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Abstract

We provide experimental evidence that under strong beauty contest incentives,
players ignore signals from an information source with high content if the source has
low clarity. Instead, they acquire equally costly signals from a source with higher clar-
ity despite its lower content. Content measures how precisely an information source
identifies an economic situation, whereas clarity measures how precisely the source
content is commonly interpreted. Low clarity impairs players’ ability to coordinate.
When signals are provided exogenously, our experimental results are less severe than
theoretical predictions, but consistent with level-2 reasoning in a cognitive behavioral
model. When players acquire signals endogenously, ignoring a high-content source is
more severe than theoretical predictions. Our results imply that when beauty contest
incentives are strong (e.g., short-horizon trading), investors can completely ignore a
firm’s disclosure, despite its high content, if the disclosure is not sufficiently clear.
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1 Introduction

When making decisions, investors often have access to multiple sources of information. They can

access detailed financial statements, analyst reports, and brief company news in the media. There

is evidence that sometimes investors ignore information sources with high content such as financial

reports, and instead pay a lot of attention to sources with low content such as news briefs by the

media. For example, Niantic, a U.S. software company, released a mobile game, “Pokemon Go,”

on July 6, 2016. The share price of Nintendo, a Japanese company that has little relationship

with the game, rose more than 120% after the release of Pokemon Go. Investors mistakenly

believed that Nintendo owned and thus benefited from the popularity of the game because the

cartoon character Pokemon first appeared in a video game developed by Nintendo. Although

Nintendo’s financial statements indicated that the company did not make or own Pokemon Go,

the market reaction suggests that investors ignored that information. On the other hand, Mad

Money, the popular CNBC show, receives a lot of attention from retail investors and generates

significant market reactions despite the fact that stock analyses by Jim Cramer, the show’s host,

are very brief and offer no additional information beyond that which is publicly available.1 Why

do investors ignore information with high content (financial statements), but pay attention to

information with low content (Cramer’s show)?

In this paper, we propose that beauty contest incentives can lead agents to ignore an informa-

tion source with high content and instead pay attention to a source with low content.2 As John

Keyenes said almost a century ago, “stock picking is like a beauty contest.” An investor picks a

company’s stock not only because the fundamentals look promising but also because the investor

wants to choose what other investors find attractive. As such, when beauty contest incentives

are present, investors want to acquire information not only about the economic fundamentals but

1Engelberg et al. (2012) report that stocks recommended by Cramer experience very high trading
activities, and generate above 2.4% abnormal overnight returns. These recommendations do not appear
to be informative in the long run because the overnight returns subsequently reverse after a few months.

2Agents’ have beauty contest incentives when they want to “do what others do.” The (Keynesian)
beauty contest is characterized by strategic complementarities in agents’ decision rules; i.e., the marginal
payoffs for an individual agent’s action increases with the average action of all other agents.
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also about other investors’ likely actions. Apart from the content of an information source, the

clarity of that source plays a critical role in investors’ information acquisition decisions. Content

of a source determines how precisely the source identifies the economic fundamentals, whereas

clarity determines how precisely the source content is commonly interpreted. An information

source with higher clarity is similarly interpreted, and therefore more useful in predicting others’

likely actions. If beauty contest incentives are sufficiently strong, investors’ incentive to acquire

commonly interpreted information dominates their incentive to learn about the fundamentals—

i.e., clarity trumps content. As such, investors pay more attention to a high-clarity information

source despite its low content, and ignore a low-clarity source despite its high content. Myatt and

Wallace (2012) derive this insight in a beauty contest model. We construct a discrete information

choice version of Myatt and Wallace (2012) and test this key insight in laboratory experiments.

In the extant literature, investors’ information acquisition (attention) behavior is explained by

individual investor’s information processing costs. An investor tends to ignore financial statements

but pays attention to Cramer’s brief stock analyses because the former are harder to process

than the latter. However, this intuition is incomplete because an investor has no reason to ignore

financial statements with high information content if the benefit from higher content is greater

than the processing costs. The strategic perspective raised by Myatt and Wallace (2012) can

explain why investors rationally ignore information with high content and instead pay attention

to low-content information. This perspective emphasizes that when players have strong incentive

to coordinate with others, source clarity plays a more important role than source content in

players’ information acquisition decisions. Although companies’ financial statements have more

content because of their details, they often lack clarity because investors may focus on different

parts of the statements and draw different interpretations.3 In contrast, Jim Cramer’s stock

recommendations may have lower content, but they have greater clarity because they are concise

and simple, and thus more likely to be commonly interpreted.

