In the bonded configuration simulations, these

probabilities are 6% and 0%, respectively. Meanwhile, state 6 is regarded as a hidden state as it

was not sampled in either native light or native dark configurations, and is structurally

Fig 5. The estimated steady state distributions for each state based on Markov state model. (a) Steady state distribution based on non-bonded configuration

simulations; (b) Steady state distribution based on bonded configuration simulations; (c) Steady state distribution differences between non-bonded and bonded

configurations. States 2, 3, and 7 are considered as dark states region. States 1, 4, 5, and 8 are considered as light state region. State 6 is considered as hidden

region.

https://doi.org/10.1371/journal.pcbi.1006801.g005
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different from both crystal dark and light states. The different behavior of state 1 in non-

bonded and bonded configurations could be interpreted as a stabilization effects to the light

states from the covalent bond. With the covalent bond, the light state can be stabilized to the

state 8 conformations without reaching hidden state 6.

Based on the above observations, we can hypothesize that the covalent bond has a signifi-

cant role in light state conformation. With this covalent bond, the light state conformation

could be stabilized. Otherwise it would be trapped in the hidden state conformations, which

cannot be sampled in the native states. Our results demonstrated that even without energy

available in an excited state upon blue light excitation, the single covalent bond could trigger

the global conformational change of VVD.

The MSM analysis reveals the impacts of covalent bond between cofactor and protein in

conformational distribution and free energy barriers among macrostates. However, the con-

formational characteristic for each state and the mechanism for the conformational changes

are still unclear. Therefore, several supervised machine-learning models were applied to study

the intrinsic structural properties of macrostates.

Machine learning identifies key structural features and interactions that

characterize allosterically important protein macrostates

To apply the supervised machine learning models and study the structural differences, appro-

priate collective variables are needed to describe a protein structure. For the small organic mol-

ecules, several descriptors including the topological torsion[39], reduced graph descriptor[40]

have been developed, and widely used in quantitative structure–activity relationship (QSAR)

and docking studies.[41, 42] Here, we chose the pair-wised distances of alpha carbon (Cα) of

amino acids as translation and rotation invariant collective variables for protein structures in

our simulations. Total 10,878 pair-wised distances were constructed based on 148 residues.

For each simulation, frames are saved for every 100 picoseconds (ps), resulting in 10,000

frames for every 1 μs MD trajectory. Therefore, 120,000 “data points” with 10,878 features

were extracted from 12 μs MD trajectories. Above macrostate analysis were used to label each

frame. After the preparation of data, decision tree, random forest, one-vs-one random forest

and artificial neural networks models were applied to distinguish the intrinsic conformational

differences among macrostates. Dimensionality deduction was done by one-vs-one random

forest before applying artificial neural networks model. Each machine learning model is

described in Methodology section. The cross-validation was applied to refine the parameters

of these models. The training and testing error of 12-fold cross-validation are plotted in Fig 6.

The final selected parameters are indicated by dashed vertical line in each subplot.

The results for optimized machine learning models and a dummy classifier are shown in

Fig 7A. Dummy classifier was generated based on random guesses.[43] The training accuracy

for neural networks, decision tree, random forest and one-vs-one random forest models are

95.0%, 98.3%, 98.1%, and 99.1%, respectively. The validation accuracy for the artificial neural

networks is the highest, having a mean value of 90.1%. Two random forest classifiers and deci-

sion tree classifier have relatively lower performances but still significantly higher than the

dummy classifier as control. These indicate that the models are able to catch the structural

characteristic of each Markov state using the pair-wised Cα distances.

Although artificial neural network model provides the highest classification accuracy, tree-

based methods were chosen for further analyses, because these methods could evaluate the

contribution from each pair-wised Cα distance. Especially, one-vs-one random forest was

applied to compute the feature importance for any two different states pair by performing a

random forest classification just between these two states. Therefore, for any two different
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macrostates, one distinct random forest classifier was built. The combination of 28 basic ran-

dom forest classifiers, which were calculated as N�(N-1)/2 for eight (N = 8) macrostates, were

constructed for pair-wised macrostates classification. Overall, this method provides a very

effective model, in which 367 features out of 10,878 features account for 90% distinguishability

(Fig 7B).

Top five ranked features computed by the one-vs-one random forest classifier are listed in

Table 1. The overall importance of features was calculated by the average of the 28 selected ran-

dom forest classifiers feature importance. The Cα distances between T38 and G105 is identi-

fied as the top feature with the averaged importance as 2.83%. Specifically, it has 4.28%, 4.03%,

4.00% and 4.00% feature importance in distinguishing between States 3 and 5, States 1 and 7,

States 5 and 6, States 2 and 6, respectively. The distributions in eight macrostates of top two

features are plotted in Fig 8A and 8B, respectively. The most states distributions are well sepa-

rated based on these two top features. States 2, 3, and 7, which are regarded as ‘dark state’

regions, have shorter distance distributions in both T38-G105, and T38-K119 pairs. States 5, 8,

1 and 4, which are regarded as ‘light state’ regions, have much longer distance distributions

Fig 6. The training models for macrostates using different machine learning model: (a) Artificial neural networks, (b) decision tree, (c) random forest, and (d)

one-vs-one random forest. All the training are based on 120,000 frames extracted from 12 μs MD trajectories. In each frame, 10,878 Cα pair-wise distances are

used as features for model development. All models show high training and testing accuracy, validating the appropriation of machine learning models for VVD

simulations.

https://doi.org/10.1371/journal.pcbi.1006801.g006
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than the ‘dark state’ regions. The ‘hidden’ State 6 has the largest distance in both features. For

comparison purpose, one of the lowest importance (0.00%) features as feature 4976 between

L75 and R169 is also plotted (Fig 8C). For the low ranked features, the distributions for all

macrostate are very similar, indicating that those distances are not affected by covalent bond

formation as intrinsic allosteric effect.

