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ABSTRACT 21 

Microplate immunocapture is an inexpensive method for the concentration of foodborne 22 

pathogens using an antibody-coated microplate. The objective of this study was to determine the 23 

efficacy of microplate immunocapture as an alternative to traditional enrichment for 24 

concentrating Listeria monocytogenes to levels detectable with selective plating or real-time 25 

PCR. L. monocytogenes isolates serologically characterized as Type 1 (1/2a) and Type 4 26 

(untypeable) were grown overnight and diluted to 100 to 106 colony-forming units (CFU)/mL. 27 

The isolates were used to optimize microplate immunocapture in tryptic soy broth with 0.6% 28 

yeast extract (TSBYE), skim milk, and queso fresco samples. Following microplate 29 

immunocapture, the bacteria were streaked onto polymyxin-acriflavine-LiCl-ceftazidime-30 

aesculin-mannitol (PALCAM) agar, followed by incubation at 37 °C for 24 ± 2 h. The bacteria 31 

also underwent real-time polymerase chain reaction (PCR). The optimized microplate 32 

immunocapture method was tested in triplicate for its ability to capture L. monocytogenes in 33 

broth and food samples. Overall recovery rates for L. monocytogenes in food samples at cell 34 

populations of 100, 102, and 104 CFU/25 g using microplate immunocapture with real-time PCR 35 

were 88.9%, 94.4%, and 100%, respectively. Recovery in these matrices using microplate 36 

immunocapture with selective plating was comparatively lower, at 0%, 44.4%, and 100%, 37 

respectively. Conventional culture method showed 100% detection at each inoculation level. 38 

Microplate immunocapture combined with real-time PCR shows high potential to reduce the 39 

time required for detection, with concentration of L. monocytogenes to detectable levels within 40 

1-4 h. The incorporation of a short enrichment step may improve recovery rates at low cell 41 

levels. 42 

Keywords: Microplate immunocapture; cheese; milk; real-time PCR; Listeria monocytogenes 43 
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1.  Introduction 44 

Listeria monocytogenes is a facultative anaerobic bacterium that is especially problematic 45 

due to its ability to survive and grow at refrigerated conditions (FDA, 2012).  This pathogen has 46 

the highest hospitalization rate (94.0%) and the third-highest death rate (15.9%) among 47 

foodborne pathogens in the United States (Scallan et al., 2011). Common symptoms caused by L. 48 

monocytogenes are fever, muscle aches, nausea, and vomiting (FDA, 2012). However, in more 49 

serious cases it can cause septicemia and meningitis, as well as induce stillbirth or miscarriage in 50 

pregnant women. Listeriosis is often linked to raw or ready-to-eat foods, such as fresh produce, 51 

unpasteurized milk, smoked fish, and deli meats. There are 13 known serotypes of L. 52 

monocytogenes, with strains of serotypes 1/2a, 1/2b, and 4b responsible for the majority of 53 

foodborne infections. The U.S. Food and Drug Administration (FDA) has a zero-tolerance policy 54 

for L. monocytogenes in ready-to-eat foods and it is consistently one of the most common 55 

pathogens associated with food recalls in the United States (FDA, 2018).  56 

 Dairy products, such as milk and cheeses, are a major cause of outbreaks linked to L. 57 

monocytogenes (CDC, 2017).  For example, L. monocytogenes was among the top three 58 

pathogens linked to 90 foodborne outbreaks associated with cheese in the United States from 59 

1998 to 2011 and it was associated with 5 of the 6 deaths reported (Gould, Mungai, & 60 

Behravesh, 2014).  Mexican-style cheese, including queso fresco, was the main type of cheese 61 

associated with illness from L. monocytogenes during this time period (Gould et al., 2014). 62 

Queso fresco is a soft, unaged cheese that is susceptible to Listeria survival and growth due to its 63 

relatively high moisture content and low acidity (Moreno-Enriquez et al., 2007).    64 

 Cultural methods for the isolation of L. monocytogenes involve a series of pre-enrichment 65 

and enrichment steps, followed by plating on selective/differential agar (Hitchens, Jinneman, & 66 
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Chen, 2016). This process is very time-consuming, usually requiring 2-4 days, not including the 67 

time required for confirmation of isolated colonies. Bacterial separation and concentration 68 

methods have the potential to reduce or possibly eliminate the need for pre-enrichment and 69 

enrichment steps, thereby significantly shortening the time required for isolation (Stevens & 70 