3Investors, firms, practitioners, and regulators are concerned that corporate disclosures have become
longer and increasingly complex to navigate (KPMG, 2011; Monga and Chasan, 2015). To improve the
clarity of financial statements, the SEC has taken several initiatives including the “plain English” rule
(1998), and the more recent FAST ACT (2015).
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We illustrate investors’ information acquisition behavior by constructing a beauty contest

model (Morris and Shin, 2002) similar to Myatt and Wallace (2012) but with discrete informa-

tion choice and finite number of agents. Prior literature (Allen et al., 2006; Gao, 2008) has shown

that a trading model with short-horizon traders has the features of a beauty contest model in

which the incentive to match the action of others (strategic complementarity) emerges endoge-

nously. Allowing players to acquire information from multiple sources before the beauty contest

stage, Myatt and Wallace (2012) derive the theoretical insight that information sources which

receive attention are the clearest possible even though they have low content. With continuous

information acquisition choice in Myatt and Wallace (2012), the overall clarity of a signal is en-

dogenous and the information acquisition equilibrium is unique. With discrete information choice

in our model, signal clarity is exogenous and multiple acquisition equilibria emerge under certain

parameter sets. We extend Myatt and Wallace by including players’ limited order of beliefs in

a cognitive behavioral model (e.g., Stahl and Wilson, 1994; Nagel, 1995) in both beauty contest

and information acquisition stages.

In our model, two players simultaneously decide whether to acquire signals from two informa-

tion sources at a cost before the beauty contest game. Each information source generates signals

with two noise components: a common noise shared among all players, and an idiosyncratic noise

unique to each player. The common noise may arise because a source generates information

about the economic fundamentals with error. An information source with higher content has

common noise with a smaller variance. The idiosyncratic noise may arise because players have

different interpretations of the signal with common noise. An information source with higher

clarity results in idiosyncratic noises with a smaller variance.4 A unique feature of our setup is

that we keep the total variance of (a signal from) each source the same, but vary the level of

content and clarity. One information source has high content and low clarity, and the other has

low content and high clarity. Although both information sources generate equally costly signals

4Liang and Zhang (2014) show that this information structure endogenously arises in a measurement
system with managerial discretion and aggregation. They refer to the precision of common error as
“accuracy” and the precision of idiosyncratic error as “objectivity.” Similar information (exogenous)
structures have been used in Indjejikian (1991), Holthausen and Verrecchia (1990) and Kim and Verrecchia
(1994).
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and are equally useful in reducing the fundamental uncertainty, the source with higher clarity is

more useful in predicting others’ actions and as such, reducing the strategic uncertainty.

When information is provided exogenously, our model predicts that in the absence of beauty

contest incentives, players assign equal weight to signals from both information sources. However,

when there are incentives to coordinate, players assign more weight to a signal from the high-

clarity and low-content source. When players acquire information endogenously, our three main

predictions are: (i) the likelihood of a player acquiring a signal from a low-clarity and high-content

source increases with her opponent acquiring the same signal (complementarity in information

acquisition); (ii) when information acquisition costs are high, strong beauty contest incentives lead

players to acquire information only from the high-clarity source, and ignore the source with lower

clarity despite its higher content; and (iii) when information acquisition costs are low, players

acquire information from both information sources, but they assign more weight to information

with higher clarity and lower content.

While these predictions are stark, one wonders whether they are supported by empirical evi-

dence, as the predictions require strong assumptions on players’ ability to process an infinite level

of high-order beliefs to coordinate. It is unclear whether our prediction that information with

high content is completely ignored if it has low clarity holds in reality. In archival data, players’

private information acquisition decisions are unobservable, which makes it difficult to identify the

effect of coordination on information acquisition. Thus, we test our theoretical predictions in con-

trolled laboratory experiments, in which we can observe players’ private information acquisition

decisions, and manipulate the degree of strategic complementarity and the cost of information.

Our experiments employ a 2X2 between-subjects design by manipulating the strength of

complementarity and the cost of information. We find experimental evidence of complementarity

in information acquisition. Under endogenous information acquisition, our experimental results

confirm that information with high content and low clarity is ignored at high information costs.

However, contrary to our theoretical predictions, information with high content is ignored also

when information costs are low. Additionally, we find that with exogenous information, the

underweighting of information with high content and low clarity is less severe than theoretical
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predictions based on an infinite level of high-order beliefs but consistent with level-2 reasoning

in a cognitive behavioral model. This finding suggests that compared to equilibrium predictions,

subjects overuse information with high content and low clarity. The overuse of such information

at the beauty contest stage creates an endogenous cost at the information acquisition stage by

driving players’ actions further away from each other, and thereby reducing their payoffs. This

endogenous cost of acquiring information with high content makes it rational for players to ignore

such information even when the exogenous cost of information acquisition is low.