Comparing with decision tree and random forest, one-vs-one random forests model has at

least two advantages. One-vs-one random forest model could provide feature weights specifi-

cally for any two different states and is unbiased for features. Overall, only 367 out of 10,878

features have more than 90% distinguishability in one-vs-one random forest model (Fig 7B).

The feature importance in one-vs-one random forest model could directly represent the distri-

bution differences between any state pairs for a particular distance. Top ranked features in this

model have distinctive distributions in different states (Fig 8A and 8B), while the low ranked

features have indistinguishable distributions in all states (Fig 8C), even though those residues

are rather far away from each other. This demonstrates the effectiveness of machine learning

Fig 7. Four machine learning models (artificial neural networks, decision tree, random forest and one-vs-one random forest models) for VVD macrostates: (a)

Model accuracy and a dummy classifier as control; (b) One-vs-one random forest classifier accumulating feature importance. One-vs-one random forest is the

most effective model with 367 features out of 10,878 features accounting for 90% distinguishability.

https://doi.org/10.1371/journal.pcbi.1006801.g007

Fig 8. Distributions of selected features (pair-wised Cα distances) in different states. (a) Distribution of Feature 213 as T38/G105 distance in all eight

macrostates. This is the top one with overall 2.83% importance. (b) Feature 227 as T38/K119 distance in all eight macrostates. This is the second most

important feature with overall 2.38% importance. (c) Feature 4976 L75-R169 with overall 0.0% importance. This unimportant feature has the similar

distribution in all eight macrostates.

https://doi.org/10.1371/journal.pcbi.1006801.g008
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methods to select features and residues closely related to allosterically important macrostates

of VVD.

Although the above structural differences among macrostates revealed through machine

learning analysis are informative, some disadvantages do exist. First, the top features could be

correlated with each other as the top two features sharing the same residue T38. Second, it

could be misleading if only a limited number of top ranked features are selected for investiga-

tion since the feature importance between the top ranked and low ranked features are insignif-

icant. Even for top ranked feature 4 and 5 in Table 1, the differences of importance are less

than 0.01%. Third, the residues associated with the top features intend to be far away from

each other. It is difficult to differentiate these long-distance distribution differences as either

directly being correlated with key residues interactions or the result from accumulation of

some function related short-range interactions. In addition, the important short-range interac-

tions would have low feature importance, because their distinguishability may not be as signifi-

cant as the long distance distributions. Therefore, instead of focusing on the residues

associated with the top ranked features, we further developed community analysis with more

statistical significance.

Machine learning-driven community analysis specifies a’α/aβ and eα/fα
loops as allosteric molecular switches between dark and light states

Inspired by dynamics network analysis[44], the machine learning based community (referred

to as ML community) analysis was developed to divide residues into several groups so that the

feature importance for pair-wised Cα distances among groups is maximized, while the feature

importance within each group is minimized. The detailed algorithm to construct ML commu-

nities is described in the Methodology section. As shown in Fig 9A, with the number of ML

communities increasing, the feature importance for pair-wised Cα distances within ML com-

munities increases. Applying an elbow criterion, four ML communities were selected with the

total feature importance within each ML community accounting for 0.56% and total feature

Fig 9. Community analysis of VVD based on one-vs-one random forest model. (a) Total feature importance among ML communities with regard to

different number of communities; (b) Four ML communities named Commu. A, Commu. B, Commu. C and Commu. D as blue, red, yellow and grey colors,

respectively. The ultimate number of ML communities is determined as four based on the elbow criterion. The feature importance across different ML

communities accounts for 99.44% of total importance. The feature importance between Commu. A (which is mainly N-terminus) and the rest of protein

accounts for 89.415%. The feature importance between Commu. B and Commu. C as well as D accounts for 9.103% of total feature importance.

https://doi.org/10.1371/journal.pcbi.1006801.g009
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importance among ML communities accounting for 99.44%. Therefore, the further analysis

focuses on the distribution changes among ML communities, neglecting the distribution dif-

ferences within each ML community, to reveal the overall dynamics associated with ML com-

munities in each configuration. All residues belonging to each ML community are listed in S1

Table in Supporting Information, and plotted in Fig 9(B) named as Commu. A, B, C and D.

Comparing with the secondary structures shown in Fig 9B, Commu. A includes N-termi-

nus from H37 to G43. Commu. B includes the loops in A’α/Aβ and Eα/Fα. It should also be

noted that the residue C108 that is bonded to the cofactor also belongs to the Commu. B.

Commu. C and D comprise the majority of VVD. Commu. C includes the majority of Aβ
strand, Bβ strand, Dα helix, Fα helix and Gβ strand, and part of cofactor binding sites.

Commu. D contains the rest of protein, including A’α helix, Cα helix, Eα helix, Hβ stand, and

Iβ strand. The N-terminus and loops are well preserved in Commu. A and B, suggesting spe-

cific roles of these two secondary structures.

The accumulated overall feature importance between each ML community pair is listed in

Table 2. The correlation between Commu. A (which is mainly N-terminus) and the rest of pro-

tein accounts for 89.415% total of feature importance in the one-vs-one random forest classi-

fier. This is not surprising since the N-terminus is the most flexible and distinguishable part

between the native dark and light states of VVD. However, it should be noted that after exclud-

ing Commu. A, the feature importance between Commu. B and Commu. C as well as D still

accounts for 9.103% of total feature importance. This suggests that the position of two loops

(A’α/Aβ and Eα/Fα) in Commu. B could play an important role to distinguish each macro-

state. Although the Commu. C and D comprise the majority of proteins, the accumulated fea-

ture importance between them is less than 1%.