Jaykus, 2004). These techniques are also advantageous because they can be combined with rapid 71 

detection methods, such as polymerase chain reaction (PCR) or enzyme-linked immunosorbent 72 

assay (ELISA), further reducing the time to detection.  73 

Immunomagnetic separation is a widely used method for bacterial separation and 74 

concentration; however, it is relatively expensive due to the need for antibody-coated beads 75 

(Amagliani et al., 2006; Chen et al., 2017; Ma et al., 2014). Non-magnetic immunocapture is an 76 

inexpensive alternative that relies on the binding of antibodies to a solid plastic support (Arbault, 77 

Desroche, & Larose, 2014). This technique has been successfully used for the concentration of 78 

foodborne pathogens in a limited number of studies (Arbault, Larose, Desroche, & Nexidia, 79 

2014; Fakruddin, Hossain, & Ahmed, 2017; Molloy, Brydon, Porter, & Harris, 1995). For 80 

example, Arbault et al. (2014) were able to concentrate Escherichia coli O157:H7 from ground 81 

meat and raw milk cheese samples with an antibody-coated microplate. Using a combination of 82 

the microplate and a subculture step (3-5 h), E. coli was recovered at levels of 105 CFU as 83 

compared to 103 – 104 CFU with magnetic beads. In another study, microplate immunocapture 84 

was evaluated as a potential method for the concentration of Vibrio cholera, Salmonella enterica 85 

serovar Typhi, and Shigella flexneri from a variety of food samples (Fakruddin et al., 2017). 86 

Overall, the authors found that microplate immunocapture combined with PCR or selective 87 

plating allowed for improved recovery of the target pathogens from foods as compared to 88 

traditional culture methods.  89 
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PCR is a well-established technique for the rapid identification of foodborne pathogens 90 

and it is widely recognized for its specificity and sensitivity (Zhao, Lin, Wang, & Oh, 2014).  91 

Real-time PCR is advantageous over traditional PCR because it enables continuous monitoring 92 

of the results as the reaction proceeds and eliminates the need for post-PCR processing steps. 93 

There are numerous commercially available kits for the detection of L. monocytogenes using 94 

real-time PCR (Law, Ab Mutalib, Chan, & Lee, 2015) and a real-time PCR assay for detection of 95 

L. monocytogenes has been published in the FDA’s Bacteriological Analytical Method (BAM) 96 

(FDA, 2015). Although PCR-based methods are susceptible to inhibition from compounds in the 97 

food matrix, concentration methods such as microplate immunocapture can help to overcome 98 

this by separating the target organism from the rest of the sample (Fakruddin et al., 2017; 99 

Stevens & Jaykus, 2004).  100 

 The specific aims of this study were to: (1) determine the ability of microplate 101 

immunocapture combined with selective plating or real-time PCR to detect L. monocytogenes in 102 

a pure broth solution within 1 workday (8 h), (2) optimize microplate immunocapture as a means 103 

of concentrating L. monocytogenes in milk and cheese samples for subsequent detection with 104 

selective plating or real-time PCR, and (3) determine the sensitivity and time to detection for 105 

microplate immunocapture combined with selective plating or real-time PCR. 106 

2. Materials and methods 107 

2.1 Media and bacterial strains  108 

All media were obtained from Becton, Dickinson and Company [(BD) (Franklin Lakes, 109 

NJ)] unless otherwise stated. Two environmental isolates of L. monocytogenes were obtained 110 

from the U.S. Food and Drug Administration (FDA) Pacific Regional Laboratory Southwest 111 

(Irvine, CA). The isolates were serologically categorized as Type 1 (T1; serotype 1/2a) and Type 112 
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4 (T4; untypeable) by a combination of slide agglutination and multiplex PCR (Burall, Simpson, 113 

& Datta, 2011; Doumith, Buchrieser, Glaser, Jacquet, & Martin, 2004) using modifications 114 

described in Hellberg et al. (2013). The isolates were streaked to Tryptic Soy Agar (TSA) and 115 

incubated overnight at 37 °C, then transferred to tryptic soy broth with 0.6% yeast extract 116 

(TSBYE) and incubated overnight at 37 °C to concentrations of 108 CFU/mL. Concentration 117 

levels were determined by optical density (OD) measurement based on a logarithmic growth 118 

curve (not shown) and verified by plate count on TSA. Bacterial cultures from the T1 and T4 119 

isolates were grown separately. The cultures were then serially diluted to concentrations of 106 120 