Our paper contributes to the emerging accounting literature that explores how strategic com-

plementarity affects disclosure choices. Assuming exogenous information, prior literature primar-

ily focuses on the insight from Morris and Shin (2002) that beauty contest incentives lead agents

to put greater weight on information that is more public in nature. This effect underlies the

findings in Gao (2008) and Chen et al. (2014) in the context of short-horizon trading, Arya and

Mittendorf (2016) and Chen et al. (2017) in the context of investment complementarities, and

Anctil et al. (2004), Banerjee and Maier (2016), Qu (2013), and Liang and Zhang (2014) in the

context of bank runs. We are the first to introduce the insight of Myatt and Wallace (2012) with

endogenous information acquisition. Most importantly, we are the first to provide experimental

evidence on the key implication of the model.

Our study is among the first to experimentally test complementarity in information acquisi-

tion. In a two-period model with short-horizon traders, Chamley (2007) establishes the existence

of strategic complementarity in the acquisition of traders’ private information. In a generic model

of beauty contest, Hellwig and Veldkamp (2009) show that agents’ information choices exhibit

complementarity in the presence of strategic complementarity: if an agent wants to do what

others do, she wants to know what others know. Our study contributes to this literature by

providing experimental evidence of complementarity in information acquisition.5

Our findings offer very different policy implications from prior literature on the role of the

5Szkup and Trevino (2012) study endogenous information acquisition in a global game of speculative
attack. They find that although most subjects play the predicted equilibrium in the information acquisition
stage, subjects’ action choices in the coordination stage deviate from the theoretical predictions. The
authors focus their analysis on the observed deviation behavior in the coordination stage. We find subjects’
deviation behavior in both the coordination (beauty contest) and information acquisition stages.
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public nature of information in beauty contests. With exogenous information, prior research finds

that over-weighting of public information in laboratory experiments is less severe than theoretical

predictions (e.g., Cornand and Heinemann, 2014; Baeriswyl and Cornand, 2016). While theory

imposes the assumption of infinite level of reasoning, experimental evidence indicates that sub-

jects’ behavior is more consistent with level-2 reasoning. Using a theoretical model, Cornand

and Heinemann (2015) show that the counterintuitive result that increased transparency reduces

social welfare in Morris and Shin (2002) no longer holds if we assume agents’ limited levels of

reasoning. Thus, prior research implies that the distortion in the use of public information under

beauty contest incentives may not be a serious concern. Our paper shows that this policy implica-

tion is no longer valid when information is endogenous. Our experimental evidence suggests that

the publicity of information matters even more than theoretical predictions. Players completely

ignore information with high content and low clarity even when theory predicts that they do

not. Such ignoring can result in significant distortions in capital market efficiency when beauty

contest incentives are strong (e.g., short-horizon trading). Moreover, the flip side is that investors

may systematically gravitate toward high-clarity but low-content information. Rumors or even

sunspot events with high clarity may drive prices, whereas the impact of corporate disclosures on

market prices diminishes.

The strategic effect of beauty contest incentives on information acquisition offers a new per-

spective to understand market reactions to accounting disclosure. Prior research suggests that

information disclosed in footnotes has less market impact than information recognized in finan-

cial statements (e.g., Aboody, 1996; Davis-Friday et al., 1999; Ahmed et al., 2006). Past research

emphasizes the individual perspective of information processing suggesting that the difference in

impact could be due to investors’ cognitive biases or differences in processing costs (Schipper,

2007). Our study offers a strategic perspective to explaining this empirical regularity by em-

phasizing individual beliefs about others’ behavior. Footnote disclosures may contain a lot of

detail but often lack clarity.6 When beauty contest incentives are strong, investors may underuse

6Morris and Shin (2007) suggest that accounting standards on recognition provide a common rule
for investors to interpret recognized numbers, thereby enhancing their clarity. In contrast, there are no
common standards for footnote disclosure (e.g., Schipper, 2007), and investors’ interpretation of footnote
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or even completely ignore footnote disclosures because they believe other investors most likely

do the same. Beauty contest incentives are stronger when there are more transient institutional

investors who speculate on short-term price changes (e.g., Sapra, 2010). A testable empirical

prediction based on our findings is that market under-reaction to footnote disclosure is greater

for firms with more transient institutional investors.

2 Theory and Predictions

We consider a quadratic beauty-contest game with two players, i and j. Players’ payoffs depend

on the closeness of their actions to an unobserved economic fundamental (θ) and to each other’s

actions (ai and aj). Player i’s utility function is

ui
(
ai, aj , θ

)
= ū− (1− r)(ai − θ)2 − r(ai − aj)2, (1)

where r ∈ (0, 1) is a complementarity parameter. There are two stages of the game. In the first

stage, players simultaneously decide to acquire (i.e., pay attention to) signals from two information

sources by paying a cost. In the second stage, having observed their own private signals, as well

as other players’ information acquisition decisions (but not their signal realizations), players play

the beauty contest game.