The machine learning based community analysis provides additional information with

regard to the different parts of structures during the simulations. In addition to N-terminus,

the motions of Commu. B (loops in A’α/Aβ and Eα/Fα) are also significant in distinguishing

between the light and dark states. The relative distinguishability of four ML communities asso-

ciated with key macrostate pairs are listed in Table 3. Besides the N-terminus, the relative posi-

tion of Commu. B with Commu. C/D is also important to distinguish between the adjacent

macrostates (bold in Table 3) including the transition from State 3 to State 2, from State 2 to

State 7, from State 7 to State 5, from State 5 to State 4, and from State 4 to State 1. However, for

two non-adjacent macrostates, the position of N-terminus (Commu. A) is determinative to the

states as shown in Table 3.

Based on the above results, we hypothesize that when the photo-induced covalent bond is

being formed in the dark state, one possible mechanism for protein going through conforma-

tional changes from the dark to light state is that the position of Commu. B changes first and

subsequently facilitates the conformational change of N-terminus as Commu. A. This transi-

tion sequence may have a higher probability than for N-terminus directly changing to another

state as shown in Fig 4(A), as well as in Fig 4(B) and 4(C). Overall, VVD has higher probability

to switch to the adjacent macrostate with significant changes in Commu. B and little changes

of Commu. A. For example, given a structure as dark state conformation starting from state 3,

Table 2. Accumulated feature importance between each ML community pair.

Features Commu. A Commu. B Commu. C Commu. D

Commu. A 0.041% 15.885% 37.085% 36.445%

Commu. B 0.107% 5.236% 3.867%

Commu. C 0.217% 0.924%

Commu. D 0.191%

https://doi.org/10.1371/journal.pcbi.1006801.t002
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the most likely route to go to light state conformation in state 4 is State 3! State 2! State

7! State 5! State 4 with the probability as 0.15, 0.23, 0.1 and 0.14 in bonded configuration

as shown in Fig 4(C). These transitions are shown as bolded state transitions in Table 3 with

the highest Commu. B component. Meanwhile, the probability of state 3 directly changing to

state 7 or state 7 directly changing to state 4 is much lower as 0.08 and 0.05 in Fig 4(C), and

those transitions have larger Commu. A changes as shown in Table 3. These observations indi-

cate that the transition mechanism from dark state to light state with the highest probability is

changing the relative position of Commu. B first, instead of changing N-terminus as Commu.

A directly. Meanwhile, as shown in Fig 4(B) and 4(C), the bonded configuration has a higher

probability to change from the dark to the light conformation than in the non-bonded config-

uration. Therefore, we hypothesize that the photo-induced covalent bond increases the flexi-

bility of Commu. B comparing to the non-bonded configurations.

To test this hypothesis, the transition pathway theory (TPT)[45] was employed to generate

an ensemble of pathways to verify the transition pathway from state 3 (crystal dark conforma-

tion) to state 4 (crystal light conformation). Total of 10,017 pathways were generated, and

could be grouped as 111 distinct channels floating from state 3 to state 4. The probability of

each channel is proportional of the flux through this channel with reference to all channels

flux. [45] Overall, the probability for top 20 channels are listed in the Table 4, with the contri-

bution from these channels accounting for more than 98% of total population.

Among all 111 channels, the proposed channel 3–2–7–5–4 is the third most populated

channels with around 15% contribution (red pathways in Fig 10). Only 3–7–5–4 and 3–7–4

channels have higher contribution. The contribution is significant compared with many other

pathways, suggesting the importance of the loop movement during the transition between

dark and light states. Besides, the RMSF analysis was also conducted. The results shown in S6

Fig suggest that the photo-induced covalent bond could enhance the fluctuation of A’α/Aβ
loop, which may facilitate the transition.

To summarize, a general goal of this new community analysis is to minimize the feature

weights within each community while maximizing the feature weights among communities.

Therefore, we can ignore the internal difference inside each community in different macro-

states, and focus on the global differences among communities associated with macrostates.

Table 3. The changes of Commu. A and Commu. B during transitions between states. (Bolded is state-transitions

with large Commu B component).

Adjacent macrostates A with C and D B with C and D

State 3 (crystal dark)! State 2 38.35% 46.38%

State 2! State 7 50.12% 30.22%

State 3! State 7 92.65% 0.87%

State 7! State 5 59.85% 19.37%

State 5! State 4 (crystal light) 71.15% 17.60%

State 4! State 1 50.38% 38.01%

State 7! State 4 85.09% 0.32%

State 1! State 8 94.97% 0.52%

State 1! State 6 74.41% 3.72%

Non-Adjacent macro-states

State 2! State 8 79.71% 0.01%

State 3! State 4 91.27% 0.01%

State 3! State 6 81.98% 0.01%

State 3! State 1 78.13% 0.00%

https://doi.org/10.1371/journal.pcbi.1006801.t003
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N-terminus standing out as Commu. A is expected, as this is the most distinguishable part

between dark and light states. The loops between A’α/Aβ and Eα/Fα standing out as Commu.

B provides additional important information to distinguish between the dark and light states.