CFU/mL, 104 CFU/mL, 102 CFU/mL, and 100 CFU/mL in TSBYE. For T1 + T4 mixed culture 121 

testing, equivalent amounts of the T1 and T4 cultures (108 CFU/mL) were combined prior to 122 

carrying out serial dilutions.  123 

2.2 Microplate preparation 124 

Polystyrene 96-well microtiter microplates separable into 8-well strips (Fisher Scientific, 125 

Waltham, MA) were prepared for the concentration of L. monocytogenes according to a protocol 126 

from Abcam (http://www.abcam.com/protocols/sandwich-elisa-protocol-1). Anti-Listeria 127 

Polyclonal Antibody, HRP conjugate PA1-73129 (Invitrogen, Carlsbad, CA) was diluted to 1-10 128 

µg/mL in carbonate-bicarbonate buffer. The diluted antibodies were adhered to the inner surface 129 

of the microplate by transferring 200 µL of the solution to each of the wells. The plates were 130 

then covered with plastic and held overnight (8-16 h) at 4 °C. The following day, the plates were 131 

rinsed with phosphate buffered saline solution (PBS), pH 7.4, blocked with a 5% skim milk/PBS 132 

solution, held at room temperature for 2 h, and then rinsed a final time with PBS. Following this 133 

process, the plates were used in microplate immunocapture, as described below, or stored at -134 

20 °C until needed.  135 
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2.3 Optimization of microplate immunocapture 136 

The antibody-coated microplates prepared above were first tested with mixed cultures of 137 

L. monocytogenes Types 1 and 4 in TSBYE to optimize the method in the absence of a food 138 

matrix. The T1 + T4 cultures were prepared as described above to allow for concentrations of 139 

106 CFU/mL, 104 CFU/mL, 102 CFU/mL, and 100 CFU/mL (Singh, Batish, & Grover, 2012). A 140 

blank sample containing TSBYE was run alongside each set of experiments as a negative culture 141 

control. Microplate immunocapture was carried out in a biosafety hood and optimized for the 142 

number of fill cycles (1-4), hold times (15-60 min), antibody concentration (1-10 µg/mL), and 143 

use of a plate shaker (Bio Rad, Hercules, CA) at speeds of 10-120 RPM. For each fill cycle, 1.6 144 

mL of each inoculated broth or control sample were transferred to 8 wells of the antibody-coated 145 

plate, resulting in 200 µL of sample per well. The sample was then incubated at room 146 

temperature for a specific period of time (i.e., hold time) before being discarded and replaced in 147 

the next fill cycle. With each fill cycle, an additional 1.6 mL of the sample (200 µL per well) was 148 

added, resulting in a total volume of 6.4 mL per sample (800 µL per well) when 4 fill cycles 149 

were carried out. 150 

Following microplate immunocapture, all 8 wells were scraped for each sample using a 151 

disposable sterile inoculating loop. The loop was then streaked onto polymyxin-acriflavine-LiCl-152 

ceftazidime-aesculin-mannitol (PALCAM) agar. Next, all 8 wells were scraped again for each 153 

sample using a second sterile inoculating loop. The second loop was then mixed with 100 µl 154 

sterile water in a sterile Safe-lock microcentrifuge tube (Eppendorf, Hamburg, Germany) to 155 

release bacterial cells for DNA extraction, as described below. Positive culture controls were 156 

prepared using the 108 CFU/mL broth sample, which was streaked directly to PALCAM or 157 

transferred to a microcentrifuge tube for DNA extraction using a sterile disposable loop. The 158 
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PALCAM plates were incubated for 24 ± 2 h at 37 °C. The plates were then examined for typical 159 

L. monocytogenes growth, consisting of grey-green colonies with accompanied blackening of the 160 

agar. Once optimal microplate immunocapture conditions were determined using the PALCAM 161 

plates, the T1+T4 mixed culture as well as individual T1 and T4 cultures were tested in triplicate  162 

using the optimized procedure (Table 1). 163 

 164 

Table 1. Optimized conditions for microplate immunocapture (IC) for each matrix.  Total 165 

working time is given for microplate immunocapture combined with either selective plating on 166 

PALCAM or detection with real-time PCR (qPCR) and includes sample preparation time. 167 

 168 

2.4 Preparation and microplate immunocapture of food samples 169 

The microplate immunocapture method was next optimized with skim milk (BD) 170 

rehydrated with sterile deionized water and queso fresco cheese purchased at a local grocery 171 

store. Prior to use in the inoculation trials, the cheese samples were first confirmed negative for 172 

the presence of L. monocytogenes using the conventional culture method described in the BAM, 173 

Chapter 10 (Hitchens et al., 2016).  174 

Matrix # of 
fill 
cycles 

Cycle 
hold 
time 
(min) 