Players have a common prior about the fundamental, θ ∼ N(θ̄, σ2θ). Each player i has access

to two real-valued signals xiA and xiB. The signals

xiA = θ + ηA + εiA and

xiB = θ + ηB + εiB (2)

contain noise terms ηA ∼ N(0, α2
A), ηB ∼ N(0, α2

B) and εiA ∼ N(0, κ2A), εiB ∼ N(0, κ2B) that are

mutually independently distributed. Signal xiA (player i’s signal A) is generated by information

source A and signal xiB (player i’s signal B) is generated by information source B. A player’s

disclosure can vary a lot among individuals.
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choice to acquire a signal from a source A is represented by ziA = 1, and the choice to not acquire

by ziA = 0. The cost of information acquisition from sources A and B is C(ziA, z
i
B).

The noise in each signal xiA has two components: a common noise ηA and an idiosyncratic

noise εiA, which is different for each player. The common noise reflects the “sender” noise, or

the noise from an information source. The idiosyncratic noise reflects the “receiver” noise, or the

noise generated by the receiver’s interpretation of the common signal xA ≡ θ+ηA. The content of

an information source is defined as the precision of the common noise; i.e., 1/α2
A. The clarity of

an information source is the precision of the idiosyncratic noise; i.e., 1/κ2A.7 Loosely, the content

is the level of detail an information source provides about the fundamental, whereas the clarity

is how easily the source content is commonly interpreted (understood) by the players.

A source with higher clarity generates signals with more correlated noises, and thus, helps

players coordinate better with each other. To see this, note that for any source A, the conditional

correlation between players’ signals is

ρA ≡ Corr(xiA, x
j
A|θ) =

1/κ2A
1/α2

A + 1/κ2A
.

The correlation increases with clarity, but decreases with the content of a source. The intuition is

that as clarity increases, the variation of the idiosyncratic noise decreases, and thus, the variation

of a signal is primarily driven by the variation of the common noise.

The information structure assumed here is similar to Myatt and Wallace (2012) but with

discrete information choice and finite number of agents. This structure blurs the traditional

distinction between the public and private signals in the beauty contest literature (e.g., Morris

and Shin, 2002). On the one hand, a signal with imperfect content but perfect clarity is a “pure

public” signal—i.e., as κA → 0, ρA → 1. On the other hand, a signal with perfect content

but imperfect clarity is a “pure private” signal—i.e., as αA → 0, ρA → 0. In our information

structure, each signal is characterized not only by its variance, but also by its cross-sectional

correlation among the players. As such, intermediate values of “publicity” are admissible in this

7The precision of the common noise is called “accuracy” in Myatt and Wallace (2012). The precision
of the idiosyncratic noise is called “transparency” in Pavan (2014).
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information structure by allowing a general correlation structure.

2.1 Signal Weights

In this section, we take players’ information acquisition decisions as given, and derive the equilib-

rium weights on each signal in their optimal action choices in the beauty contest game. We allow

players to play asymmetric strategies in both coordination and information acquisition stages.

Optimality requires that a player’s action satisfies

ai = (1− r)Ei [θ] + rEi
[
aj
]
, (3)

where the expectation operator Ei [.] ≡ E
[
.|Ii
]
, and Ii denotes the information set of player

i. We focus on a linear (but not necessarily symmetric) equilibrium. Suppose that each player

follows the following linear action strategy:

ai = θ̄ + ωiA(xiA − θ̄) + ωiB(xiB − θ̄) (4)

aj = θ̄ + ωjA(xjA − θ̄) + ωjB(xjB − θ̄), (5)

where a signal weight ωiA > 0 if ziA = 1 and ωiA = 0 if ziA = 0. The weight on the prior θ for

player i is ωi0 ≡ 1− ωiA − ωiB.

To derive equilibrium signal weights, we take players’ information acquisition choices as given.

For brevity of notation, we denote players’ information choice profile as ab(cd) for any a, b, c, d ∈

{1, 0} such that ziA = a, ziB = b, zjA = c, and zjB = d. Here, we derive equilibrium signal

weights for an asymmetric information choice profile 11(10), in which player i acquires signals

from both sources, but player j acquires a signal from only source A. An example of the derivation

of equilibrium weights for a symmetric information choice profile is shown in the appendix.