The two loops in Commu. B are far away from each other, but the distance distributions within

Commu. B are consistent throughout the dark and light states, with only 0.107% accumulative

feature importance. Due to the significant feature importance of Commu. B correlated with

the rest of protein, we propose that the two loops in Commu. B mediate the transition from

the dark state to the light state (Fig 11). At initial stage of the transition from the dark to the

light state, the Commu. B may function as a switch to be turned on first (States 3! 2) before

the N-terminus (Commu. A) undergoes significant conformational change to reach an inter-

mediate state (States 2! 7). This route is more likely than the change from State 3 directly to

the intermediate state (States 3! 7), in which Commu. A and B undergo the conformational

change concomitantly. To further verify the low importance of Commu. C and D during the

conformational change, the structural comparison between different macrostates for the pro-

posed pathway is illustrated in S7 Fig and listed in S2 Table. The results clearly suggest that the

Commu. C and D do not have significant structural differences among different macrostates,

and highlight the conformational changes of Commu. B and A.

Discussion

More about community analysis

Some key functional positions have been revealed to control LOV allostery without affecting

LOV photocycle kinetics.[4, 46–48] The photo-induced covalent bond between the conserved

Cys residue and flavin cofactor initiates conformational changes within N- or C-terminal

extensions (Ncap/Ccap) to the LOV core.[49] It was proposed that the conformational change

Table 4. The probability of top 20 channels.

Channels Probability

State 3–7–5–4 33.099%

State 3–7–4 21.809%

State 3–2–7–5–4 14.819%

State 3–2–7–4 10.369%

State 3–2–4 4.35%

State 3–2–5–4 3.567%

State 3–7–6–1–4 3.008%

State 3–7–1–4 1.257%

State 3–5–4 0.983%

State 3–2–7–6–1–4 0.857%

State 3–7–6–4 0.694%

State 3–2–7–1–4 0.492%

State 3–2–7–6–4 0.464%

State 3–7–5–1–4 0.443%

State 3–2–7–5–1–4 0.387%

State 3–7–5–6–1–4 0.326%

State 3–2–7–5–8–4 0.307%

State 3–2–8–4 0.281%

State 3–7–5–8–4 0.262%

State 3–2–7–5–8–1–4 0.231%

Total 20 channels 98.004%

https://doi.org/10.1371/journal.pcbi.1006801.t004
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of these N/Ccap elements regulates activity of LOV domains or recruit proteins to Ncap, Ccap

or β-sheet surfaces.[4, 50–52]

The results of simulations and machine learning-driven community decomposition allowed

to quantify the role of specific regions in allosteric conformational changes and led to major

steps of the allosteric mechanism. We found that, in addition to the primary large-scale con-

formational changes cluster to the N-terminus, the structural changes differentiating N-termi-

nal states are coupled to the rearrangement of two loop regions (A’α/Aβ and Eα/Fα).

Therefore, there is a higher probability for covalent bond formation to induce conformational

changes in the loop structures first, than to induce reorientation of the N-terminus directly.

Notably, although the covalent bond is formed due to the external blue light stimulation, the

subsequent conformational changes can be attributed to the existence of the covalent bond

without the activation energy dissipations in the protein. Such findings are consistent with

recent reports indicating that chemical reduction of the flavin cofactor to form the neutral

semiquinone is sufficient to induce a conformational response in VVD, independent of photo-

excitation.[53]

Fig 10. 10,017 pathways generated from state 3 to state 4 based on transition pathway theory (TPT). The 3–2–7–5–4 pathway is the third most populated

pathways with around 15% contribution and plotted in red. This suggests that the loop regions in Commu. B play an important role during the transition

between dark and light states, because the correlations between Commu. B and Commu. C/D contribute significantly to the differentiation between states 3

and 2 as well as states 2 and 7.

https://doi.org/10.1371/journal.pcbi.1006801.g010
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Delineating the atomistic details of the allosteric mechanism revealed that focusing on indi-

vidual residues was insufficient to illustrate a global conformational response. Rather, commu-

nity analysis presented in this study specified coupling between Commu. B and the N-

terminus as Commu. A, where Commu. B is impacted first before significant conformational

change occurs at the N-terminus. As a result, residues stabilizing this community could play a

central role in switching the conformation of protein from dark to light state. These findings

not only reveal significant agreement with experimental observations, but also identify unex-

pected regions that may play a substantial role in modulating LOV conformational dynamics.

To highlight these findings, we divide Commu. B into three characteristic regions based on

experimental data: the molecular swivel (PGG motif residues 42–44), the N-terminal hinge

(residues 65–72), and the FAD-binding loop (Eα/Fα loop). Previous experimental studies have

identified the first two regions as essential for mediating conformational changes in VVD.[4,

38] Namely, the PGG motif was identified as a molecular swivel that is essential for conforma-

tional changes in the N-terminus (N-latch; Commu. A), which distinguishes light- and dark-

state conformations. Similarly, mutations in the N-terminal hinge abrogate structural changes.

Fig 11. Proposed transition mechanism starting from the dark state of VVD as state 3. Commu. B may function as a switch to be turned on first

(State 3 to 2) and lead the conformational change of Commu. A (N-terminus) (State 2 to 7). Commu. A and B are illustrated in blue for State 3, green

for State 2, and red for State 7.