L. 
monocytogenes 
antibody 
concentration 
(µg/mL) 

Plate 
shaker 
speed 
(RPM) 

Total time required (h) 

IC + PALCAM IC + qPCR 

TSBYE  3 15 1 10 24.8 ± 2 3.1 

Skim 
milk 

4 30 1 10 26 ± 2 4.3 

Queso 
fresco 
cheese 

4 45 1 10 27 ± 2 5.3 
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Milk and cheese samples (25 g) were inoculated with 1 mL of L. monocytogenes mixed 175 

T1 + T4 cultures prepared as described above, resulting in final concentrations in the food 176 

product of: 106 CFU/25 g, 104 CFU/25 g, 102 CFU/25 g, and 100 CFU/25 g. The samples were 177 

then allowed to sit at room temperature under a biosafety hood for 2 h (Singh et al., 2012). An 178 

un-inoculated sample was included in each trial as a negative control. The controls underwent 179 

the same microplate immunocapture treatment as the inoculated samples. Each 25 g sample was 180 

diluted with 225 mL TSBYE and then 1.6 mL of the mixture was transferred to 8 wells of the 181 

antibody-coated plate, resulting in 200 µL of sample per well. A broth sample containing 108 182 

CFU/mL of L. monocytogenes T1 + T4 mixed culture was included in each trial as a positive 183 

control. Microplate immunocapture with milk and cheese samples was carried out under a 184 

biosafety hood at room temperature using an antibody concentration of 1 µg/mL and a plate 185 

shaker speed of 10 RPM. The procedure was optimized for the number of fill cycles (2-4) and 186 

hold times (15-60 min). 187 

After microplate immunocapture, the wells of the microplate were scraped using an 188 

inoculating loop and streaked onto PALCAM agar or transferred to sterile Safe-lock 189 

microcentrifuge tubes containing 100 µl sterile water for DNA extraction. The PALCAM plates 190 

were incubated for 24 ± 2 h at 37 °C. The plates were then examined for typical L. 191 

monocytogenes growth. Once optimal microplate immunocapture conditions were determined 192 

using PALCAM plates, the milk and cheese samples were inoculated with the T1 + T4 mixed 193 

culture as well as individual T1 and T4 cultures and tested in triplicate using the optimized 194 

protocol (Table 1). Each inoculated sample was also enriched in buffered Listeria enrichment 195 

broth (BLEB) and plated in triplicate on PALCAM agar using the conventional culture method 196 

described in the BAM, Chapter 10 (Hitchens et al., 2016).   197 
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2.5 Real-time polymerase chain reaction  198 

DNA extraction was carried out by incubating samples in a dry heat block at 100 °C for 199 

10 min, followed by cooling on ice and then centrifugation at 12,000 x g for 5 min (Amagliani et 200 

al., 2006). The supernatant was transferred to a fresh microcentrifuge tube and stored at -20 °C 201 

until use in real-time PCR. Real-time PCR was carried out in a Rotor-Gene Q thermocycler 202 

(Qiagen, Hilden, Germany) using the L. monocytogenes-specific primers and probes detailed in 203 

FDA (2015). Each reaction tube contained 0.5 lyophilized OmniMix-HS beads (Takara Bio, 204 

Dalian, China), 0.625 µL each of 10 µM forward and reverse primers (0.25 µM final 205 

concentration), 0.25 µL of 10 µM probe (0.1 µM final concentration), 5 µL extracted template 206 

DNA, and sterile distilled water to bring the final reaction volume to 25 µL per sample. PCR 207 

cycling conditions started with an initial activation of 94 °C for 60 s, followed by 45 cycles of 208 

94 °C for 10 s and 60 °C for 45 s. Each real-time PCR run included a negative non-template 209 

control and three positive DNA controls originating from the bacterial culture: undiluted 210 

bacterial DNA and two tenfold serial dilutions of bacterial DNA (1:10 and 1:100).  The results 211 

were analyzed using Rotor-Gene Q software and reported on a qualitative basis, where the 212 

presence of a cycle of quantitation (Cq) value indicated a positive sample. 213 

3. Results and discussion 214 

3.1 Microplate immunocapture with broth samples 215 

The conditions for microplate immunocapture were successfully optimized using the 216 

mixed T1 + T4 culture of Listeria monocytogenes in TSBYE combined with plating on 217 