9



By (4) and (5), players’ actions, for the information choice profile 11(10), are

ai = θ̄ + ωiA
(
xiA − θ̄

)
+ ωiB

(
xiB − θ̄

)
(6)

aj = θ̄ + ωjA

(
xjA − θ̄

)
. (7)

By the optimality condition (3) of player i, ai = (1−r)E
[
θ|xiA, xiB

]
+rE

[
aj |xiA, xiB

]
, which, after

replacing the value of aj from (7), yields

ai = (1− r)E
[
θ|xiA, xiB

]
+ rE

[
θ̄ + ω̂jA

(
xjA − θ̄

)
|xiA, xiB

]
, (8)

where ω̂jA is player i’s conjecture about player j’s weight on signal A. Replacing the values

of E
[
θ|xiA, xiB

]
and E

[
(xjA − θ̄)|xiA, xiB

]
in (8), and comparing the coefficients of

(
xiA − θ̄

)
and(

xiB − θ̄
)

with (6), we have

ωiA =
(1− r)σ2θ

(
α2
B + κ2B

)
D

+

[
r
{
α2
A

(
α2
B + κ2B

)
+ σ2θ

(
α2
A + α2

B + κ2B
)}

D

]
ω̂jA (9)

ωiB =
(1− r)σ2θ

(
α2
A + κ2A

)
D

+

(
rκ2Aσ

2
θ

D

)
ω̂jA, (10)

where D ≡
(
α2
A + κ2A

) (
α2
B + κ2B

)
+ σ2θ

(
α2
A + κ2A + α2

B + κ2B
)
.

Using an analogous argument, player j’s optimal action is

aj = (1− r)E
[
θ|xjA

]
+ rE

[
θ̄ + ω̂iA

(
xiA − θ̄

)
+ ω̂iB

(
xiB − θ̄

)
|xjA
]
, (11)

where ω̂iA and ω̂iB are player j’s conjecture about player i’s weights on signals A and B. Substitut-

ing the values of E
[
θ|xjA

]
, E
[
(xiA − θ̄)|x

j
A

]
, and E

[
θ|xjA

]
in (11), and comparing the coefficient

of
(
xjA − θ̄

)
with (7), we have

ωjA =
(1− r)σ2θ + r

(
σ2θ + α2

A

)
ω̂iA + rσ2θ ω̂

i
B

σ2θ + α2
A + κ2A

. (12)

In equilibrium, ω̂ln = ωln for any l ∈ {i, j} and any n ∈ {A,B}. Replacing the values of ωiA
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and ωiB from (9) and (10) in (12), we have ωjA = M
N , where

M ≡ (1− r)σ2θ
[{

(1 + r)α2
A + κ2A

} (
α2
B + κ2B

)
+ (1 + r)σ2θ

(
α2
A + κ2A + α2

B + κ2B
)]

N ≡
(
σ2θ + α2

A + κ2A
)
D − r2

(
σ2θ + α2

A

) [
α2
A

(
α2
B + κ2B

)
+ σ2θ

(
α2
A + α2

B + κ2B
)]
− r2κ2Aσ4θ .

Values of weights ωiA and ωiB are obtained from (9) and (10) by substituting the value of ωjA.

2.2 Information Acquisition

Having derived equilibrium signal weights, we now work backwards to calculate player’s optimal

information acquisition choices. Each player decides whether to acquire or not acquire a signal

from sources A and B to maximize his ex-ante expected utility. A players’ ex-ante expected

utility given equilibrium weights, and the cost of information acquisition is given by

U i = ū− Li − C
(
ziA, z

i
B

)
, (13)

where the expected losses (see the derivation in the appendix) are

Li
(
σ2θ , α

2
n, κ

2
n

)
= (1− r)E

[
(ai − θ)2

]
+ rE

[
(ai − aj)2

]
=

[
(1− r)

(
ωi0
)2

+ r
(
ωi0 − ω

j
0

)2]
σ2θ+∑

n=A,B

[
(1− r)

(
ωin
)2

+ r
(
ωin − ωjn

)2]
α2
n+

∑
n=A,B

[
(1− r)

(
ωin
)2

+ r
{(
ωin
)2

+
(
ωjn
)2}]

κ2n. (14)

For any information choice profile ab(cd), we denote a player’s expected utility by U iab(cd),

and expected losses as Liab (cd) . We also denote expected benefits from acquiring one or both
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signals by

Bi
1′b (cd) ≡ Li0b (cd)− Li1b (cd)

Bi
a1′ (cd) ≡ Lia0 (cd)− Lia1 (cd)

Bi
11 (cd) ≡ Li00 (cd)− Li11 (cd) .

For example, Bi
1′0 (11) = Li00 (11) − Li10 (11) denotes player i’s expected benefits from acquiring

a signal from source A (note the “′” on first “1”) given that he does not acquire a signal from

source B, and player j acquires signals from both sources.