https://doi.org/10.1371/journal.pcbi.1006801.g011
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The N-terminal hinge loop between L64-S70 is the last part of N-terminal cap (H37-S70)

which is different from other PAS (Per-Arnt-Sim) proteins including photoactive yellow pro-

tein (PYP)[54], Avena sativa LOV2 domain (AsLOV2) phototropin[51] and Drosophila clock

protein Period[55]. The mutagenesis studies revealed that the substitution of Cys71, which is

the next residues of the identified loop, either enhance conformational changes (C71V) or

abrogate the conformational response (C71S) both in vitro and in vivo.[4] Further experimen-

tal structural analysis revealed that the hydrogen bond between Asp68 in the identified A’α/Aβ
loop with Cys71 could be crucial for N-terminal conformational changes. In addition, the

experimental observations show that Pro66, from the identified A’α/Aβ loop, undergoes the

largest shifts (2.0Å) in the light state versus dark state[4], which also has agreement with RMSF

plot in S6 Fig. Notably, recent studies of other LOV proteins, as well as VVD homologs, iden-

tify the N-terminal hinge as a hot spot for evolutionary adaptation, where residues within the

core loop facilitate integration of an oxidative stress sensing mechanism into VVD-like pro-

teins by modifying the initial conformational response[38, 56], or aid in differentiation of sig-

naling mechanism by regulating the location of a key evolutionarily selected residue in the

adjacent Aβ strand.[57]

Relation to experimental studies

The synergy between the experimental and theoretical studies not only validates the impor-

tance of these structural communities in LOV signal transduction, but also highlights how

these communities signal through each other. Here, we show that the photo-induced covalent

bond formation first initiates a conformational change in Commu. B, consisting of the swivel

and hinge regions. These propagate to the N-latch (Commu. A) to differentiate light- and

dark-state conformations. Another question that may arise is if the key conformational

changes occur within Commu. A, and B, what are the fundamental function of Commu. C and

D. A careful examination of the methodology conducted here and existing experimental stud-

ies can shed light on the role of these distinct communities. The current study identified the

hinge loop (residues 64–70) as key components of Commu. B, but it did not include residues

71–74 which have been identified as either essential for function (Cys71)[4] or aid in evolu-

tionary adaptation of signaling mechanisms (Ala72 and Ile74)[57]. Rather these residues

belong to Commu. C (Cys71) and D (Ala72 and Ile74), as is a key signaling residue in the PAS

protein CLOCK (Trp362).[58] None of these residues undergo large conformational changes

at the Cα position, rather side chain reorganizations occur due to steric constraints or H-bond

changes. Combining these experimental observations indicates that the approach outlined

here keenly identifies communities dictating global conformational changes (changes in Cα),

but may not include residues near community junctures that enable adaptation in function

(Ala72, Ile74) or relay the initial chemical event via a subtle conformational change (Cys71,

Ile74). These residues cannot be identified easily by existing computational techniques,

because examining every rotamer/H-bond change for its contribution to a global conforma-

tional response is not feasible due to the computational time necessary to complete such a task.

However, our study indicates these residues likely will reside at the junctures between commu-

nities, thus our approach can narrow down candidate residues that may be subtly important

for the conformational change, or that are excellent targets for mutagenesis to fine tune signal-

ing mechanisms.

A second unexpected observation of the current studies was the inclusion of the Eα/Fα
loop in Commu. B. Currently, the function of the Eα/Fα loop in VVD/LOV signal transduc-

tion is largely unknown. It was initially identified as the “FAD insertion loop” due to its pres-

ence in fungal proteins VVD and WC1, which were found to bind FAD instead of FMN.
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Crystal structures of VVD confirmed contacts between the loop and the adenine moiety of FAD

[4], however, plant photoreceptors Zeitlupe (ZTL), Flavin-Kelch-Fbox-1 (FKF1) and Leucine-

Kelch-Repeat protein 2 (LKP2) all contain a Eα/Fα loop, but selectively bind only FMN.[57]

Similarly, experimental studies of VVD homologs in Trichoderma reesei and Botrytis cinerea
confirmed that these proteins bind FMN, despite the presence of the Eα/Fα loop.[56, 59] Thus,

the purpose of the Eα/Fα loop remains elusive. Given the unstructured and dynamic nature of

the loop, it is particularly challenging to study using traditional experimental approaches.

Here, we identify the Eα/Fα loop as contributing to the initial conformational changes

driving rearrangement of the N-terminus, thus the Eα/Fα loop may be a hidden and largely

unexplored region to modulate signal transduction in LOV proteins. Indeed, there is some

experimental evidence to support such an assertion. Namely, deletions of the Eα/Fα loop were

shown to dampen conformational changes in FKF1 that were observed using Small-Angle-X-

ray scattering.[60] Furthermore, a recent study identified a mutation in the FKF1 Eα/Fα loop

(H105L) that enhanced light-driven activity in designed optogenetic tools.[61] Finally, a possi-

ble role of the Eα/Fα loop was also proposed but not confirmed for the VVD homolog in B.

cinerea, where the primary signaling mechanisms were found to diverge from that in VVD.[59]

Based on our results, computational approaches to identify how the Eα/Fα loop may modulate

signal transduction in LOV proteins, could lead to a new avenue to tune LOV optogenetic tools.

Concluding remarks

In this work, by using a novel computational framework for dissecting protein allostery, we

examined and reconstructed molecular mechanism of Vivid (VVD) protein, which forms a

covalent bond between cofactor and a cysteine residue upon blue light activation, and facili-

tates a large conformational change on N-terminus for circadian signal transduction. By inte-

grating Markov state model, machine learning classification models, and a newly developed

community analysis, we accurately reconstructed the equilibrium distributions for bonded

and non-bonded configurations, and determined structural differences among these states. A

machine learning-based community analysis provided atomistic details of coordinated global

motions of functional regions with statistical significance. We systematically verified the

impacts of the key local covalent bond upon photo excitation to global motions of VVD, and

revealed the importance of A’α/Aβ and Eα/Fα loops in conformational change. The results of

this analysis are consistent with the experiments and validated the robustness of the proposed

approach in identifying functionally relevant molecular switches of allosteric changes. Overall,

this study reveals the detailed mechanism of conformational changes from the dark state to the

light state, and the central role of covalent bond in the VVD protein. Our findings also sug-

gested how manipulating these elements with light in LOV proteins can link chemistry with

modulation of allosteric changes, thereby providing a path for rational engineering of LOV

ontogenetic tools.[1]