PALCAM agar. During optimization trials, it was found that the bacteria could be detected at a 218 

starting inoculation of 100 CFU/mL when 4 fill cycles were used with hold times of 1 h each, 219 

combined with the lowest antibody concentration tested (1 µg/mL). However, reducing either the 220 
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hold time or the number of fill cycles resulted in a reduction in the sensitivity of the method, 221 

with detection starting at 102 CFU/mL, even when the antibody concentration was increased to 222 

10 µg/mL. Interestingly, use of the plate shaker at speeds of 80-120 RPM did not reduce the 223 

number of fill cycles or the hold time required for detection at 100 CFU/mL. On the other hand, 224 

when the speed was reduced to 10-40 RPM, detection at 100 CFU/mL was possible using only 3 225 

fill cycles and hold times of 15 min each, combined with an antibody concentration of 1 µg/mL. 226 

This reduced the overall time required for concentration down to 75 min, as compared to 4 h in 227 

the absence of the plate shaker. Table 1 shows the optimal conditions determined for microplate 228 

immunocapture with broth. 229 

 Table 2 shows the results of triplicate testing of broth samples using the optimized 230 

conditions with L. monocytogenes T1, T4, and the mixed T1 + T4 culture. Overall, these 231 

conditions allowed for detection of the strains (individually or mixed) at a level of 100 CFU/mL 232 

when combined with selective plating on PALCAM or detection with real-time PCR. The results 233 

for all positive and negative controls were as expected. Microplate immunocapture combined 234 

with selective plating showed a slightly higher overall detection rate, with 35/36 detections 235 

(97.2%) on PALCAM across all inoculation levels compared to 33/36 detections (91.7%) with 236 

real-time PCR. Differences in the results occurred only at the lowest inoculation level (100 237 

CFU/mL), with 8/9 detections (88.9%) on PALCAM and 6/9 detections (66.7%) with real-time 238 

PCR. Microplate immunocapture combined with selective plating or real-time PCR allowed for 239 

positive detections in 100% of replicates tested at inoculation levels of 102 to 106 CFU/mL. Real-240 

time PCR was less consistent in detecting L. monocytogenes at the lowest inoculation level (100 241 

CFU/mL), with detection in only 2 of the 3 replicates for the individual and mixed cultures. On  242 

the other hand, plating on PALCAM agar at the lowest inoculation level allowed for consistent  243 
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Table 2. Rates of L. monocytogenes detection for the immunocapture (IC) method combined with selective plating on PALCAM or 

real-time PCR (qPCR) at a range of cell concentrations.  The results of detection in food samples using conventional culture with no 

IC are included for comparison.  

Method L. monocytogenes 
type 

Rate of detection (no. positive samples/total no. samples) 

Broth (CFU/mL) 
100    102    104    106  

Milk (CFU/25 mL) 
100    102    104    106 

Cheese (CFU/25 g) 
100    102    104    106 

IC + PALCAM T1 3/3    3/3    3/3   3/3 0/3    2/3    3/3   3/3 0/3    0/3    3/3   3/3 

T4 2/3    3/3    3/3   3/3 0/3    3/3    3/3   3/3 0/3    0/3    3/3   3/3 

T1 + T4 3/3    3/3    3/3   3/3 0/3    3/3    3/3   3/3 0/3    0/3    3/3   3/3 

 Total % 88.9   100   100  100 0        88.9   100   100 0        0        100   100 

IC + qPCR T1 2/3    3/3    3/3   3/3 3/3    3/3    3/3   3/3 3/3    3/3    3/3   3/3 

T4 2/3    3/3    3/3   3/3 3/3    3/3    3/3   3/3 3/3    3/3    3/3   3/3 

T1 + T4 2/3    3/3    3/3   3/3 2/3    2/3    3/3   3/3 2/3    3/3    3/3   3/3 

 Total % 66.7  100    100   100 88.9   88.9  100  100 88.9  100    100   100 

Conventional 
culture 

T1 NA 3/3    3/3    3/3   3/3 3/3    3/3    3/3   3/3 

T4 NA 3/3    3/3    3/3   3/3 3/3    3/3    3/3   3/3 

T1 + T4 NA 3/3    3/3    3/3   3/3 3/3    3/3    3/3   3/3 

 Total % NA 100    100    100   100 100    100    100  100 
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detection in all samples except one of the three T4 replicates. Combining the time for microplate 244 

immunocapture concentration with traditional plating, positive results can be determined in 24.8 245 

h ± 2 h while combining the concentration method with real-time PCR can allow for a positive 246 

detection in 3.1 h (Table 1). These times are substantially less compared to the traditional 247 

enrichment-based method, which takes at least 48 ± 4 h for isolation of L. monocytogenes.3.2 248 

