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Abstract

Positive MV-algebras are negation-free and implication-free subreducts of MV-algebras.
In this contribution we show that a finite axiomatic basis exists for the quasivariety of
positive MV-algebras coming from any finitely generated variety of MV-algebras.

1 Positive subreducts of MV-algebras

Let MV be the variety of MV-algebras [1] in the language containing all the usual definable
operations and constants. Using this signature we denote an MV-algebra M ∈ MV as

M = 〈M,⊕,⊙,∨,∧,→,¬, 0, 1〉.

An algebra

A = 〈A,⊕,⊙,∨,∧, 0, 1〉

is a positive subreduct of M if A is a subreduct of M.

Definition 1. Let F = {⊕,⊙,∨,∧, 0, 1} be a set of function symbols, where ⊕,⊙,∨,∧ are
interpreted as binary operations and 0, 1 as constants. An algebra P of type F is a positive
MV-algebra if it is isomorphic to a positive subreduct of some MV-algebra.

Clearly, every MV-algebra gives rise to a positive MV-algebra and every bounded distributive
lattice is a positive MV-algebra. In fact, positive MV-algebras are to MV-algebras as distribu-
tive lattices are to Boolean algebras.

Example 1 (Lower Chang algebra). Let C be Chang algebra and

RadC = {0, ε, 2ε, . . . }

be its radical, where the symbol ε denotes the least positive infinitesimal. Then the algebra Cl

having the universe RadC ∪ {1} is a positive subreduct of C.

Example 2 (Non-decreasing McNaughton functions). For each natural number n, the free n-
generated MV-algebra is isomorphic to the algebra Fn of McNaughton functions [0, 1]n → [0, 1].
Then the algebra F≤

n of nondecreasing McNaughton functions is a positive subreduct of Fn.

The class of all positive MV-algebras is denoted by P. Since P is a class of algebras
containing the trivial algebra and closed under isomorphisms, subalgebras, direct products and
ultraproducts, it is a quasivariety. The following example shows that P is not a variety.
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Example 3. Let θ be an equivalence relation on the algebra Cl from Example 1 with classes
{0}, {ε, 2ε, . . . }, and {1}. Then θ is a P-congruence on Cl. The quotient Cl/θ is isomorphic to
the three-element algebra {0̄, ε̄, 1̄} that satisfies the identities ε̄⊕ ε̄ = ε̄ and ε̄⊙ ε̄ = 0̄. However,
the two equations cannot hold simultaneously in any MV-algebra. Hence, Cl/θ is not a positive
MV-algebra.

It can be shown that the quasivariety P is generated by the positive reduct of the stan-
dard MV-algebra [0, 1]. Moreover, the free n-generated positive MV-algebra is isomorphic to
the positive subreduct F≤

n from Example 2.

2 Axiomatization

We define a class Q of algebras of type F = {⊕,⊙,∨,∧, 0, 1}. Specifically, an algebra A =
〈A,⊕,⊙,∨,∧, 0, 1〉 belongs to Q if A satisfies the following identities and quasi-identities:

1. 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice

2. 〈A,⊕, 0〉 and 〈A,⊙, 1〉 are commutative monoids

3. x⊕ 1 = 1 and x⊙ 0 = 0

4. x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z) and x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z)

5. x⊕ (y ∨ z) = (x⊕ y) ∨ (x⊕ z) and x⊙ (y ∧ z) = (x⊙ y) ∧ (x⊙ z)

6. x⊕ y = (x⊕ y)⊕ (x⊙ y)

7. x⊕ y = (x ∨ y)⊕ (x ∧ y)

8. x⊙ y = (x⊙ y)⊙ (x⊕ y)

9. If x⊕ y = x, then z ⊕ y ≤ z ∨ x

10. If x⊕ y = x⊕ z and x⊙ y = x⊙ z, then y = z

Every positive MV-algebra is a member of Q since 1.–10. are valid for any MV-algebra.
The main open problem is to prove the opposite, that is, to show that any A ∈ Q is a positive
MV-algebra. We solve this problem for those A ∈ Q satisfying additional identities of a special
form. Namely let V be any finitely generated variety of MV-algebras. Di Nola and Lettieri
proved in [3] that there exists a finite set S of identities axiomatizing the variety V within MV,
and every identity in S uses only terms of the language {⊕,⊙,∨,∧, 0, 1}.

Theorem 1. The quasivariety of positive subreducts of V is axiomatized by the quasi-identities
1.–10. and the identities from S.

The essential ingredient of the proof of Theorem 1 is a certain non-trivial generalization of
the technique of good sequences, which was introduced by Mundici [2]. It remains an open
problem to extend this result beyond finitely generated varieties of MV-algebras, possibly using
an axiomatization different from 1.–10.
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