Materials and methods

Molecular dynamics simulation

The initial structures of dark and light states of VVD were obtained from the Protein Data

Bank (PDB)[62] with the ID as 2PD7 and 3RH8, respectively. The dark and light state

sequences start from Met36 and His37, respectively. For consistency, residue 36 from the dark

state was removed to maintain the same number of residues in both states. Both structures

include the flavin adenine dinucleotide (FAD) as cofactor. FAD and flavin monocleotide

(FMN) are two types of cofactors commonly existing in the PAS (Per-Arnt-Sim) domain fam-

ily, and the difference between FMN and FAD comes from the adenosine monophosphate
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(AMP) moiety. Because FMN and FAD carry similar biological role, the AMP moiety was

removed from FAD to construct FMN, and the FMN force field from a previous study was

used.[63] Total of four simulation systems were constructed based on crystal dark state struc-

ture with or without the photo-induced covalent bond, and crystal light state structure with or

without this bond. The crystal dark state structure without the photo-induced covalent bond is

referred to as native dark configuration; the crystal light state structure with this bond is

referred to as native light configuration. As comparison, the crystal dark state structure with

the photo-induced covalent bond is referred to as transient dark configuration, and the crystal

light state structure without this bond is referred to as transient light configuration.

Hydrogen atoms were added to the crystal structures, which are subsequently solvated

using explicit water model (TIP3P)[64] and neutralized with sodium cations and chloride

anions. Initially, 10 nanoseconds (ns) of isothermal-isobaric ensemble (NPT) molecular

dynamics (MD) simulations were carried out, and then 1.1 microseconds (μs) of canonical

ensemble (NVT) Langevin MD simulation at 300K were conducted. First 100 ns simulations

were discarded as equilibration, and the following 1 μs simulation was used in the analysis.

Three independent simulations with 1.1 μs length were carried out for each configuration, and

total of 12 μs simulations were applied in the analysis. After solvation of the simulation sys-

tems, the numbers of TIP3P water molecules added are 7240, 7239, 9430, 9429 for native dark,

transient dark, native light, and transient light configurations, respectively. For all simulations,

SHAKE method was applied to constrain all bonds associated with hydrogen atoms. Step size

of 2 femtosecond (fs) was used and simulation trajectories were saved every 100 picoseconds

(ps). Cubic simulation box and periodic boundary condition were applied for all MD simula-

tions. Electrostatic interactions were calculated using particle mesh Ewald (PME) method.[65]

All simulations were carried out using CHARMM[66] simulation package version 41b1 with

the support of graphics processing unit (GPU) calculations based on OpenMM.[67]

Markov state model

MSMBuilder[68] was employed to build Markov state model (MSM). To apply MSM, each

frame needs to be assigned to a microstate, and transition probability was estimated between

different states. To fulfill the “memoryless” assumption underlining MSM, transitions among

microstates need to be faster than transitions among macrostates to avoid disguising impor-

tant kinetic barriers. Therefore, constructing appropriate collective variables (CV) to describe

a microstate is critical.[69, 70] Common methods to generate CVs include time structure

based independent analysis (t-ICA)[71] and principal component analysis (PCA)[72]. In the

current study, the RMSD values calculated with reference to crystal dark and light structures

were used as CVs to describe the microstates. 30 ns were chosen as the lag time, and eight

macrostates were chosen based on the ‘gaps’ in the implied timescale plot. Perron-cluster clus-

ter analysis (PCCA)[73] implemented in MSMBuilder[68] was applied to cluster the micro-

state into the macrostates. All the equilibrium or steady state distribution was estimated from

the transition probability among different macrostates. In building the MSM, the hyperpara-

meters in MSMBuilder remained as the default setting, including ergodic cutoff being turned

on, the reversibility of transition matrix being enforced using maximum likelihood method

(MLE), the prior counts for the transition between states being set as zero, and the sliding win-

dow setting being turned on. The MSMBuilder used in current study is version 3.8.0.

Machine learning

Supervised machine learning model including artificial neural network and tree based models

were used in the current research. A typical artificial neural network model consists of input
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layer, hidden layer and output layer with a number of nodes connected with each other. The

training processes of artificial neural network model is a back propagation processes imple-

mented in scikit-learn as a Python package.[43] The input data are extracted from the featuri-

zation results for each saved simulation frame from trajectories. The target label for each date

point is the sequential number of each macrostate. In the artificial neural network model, start-

ing with a random weight assigned to each node, each cycle of training is to minimize the total

loss regarding with target label using stochastic gradient descent (SGD) algorithm until weight

on each node converges to a minimum. The loss function is defined as

Lossðŷ; y;WÞ ¼ � ylnŷ � ð1 � yÞlnð1 � ŷÞ þ akWk2
; ðEq 1Þ

whereas y is the label predict by the model, ŷ is the correct label, kWk is the weights on the

nodes, and a is named as L2 regulation term to regulate the model to avoid overfitting the

weights.

Other supervised models applied in the current study are tree-based machine learning

models, including Decision Tree[25], Random Forest[26] and One-vs-one Random Forest.