Microplate immunocapture with skim milk samples 249 

The optimal conditions determined for the broth samples yielded no detection at the 250 

lowest inoculation levels (100 – 102 CFU/25 mL) for skim milk inoculated with the T1 + T4 251 

mixed culture and plated on PALCAM agar. Therefore, further optimization was carried out for 252 

microplate immunocapture of L. monocytogenes in skim milk within the pre-determined range of 253 

parameters. This resulted in detection with PALCAM at a starting inoculation of 102 CFU/25 mL 254 

using the optimized run conditions (Table 1). 255 

 Table 2 shows the results of triplicate testing of skim milk samples using the optimized 256 

conditions with L. monocytogenes T1, T4, and the mixed T1 + T4 culture. The results for all 257 

positive and negative controls were as expected. Overall, these conditions allowed for detection 258 

of the strains (individually or mixed) at a level of 102 CFU/25 mL when combined with selective 259 

plating on PALCAM and at a level of 100 CFU/25 mL when using real-time PCR. Microplate 260 

immunocapture combined with real-time PCR showed a greater overall detection rate, with 261 

34/36 detections (94.4%) across all inoculation levels, as compared to 26/36 detections (72.2%) 262 

using PALCAM. Similar to the broth results, differences between the two detection methods 263 

occurred only at the lower inoculation levels. At the 100 CFU/25 mL and 102 CFU/ 25 mL levels, 264 

16/18 detections (88.9%) were observed using real-time PCR with only 8/18 detections (44.4%) 265 

using PALCAM. However, both of these rates were lower than that obtained using the 266 
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conventional culture method, which showed 100% positive detections across all inoculation 267 

levels. A previous study on V. cholerae, S. enterica Typhi, and S. flexneri in meat and seafood 268 

samples reported overall detection rates of 56.0-65.3% for microplate immunocapture combined 269 

with selective plating and rates of 62.7-69.3% for microplate immunocapture combined with 270 

PCR (Fakruddin et al., 2017). These rates are based on the combined detections across all 271 

inoculation levels (101 CFU/g to 105 CFU/g) for each pathogen tested. Similar to the current 272 

study, Yang, Qu, Wimbrow, Jiang, and Sun (2007) reported detection of L. monocytogenes in 273 

milk samples at the lowest inoculation level tested (102 CFU/0.5 mL) when nanoparticle-based 274 

immunomagnetic separation was combined with real-time PCR.  275 

As shown in Table 2, the use of microplate immunocapture combined with selective 276 

plating or real-time PCR allowed for positive detections in 100% of replicates tested at 277 

inoculation levels of 104 to 106 CFU/25 mL.  At both the 100 and 102 CFU/25 mL levels, one of 278 

the three replicates of L. monocytogenes T1 + T4 was negative with PCR, however all other 279 

triplicate runs maintained 100% positive results. By comparison, a previous study utilizing 280 

immunomagnetic separation combined with PCR allowed for detection of 5 CFU/mL L. 281 

monocytogenes in 50% of milk samples and detection of 10 CFU/mL in 100% of milk samples 282 

(Amagliani et al., 2006). On the other hand, microplate immunocapture combined with 283 

PALCAM was unable to detect L. monocytogenes in any of the replicates tested at the lowest 284 

inoculation level.  285 

As shown in Table 1, use of microplate immunocapture combined with selective plating 286 

can shorten the time for isolation of L. monocytogenes in milk to 26 ± 2 h, while the use of 287 

microplate immunocapture combined with real-time PCR can reduce the time to detection to 4.0 288 

h. It is possible that the sensitivity of the method could be improved by increasing the number of 289 
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fill cycles or by combining the immunocapture assay with a short pre-enrichment period, while 290 

still allowing for a significantly shorter detection time than conventional methods. 291 

3.3 Microplate immunocapture with queso fresco samples 292 

Similar to the decrease in sensitivity observed for selective plating when moving from 293 