We derive two main results. First, strategic complementarity in action choices leads to strate-

gic complementarity in information acquisition decisions. That is, if a player wants to do what

others do, then he wants to know what others know. This result is reminiscent of Hellwig and

Veldkamp (2009), albeit with a different information structure. Second, signals from the source

with higher clarity are acquired in a greater range of parameter sets than those from the source

with lower clarity, even though the latter source has higher content. Multiple equilibria in players’

information acquisition choices resurface because unlike in Myatt and Wallace (2012), players’

acquisition decisions in our model are discrete. We use a numerical simulation to derive these

results.

Choice of parameter values. To conduct a horse race of content versus clarity, we make the

total variance of each source the same, and vary their contents and clarifies. Source A has higher

clarity, but lower content, whereas source B has lower clarity but higher content. The total

variance (conditional on θ) of each source is the same; i.e., α2
A + κ2A = α2

B + κ2B. To examine

the differential impact of content and clarity, we manipulate the complementarity and cost of

information parameters. For the complementarity parameter r, we choose one high (r = 0.8) and

one low (r = 0.2) value. The cost parameter c measures the amount a player pays to receive

a signal from a source. Since both sources have the same total variance, players pay the same

cost for a signal from each source. We choose one high (c = 200) and one low (c = 5) value to

ensure separation of players’ behaviors. The variance of the prior distribution is chosen to be high
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(σ2θ = 200) to minimize its impact—and maximize the impact of the two information sources—on

players’ equilibrium behaviors. The complete set of parameter values are:

θ̄ = 500, σθ = 200, αA = κB = 30, αB = κA = 5, r ∈ {0.2, 0.8}, c ∈ {5, 200}, ū = 3000. (15)

In result 1, we compare players’ expected benefits with the costs of acquiring one or both

signals. Players benefit from acquiring a signal that the other players also acquire, because

knowing what others know help them coordinate better with each others’ action choices. We

show that a player’s net expected benefits are higher when the other player also acquires the

same signal(s).

Result 1 (Complementarity in information acquisition). For a positive value of strategic comple-

mentarity, a player’s expected benefits of acquiring a signal from an information source increase

when the other player also acquires the signal from the same source. Given the parameter values

in (15), the following inequalities hold

i) Bi
1′0 (10) > Bi

1′0 (00) ; Bi
01′ (01) > Bi

01′ (00) ; Bi
11 (11) > Bi

11 (00)

ii) Bi
1′1 (11) > Bi

1′1 (01) ; Bi
11′ (11) > Bi

11′ (10) .

Table 1 presents the values of expected benefits for complementarity parameter values, r ∈

{0, 0.2, 0.8}. Expected benefits satisfy inequalities in Result 1 at r = 0.2 and r = 0.8, but not at

r = 0.

[Insert Table 1 near here]

In result 2, we characterizes all information acquisition equilibria for any value of the cost

parameter c ∈ (0,∞), and parameter values in (15), and r = 0.8. While our focus is on the

two values of cost parameter (i.e., c = 5 and c = 200), we characterize equilibria for all values

of c in order to have a comprehensive understanding of how information cost affects an agent’s
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information acquisition decisions.8

Result 2 (Information acquisition equilibria). If r = 0.8, c ∈ (0,∞), and rest of the parameters

follow (15), then

i) acquiring both signals is the unique equilibrium if c < 22

ii) 2 equilibria—acquiring only signal A and acquiring both signals—exist if 22 6 c 6 32

iii) acquiring only signal A is the unique equilibrium if 32 < c 6 345

iv) 2 equilibria—acquiring only signal A and acquiring only signal B—exist if 345 < c 6 1564

v) 3 equilibria—acquiring only signal A, acquiring only signal B, and acquiring no signal—exist

if 1564 < c 6 7857

vi) 2 equilibria—acquiring only signal A and acquiring no signal—exist if 7857 < c 6 9032

vii) acquiring no signal is the unique equilibrium if c > 9032.

Two points regarding Result 2 are noteworthy. One, with the exception of the highest cost

range (c > 9032), acquiring signal A is always part of the set of equilibria. This is because

signal A has higher clarity than signal B, even though A has lower content than B. Two, while

we allow for asymmetric strategies for the players—in both the beauty contest and information

acquisition stages—equilibria are always symmetric because of strategic complementarity. In

the next section, we exploit the properties of these two results in greater detail to develop our

hypotheses.

2.3 Hypotheses

We derive 5 hypotheses based on the parameter values stated in (15). Hypotheses 1-2 concern

the use of signals in players’ actions choices. Hypotheses 3-5 concern the acquisition of signals

8To save space, we do not show all the equilibria for r = 0.2. Equilibria are similar to Result 2,
but ranges of cost parameter differ. For example, acquiring both signals is the unique equilibrium if
c < 290, and acquiring no signal is the unique equilibrium if c > 36271. Other equilibria exist within
c ∈ [290, 36271].
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from the 2 information sources.