The decision tree is a recursive partition algorithm that groups the samples with the same label

together. For a given data set Q, the algorithm selects the parameter θ = (j, t) consists feature j
and a threshold t to divide the data into two parts Qleft and Qright as the following:

QleftðyÞ ¼ ðx; yÞjxj � t; ðEq 2Þ

QrightðyÞ ¼ ðx; yÞjxj > t; ðEq 3Þ

where x is the training data, y is the training label. The selection of parameter will minimize

the total “impurity” as the following

Q� ¼ argminy
nleft
N
� H QleftðyÞ

� �
þ
nright
N
�H QrightðyÞ

� �� �
; ðEq 4Þ

where H() is the impurity measurement function. Common measurements of the impurity

for a given dataset include cross-entropy measurement −∑k pklogpk and Gini impurity

∑k pk(1 − pk), where pk represents distribution of certain class within total dataset. The scikit-

learn package employed in the current study used the Gini impurity for training purpose.

Therefore, the feature importance is calculated as the sum of all Gini impurity decreasing for

all nodes based on the particular feature. However, the algorithm implemented in decision

tree models is deterministic with the best splitting of input data, which might be biased

towards some features and input conditions.[26] To overcome this, random forest model con-

sisting of multiple decision tree models was applied. In random forest model, each tree classi-

fies the input data with different random seeds, and the final prediction is the average of all

single decision tree models. The feature importance from random forest has more statistical

significance than single decision tree model. One-vs-one random forest model is a further

improvement than the random forest model in multi-class classification task. The one-vs-one

classifier is a common strategy in the multi-class classification task.[74, 75] Instead of training

only one classifier to classify all classes, one classifier was trained specifically for any two classes

pair, and the overall prediction model is weighted by the prediction of all classifiers.[75]

Although computational costs are higher than the single classifier, the statistical significance of

this model is much higher, and overfitting is less likely. In the current study, for the eight meta-

stable states, total 28 random forest classifiers for state pairs among 1 through 8 were trained.

Compared with single random forest model, one-vs-one random forest provides not only the
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overall feature importance, but also feature weights specifically to distinguish any two particu-

lar states.

Pairwise distances for alpha carbons (Cα) were used as features to train the supervised

machine learning models. Pairwise distances are invariant with regard to translation and rota-

tion motions of whole molecule. MSMbuilder package was employed to extract Cα pairwise

distances from the trajectories. All the machine learning models were implemented using sci-

kit-learn package [43] in python. The performance of machine learning model is assessed by

the accuracy of classifier, which is defined as the fraction of the number of the correct classified

data with reference to the number of whole input data.

Machine learning based community analysis

Based on the network and community analysis described in the previous studies,[44, 76] focus-

ing on the community of residues rather than single residues could have more statistical signif-

icance. In this study, we propose to group residues into communities, so that the impacts of

external perturbations on the distribution differences within the same community are mini-

mum. We refer to these communities as machine learning based communities or simply as

ML communities. Therefore, the change of protein motion upon perturbation could be char-

acterized as the relative motion among ML communities related to different states. The feature

weights calculated by the machine learning models were applied to construct ML communi-

ties. The feature weights indicate the distinguishability between the different states distribu-

tions for that specific residue distance. Lower feature weights represent that the specific

distance distribution is less distinguishable between different states, and vice versa. Therefore,

the community analysis is transformed into a local minimum search problem based on

machine learning weights. The Kernighan–Lin algorithm in graph partition problem[77] was

implemented to search the local minimum value.

The protein can be modeled as an undirected graph with nodes represented by the residues,

and edges represented by the pairwise Cα feature weights. The goal of ML community analysis is

to partition the protein graph into several communities and maintain that the total feature impor-

tance in each community is minimized. To apply Kernighan–Lin algorithm,[77] we assume that

there are n communities labeled as C1 through Cn. The total feature importance for any partition

of communities T is defined as the total edge inside each community as the following equation.

T ¼
P

l

P
i;j�Cl

Eij; ðEq 5Þ

where i, j are the residues in Community Cl, and Eij is the feature importance between residues i
and j. The internal edges and external edges for node i are defined as the following. Assume that

node i belongs to Community Cm, internal edges of node i, Ini, is defined as the total edge value

between each node in Cm with node i, and the external edges of node i, Exi, regarding to any other

Community Cq are defined as the total edges of node in Cqwith node i.

Ini ¼
P

j�Cm
Eij; ðEq 6Þ

Exi;Cq ¼
P

j�Cq
Eij: ðEq 7Þ

For each iteration in the algorithm, the ML community partitions can be improved by inserting

node i into other community or swapping node iwith node j from any different community. For

inserting node i into community Cq, the benefit of total edge in communities is calculated as

Tnew � Told ¼ Exi;Ck � Ini: ðEq 8Þ
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For swapping node i from community Cm and node j from community Ck, the benefit of total

edge in communities is calculated as

Tnew � Told ¼ ðExi;Ck þ Exj;CmÞ � ðIni þ InjÞ � 2 � Eij: ðEq 9Þ

After defining insertion and swapping operations, the ML community construction algorithm is

described as the following:

1. The ML communities are first initialized with random partitions.

2. For each node, the benefits of moving into another ML community are calculated to iden-

tify the insertion operation with the maximum benefit.

3. For any pairs of nodes from different ML communities, the benefits of swapping those two

nodes are calculated to identify the swapping operation with the maximum benefit.

4. Either swapping or insertion operation with a higher benefit is chosen.

5. For the new community configuration, steps 2 through 4 are repeated until the benefits of

insertion or swapping are less than 0.

6. The ML community configuration is final when any insertion or swapping operations will

increase the total internal edges within each ML community.

The above algorithm can only reach a local minimum as final solution. Some algorithms

like Simulated Annealing[78] could improve the searching for global minimum. In the current

study, we repeat 10,000 times with different random starting configurations, and the lowest

value was chosen as the final solution.