TSBYE to skim milk samples, the results with queso fresco cheese showed decreased sensitivity 294 

as compared to those with skim milk. When the optimized microplate immunocapture 295 

parameters for skim milk were applied to queso fresco, detection of L. monocytogenes with 296 

selective plating was only possible at the highest inoculation level (106 CFU/25 g). Therefore, 297 

further optimization was carried out with queso fresco samples to improve the sensitivity of the 298 

method. The optimized conditions allowed for detection of L. monocytogenes with selective 299 

plating starting at an inoculation level of 104 CFU/25 g (Table 1).  300 

 Table 2 shows the results of triplicate testing of queso fresco cheese samples using the 301 

optimized conditions with L. monocytogenes T1, T4, and the mixed T1 + T4 culture. All positive 302 

and negative control results were as expected. Overall, these conditions allowed for detection of 303 

the strains (individually or mixed) at a level of 104 CFU/25 g when combined with selective 304 

plating on PALCAM and at a level of 100 CFU/mL when using real-time PCR. As with the milk 305 

samples, microplate immunocapture combined with real-time PCR showed a higher overall 306 

detection rate, with 35/36 detections (97.2%) across all inoculation levels, as compared to 18/36 307 

detections (50.0%) with PALCAM. The differences in detection rates occurred at the lowest 308 

inoculation levels (100 CFU/25 g and 102 CFU/25 g), with 17/18 detections (94.4%) for real-time 309 

PCR and 0/18 detections (0%) for PALCAM. In contrast, the conventional culture method 310 

showed 100% positive detection across all inoculation levels. 311 
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The overall detection rates for microplate immunocapture combined with real-time PCR 312 

for the cheese samples were higher than those reported by Fakruddin et al. (2017) for V. 313 

cholerae, S. enterica Typhi, and S. flexneri in meat and seafood samples (62.7-69.3%) inoculated 314 

at levels of 101 CFU/g to 105 CFU/g.  However, the rate of detection determined in the current 315 

study (50%) using microplate immunocapture combined with selective plating for the cheese 316 

samples was slightly lower than the rates reported by Fakruddin et al. (2017) for meat and 317 

seafood samples (56.0-65.3%). Similar to the results obtained for microplate immunocapture 318 

combined with real-time PCR in the current study, Mao et al. (2016) reported detection of L. 319 

monocytogenes in lettuce at the lowest inoculation level tested (101 CFU/g) using a combination 320 

of immunomagnetic separation and multiplex PCR. Likewise, Duodu, Mehmeti, Holst-Jensen, 321 

and Loncarevic (2009) used a combination of filtration, immunomagnetic separation, and real-322 

time PCR to detect L. monocytogenes in smoked salmon at levels of 101 CFU/g. 323 

As shown in Table 2, the use of microplate immunocapture combined with selective 324 

plating or real-time PCR allowed for positive detections in 100% of replicates tested at 325 

inoculation levels of 104 to 106 CFU/25 g. One of the three replicates of the T1+T4 mixed culture 326 

at the 100 CFU/25 g inoculation level was not detected by real-time PCR, but all other samples 327 

and replicates were detected by this method. Overall, the sensitivity in detecting L. 328 

monocytogenes decreases when moving from broth to skim milk and then to cheese for detection 329 

with selective plating but not for real-time PCR.  330 

As shown in Table 1, use of microplate immunocapture combined with selective plating 331 

can reduce the time for isolation of L. monocytogenes in cheese samples to 27 ± 2 h, while use of 332 

microplate immunocapture combined with real-time PCR can allow for detection of positive 333 
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samples within 4.5 h. As with the milk samples, the sensitivity of the method may be improved 334 

by increasing the number of fill cycles or by adding a short pre-enrichment period. 335 

3.4 Mathematical explanation of immunocapture results 336 

Microplate immunocapture coupled with real-time PCR or selective plating was capable 337 

of detecting L. monocytogenes isolates in 100% of food samples inoculated at 104 and 106 338 

CFU/25 g. However, these methods did not perform as well as conventional culture for the 339 

detection of L. monocytogenes at lower inoculation levels (100 and 102 CFU/25 g). At these 340 

levels, microplate immunocapture showed a detection rate of 91.7% when coupled with real-time 341 

PCR and 22.2% when coupled with selective plating on PALCAM. In comparison, the 342 

conventional culture method showed consistent levels of sensitivity when moving from skim 343 

milk to cheese and had a 100% detection rate across all inoculation levels. These results are in 344 

agreement with the limit of detection reported in the BAM for L. monocytogenes, at <1 CFU per 345 

analytical unit (Hitchens et al., 2016).  346 

Microplate immunocapture combined with selective plating allowed for detection of L. 347 

monocytogenes in cheese samples down to levels of 104 CFU/25 g. This detection limit can be 348 

explained mathematically, even when not considering incubation time following inoculation or 349 

hold times in the microplate. Inoculation started at 10,000 cells (104 CFU/25 g) and 225 mL of 350 