Hypothesis 1 (Clarity versus content). Players place more weight on signal A than B in their

action choices.

Hypothesis 2 (Complementarity and signal weights). The weight on signal A increases, and the

same on B decreases as the complementarity parameter increases.

Hypothesis 3 (Complementarity in information acquisition). The likelihood of a player’s ac-

quiring signal B increases with her opponent’s acquiring the same signal.

Hypothesis 4 (Complementarity and likelihood of acquisition). As the complementarity param-

eter increases, the likelihood of a player’s acquiring signal B decreases.

Hypothesis 5 (Information cost and likelihood of acquisition).

a) At low complementarity, information cost has no impact on the likelihood of a player’s

acquiring signal B;

b) At high complementarity, information cost decreases the likelihood of a player’s acquiring

signal B.

Hypothesis 1 follows from the fact that the ratio of the weights (derived in (A.5) and (A.6)

in the appendix) is

ωA
ωB

=
(1− r)α2

B + κ2B
(1− r)α2

A + κ2A
.

Thus, ωA > ωB if 1
κ2A

> 1
κ2B

, that is, signal A is assigned more weight than signal B if the clarity

of information source A is greater than the clarity of source B.

For Hypothesis 2, note that since αA > αB, and κA < κB,

dωA
dr

> 0 and
dωB
dr

< 0,

which implies that the weight on signal A increases, but the same on B decreases with the

complementarity parameter r. In Table 2, last column, we show the equilibrium signal weights
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for r ∈ {0.2, 0.8}. At r = 0.2, the weights are ωA = 0.55 and ωB = 0.44, whereas at r = 0.8,

ωA = 0.80, and ωB = 0.18.9

[Insert Table 2 near here]

Hypothesis 3 follows directly from Result 1. Hypothesis 4 is based on Table 1, which shows

that a player’s expected benefits for a signal with higher clarity increases, and the same for a

signal with lower clarity decreases with the complementarity parameter. As r increases from 0.2

to 0.8, B1′1(11)r=0.8 = 933 > 542 = B1′1(11)r=0.2, but B11′ (11)r=0.8 = 32 < 344 = B11′ (11)r=0.2.

Hypothesis 5 is based on Result 2 and Table 3 (last column),10 which show that at low

complementarity, a player acquires both signals at high as well as low information costs, whereas

at high complementarity, he acquires both signals at low costs, but acquires only the signal

with higher clarity at high costs. The equilibrium information acquisition decision is consistent

with the fact that at low complementarity (r = 0.2), a player’s expected benefits from acquiring

either of the signals (conditional on the other player’s acquiring both signals) are higher than

the information costs under both high- and low-cost treatments (i.e., B1′1(11) = 542 > c, and

B11l(11) = 344 > c) for any c ∈ {5, 200}. However, at high complementarity (r = 0.8), B1′1(11) =

933 > c for any c ∈ {5, 200}, whereas B11l(11) = 32 < c = 200.

[Insert Table 3 near here]

9In the first four columns, we show theoretical signal weights assuming finite level of reasoning by the
subjects. We discuss subjects’ limited level of reasoning in Section 5.1. Signal weights under equilibrium
conditions (equilibrium weights) and limited levels of reasoning are shown in the same table for the ease
of comparison.

10In the first four columns, we show subjects’ information acquisition decisions assuming limited levels
of reasoning, which we discuss in detail in Section 5.1.
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3 The Experiment

This section describes our experiment design and procedure.

3.1 Experimental Design

We manipulate two factors in our experiment: (i) strength of complementarity r, and (ii) informa-

tion acquisition cost c. We adopt a 2 × 2, between-subject design (Low Complementarity/High

Complementarity × Low Cost/High Cost). The parameter r is 0.2 in Low Complementarity

condition, and 0.8 in High Complementarity condition. The information acquisition cost is 5 for

each clue in the Low Cost condition, and 200 in the High Cost condition.

We conduct 3 sessions for each treatment and 12 sessions in total. Each session has 12

participants, divided into 2 groups of equal size. Each participant is matched with another

participant in the same group. Participants interact only within their own group. In total,

there are 6 independent group-level observations for each treatment. Table 4 provides a session

summary.

[Insert Table 4 here]

Each experimental session has two stages. In the first stage, two clues, A and B, are provided

to the subjects at no cost. This stage with exogenously provided signals allows subjects to learn

the value of the two signals while making action choices in the beauty contest game. There are

10 rounds in this stage. After each round, subjects receive feedback about the true value of

the fundamental θ, their partners’ action choices, and their own payoffs. In the second stage,

subjects first make information acquisition decisions, and then play the beauty contest game. In

the information acquisition stage, subjects simultaneously decide whether to purchase clue A,

clue B, both, or none of the clues by paying the required costs. After subjects make their own

information acquisition decision, they are informed about their partners’ information acquisition

decisions. Participants then receive their chosen clue(s) and simultaneously make action choices
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in the beauty contest game. There are 20 rounds in this stage. After each round, subjects receive

feedback about the true value of θ, their partners’ action choices and their own payoffs.