Root-Mean-Square Deviation (RMSD) and Fluctuation (RMSF)

The conformational change during the MD simulations can be measured by RMSD regard to

a reference structure. For a molecular structure represented by Cartesian coordinate, the

RMSD is defined as the following:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðr0

i � UriÞ
2

N

s

: ðEq 10Þ

The Cartesian coordinate vector r0
i is for the ith atom in the reference structure, ri is the ith

atom in a given structure. U is the rotation matrix to superimpose the given structure with the

reference structure. N is the total number of atoms in the structure. For each simulation, the

RMSD values with reference to the crystal dark and light structures were calculated to quantify

the sampling following a previous study.[36]

Similarly, the fluctuation of atoms during MD simulation with reference to the averaged

structure can be measured by RMSF. The RMSFi of atom i for a given MD trajectory is defined

as

RMSFi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T
PT

j¼1
ðvji � �viÞ

2

r

; ðEq 11Þ

where T is the total number of frames in the given MD trajectory, vji is the coordinate atom i in

the frame j, and �vi is the averaged coordinate of atom i in the given trajectory.
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Transition path theory

After the MSM is established, the transition path theory (TPT) [45, 79] can be applied to esti-

mate the potential transition path related to the conformational changes. Applying TPT for

VVD, the target transition paths should connect an initial state A including the native dark

macrostate (state 3) and a target state B including native light marcrostate (state 4). All other

states are considered as the intermediate states (I). In TPT, the essential concept is “committor

probability”qþi , which is defined as the probability from any state i to reach the target state B

rather than initial state A. By definition, all the microstates i belonging to state A have qþi ¼ 0.

Meanwhile, all the microstates i belonging to state B have qþi ¼ 1. The commitor probabilities

for any other microstates can be calculated by solving the following linear equation:

� qþi þ
P

k2ITikq
þ

k ¼ �
P

k2BTik; ðEq 12Þ

where Tik is the transition probability from state i to state k. The backward-commitor probabil-

ity q�i is simply calculated as q�i ¼ 1 � qþi . After the commitor probability is calculated, the

effective flux from microstate i to j, which is determined by the transitions from A to B passing

through these states, can be calculated as Eq 13

fij ¼ piq
�

i Tijq
þ

j ; ðEq 13Þ

where πi is the equilibrium distribution for state i. The above definition does not consider the

backward flux fji. Therefore, the net flux from A to B transition at edge i, j can be calculated as

f þij ¼ maxð0; fij � fjiÞ. The net flux f þij is essentially the fluxes leaving state A and reaching state

B. Meanwhile, total flux for the transition from A to B per lag time τ can be calculated as the

following

F ¼
P

i2A

P
j=2ApiTijq

þ

j : ðEq 14Þ

The flux from state A to state B can be decomposed into distinct individual pathway Pi. The

pathway decomposition algorithm implemented in MSMBuilder is Dijkstra algorithm, which

searches for the highest flux pathway first, then removes the pathway from net flux matrix by

subtracting the flux of the path from every edge in the path, and continues search until all pos-

sible pathways are identified.

Supporting information

S1 Fig. Comparison between 2D-RMSD, time-structure independent components analysis

(t-ICA), and principal component analysis (PCA) models to construct Markov state model

(MSM). Projection and grouping of VVD simulations as microstates on the surfaces of (a)

2D-RMSD, (b) t-ICA and (c) PCA and (d) t-ICA with five selected features, respectively. Scan-

ning of lag time for the estimation of relaxation timescales for (e) 2D-RMSD, (f) t-ICA and (g)

PCA, and (h) t-ICA with five selected features, respectively. Microstates grouped in eight

macrostates on (i) 2D-RMSD, (j) t-ICA, and (k) PCA and (l) t-ICA with five selected features

surfaces, respectively.

(TIF)

S2 Fig. Averaged Cα RMSD within each microstate in 2D-RMSD, t-ICA, PCA, and t-ICA

with five selected features, respectively.

(TIF)

S3 Fig. Testing the markovian property using Chapman-Kolmogorov method to compare

the probability directly observed in the simulation and the estimated probability using lag
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time as 30ns. (a) VVD dark state 3; (b) VVD light state 4.

(TIF)

S4 Fig. Ensemble distributions based on MD trajectories in (a) non-bonded configurations

and (b) bonded configurations.

(TIF)

S5 Fig. Convergence test of VVD simulations using RMSD and configurational entropy.

(a) RMSD fluctuation along each trajectory; (b) The accumulative configurational entropy

along each trajectory. The configurational entropy plot indicates that the simulations are well

converged after 600ns samplings.

(TIF)

S6 Fig. RMS fluctuation analysis of each residue for bonded and non-bonded configura-

tions. The flexibility of A’α/Aβ loop is enhanced upon formation of photo-induced covalent

bond between cofactor and VVD.

(TIF)

S7 Fig. The representative structures for macrostates 2, 3, 4, 5, and 7, as important for con-

version between the dark and light states of VVD. The structure alignment reveals the signif-

icant conformational changes of Commu. A and B among different macrostates, and shows

that the Commu. C and D do not have significant conformational differences in these macro-

states.

(TIF)

S8 Fig. Flowchart summarizing the general analysis procedure presented in this study.

(TIF)

S1 Table. List of residues in each ML community.

(PDF)

S2 Table. Structural comparison (RMSD in Å) among different macrostates. Communities

C and D are combined for the analysis.

(PDF)

S1 Dataset. Python scripts implemented in this study with sample data.

(ZIP)
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