TSBYE was added, resulting in a concentration of 10,000 cells in 250 mL. This equates to 40 351 

cells for every mL (40 CFU/mL). Considering that 4 fill cycles were used with the cheese 352 

samples (total volume of 6.4 mL), it is likely that detection would be possible with selective 353 

plating.   354 

Detection of L. monocytogenes was possible in the majority (89%) of milk samples 355 

inoculated at 102 CFU/25 g. Theoretically, after the addition of 225 mL TSBYE, this inoculation 356 
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level should have contained 100 cells in 250 mL (0.4 CFU/mL). The use of 4 fill cycles at 1.6 357 

mL each would have resulted in exposure of the microplate wells to 2.56 cells. However, this 358 

does not take into account the 2 h sample incubation following inoculation or the microplate hold 359 

times in TSBYE broth. The hold times for skim milk were 30 min for a total of 2 h after all 4 fill 360 

cycles were completed. During this time, the bacteria would have likely continued to grow both 361 

within the microplate wells and in the bag containing the inoculated sample. Given the 362 

generation time for L. monocytogenes is approximately 1-2 h in growth medium or skim milk at 363 

room temperature, the final concentration of cells in the sample could have reached 1.6-6.4 364 

CFU/mL (Katoh, 1989; Petran & Zottola, 1989; Rosenow & Marth, 1987). The cheese samples 365 

were not capable of positive results at this level most likely due to food matrix interference. Even 366 

considering hold times and multiple fill cycles, small particles of cheese were seen in the 367 

microplate and were unavoidable, making capturing such low concentrations of L. 368 

monocytogenes cells difficult. 369 

Microplate immunocapture combined with real-time PCR showed detection of L. 370 

monocytogenes down to 100 CFU/25 g in food samples. Theoretically, after the addition of 225 371 

mL TSBYE, this inoculation level would be expected to contain 1 cell in 250 mL (0.004 372 

CFU/mL). The use of 4 fill cycles at 1.6 mL each would have resulted in exposure of the 373 

microplate wells to 0.026 cells. However, this does not take into account the 2 h incubation 374 

following inoculation or the hold times in TSBYE broth. Hold times were 30 min for skim milk 375 

and 45 min for cheese, resulting in a total of 2-3 h after all fill cycles were completed. Based on 376 

the generation times stated above, the concentration of L. monocytogenes in samples could have 377 

reached 1.6 x 10-2 CFU/mL to 1.3 x 10-1 CFU/mL after the final hold time. Although these levels 378 

were not detectable with selective plating, real-time PCR does not require viable or even 379 
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complete cells for detection, but rather it shows the presence of specific DNA fragments from 380 

lysed cells.  381 

Though non-viable cells of L. monocytogenes are not considered pathogenic, detecting 382 

them using microplate immunocapture coupled with real-time PCR may prove beneficial in 383 

showing the presence of Listeria in a statistical sample batch, which is exceptionally important in 384 

foods eaten raw. Thus, the present method may have greater potential beyond viable cell 385 

detection and is yet another data point on the validity of using microplate immunocapture along 386 

with the studies conducted by Fakruddin et al. (2017), Arbault et al. (2014), and Molloy et al. 387 

(1995).  388 

4. Conclusions 389 

Overall, this study showed that recovery of L. monocytogenes at cell levels of 100 390 

CFU/25 g could be achieved at much higher rates in milk and cheese samples using microplate 391 

immunocapture combined with real-time PCR detection as compared to microplate 392 

immunocapture combined with selective plating. The overall recovery rates for L. 393 

monocytogenes in these matrices (milk and cheese) at cell populations of 100, 102, and 104 394 

CFU/25 g using microplate immunocapture with real-time PCR detection were 88.9%, 94.4%, 395 

and 100%, respectively. Recovery using microplate immunocapture combined with selective 396 

plating was comparatively lower, at 0%, 44.4%, and 100%, respectively. The complexity of the 397 

matrix impacted L. monocytogenes recoveries using selective plating, with procedures becoming 398 

increasingly less effective as the food matrix became more complex. However, this trend was not 399 

observed with real-time PCR, which actually showed the greatest detection rates for the most 400 

complex matrix (cheese). Although microplate immunocapture combined with real-time PCR 401 

shows promise as a rapid means for concentrating and detecting L. monocytogenes, the recovery 402 
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rate at low initial cell populations was not equivalent to that obtained with the conventional 403 

culture method. Therefore, future studies should investigate the incorporation of a short 404 

enrichment period and/or additional optimization of the microplate immunocapture method. 405 

Additionally, the optimized method should undergo inclusivity testing with a panel of L. 406 

monocytogenes isolates as well as testing to ensure that the presence of other Listeria spp. does 407 

not interfere with the ability of the assay to capture L. monocytogenes.     408 
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