Each session has 30 rounds. Subjects are re-matched in each round within their group. We

generate 30 independent values of θ, and 2 clues for each value of θ. The same sets of fundamental

θ values and clues are used in all experimental sessions. The mean (standard deviation) of the

realized θ values is 464 (175) and the values range from 144 to 805.

3.2 Experimental Procedure

We conducted our experiments using a computer program written in JAVA at a university com-

puter laboratory during the 2017 spring. In total, 144 student subjects (undergraduate and

graduate) participated in 12 sessions.

In each session, after reading the instructions, subjects then completed a quiz to test their

understanding of the instructions. The experimenter then reviewed the instructions. Subjects

participated first in the exogenous information (first) stage for 10 rounds and then in the en-

dogenous information (second) stage for additional 20 rounds. In the second stage, subjects first

made information acquisition decisions and then played the beauty contest game. At the end of

the session, subjects completed a post-experiment questionnaire (the instruction, quiz, and the

questionnaire are in the appendix). Screen shots of the two stages are shown in Figure 3.

Subjects were paid in cash after successfully completing the two stages. Subjects’ payments

were based on their performance, which was measured in a fictitious currency, “experimental

francs,” and then converted to U.S. dollars at the rate of $1 for every 200 francs. At the end of

each session, we randomly selected two rounds from each stage and paid the subjects based on

their cumulative payoffs from these four rounds. Each session lasted approximately 2 hours and

the average cash payment was $26.9.

[Insert Figure 3 here]
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4 Experimental Results

In this section, we first report the results of the stage with exogenously provided clues and then

the stage with endogenously acquired clues.

4.1 Exogenous Clues (Stage 1)

We use the data from this stage to study how the subjects used the two clues to make action

choices in the beauty contest game. Theory predicts that subjects choose actions that are weighted

averages of the two clues and the prior. The higher the clue clarity, the greater the weight on

that clue. We find that almost all actions fall between the minimum and maximum of the three

sources of information. Ninety-nine percent (100%) of action choices fall in this interval for r = 0.2

(r = 0.8). Since the variance of the prior is much larger than the variance of the two clues, we

expected subjects to put most of the weights on the two clues. We also check the percentage of

actions that fall between the minimum and maximum of the two clues. Eighty-five percent (88%)

of choices fall in this interval for r = 0.2 (r = 0.8). For actions within this interval, we report the

percentage of actions that are closer to A, closer to B, or in the middle. As r increases, we expect

a higher proportion of actions closer to A, the clue with higher clarity but lower content. About

47% (64%) of actions are closer to A for r = 0.2 (r = 0.8). Table 5 summarizes those results.

[Insert Table 5 here]

We estimate the relative weights on the two clues using subjects’ decisions. In each session,

subjects were divided into two groups and interacted only within their own group. We estimate

the weights per group per session. In our statistical analyses, we use each of these group-specific

estimates to test our hypotheses since the individual observations within each group are not

independent. We run the following regression using data for individual i in each round t for each

independent group:
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ait = α+ βAx
it
A + βBx

it
B + εit. (16)

The weight on clue A (B) is captured by the coefficient βA(βB), the weight on the prior is

1 − βA − βB. Panel (A) of Table 6 reports estimated average weights on the two clues for all

groups in all sessions.

[Insert Table 6 here]

We estimate the weights using data from the first and second half of stage 1 separately to

evaluate whether systematic trends exist over time and find no systematic changes from the

first to the second half of data. We compare the average estimated weights with the theoretical

predicted weights. For r = 0.2, the estimated weights on A is 0.5 for the first half, which is

significantly smaller than the theoretical prediction 0.55 (p = 0.02 one-tailed Wilcoxon rank

test); the estimated weights on A is 0.47 for the second half, which is also significantly smaller

than the theoretical prediction (p = 0.003). For r = 0.8, the estimated weights on A is 0.61 using

data from the first or second half, which are significantly smaller than the theoretical prediction

0.80 (p = 0.0002).

4.1.1 Hypotheses Tests

Our Hypotheses 1 and 2 are related to the relative importance of clues A and B in subjects’

action choices. Results of the hypothesis tests are shown in panel (B) of Table 6. For r = 0.2,

the estimated weights on A is not significantly different from the weights on B (p = 0.83). Thus,

we reject H1 for r = 0.8. However, for r = 0.2, the estimated weights on A are significantly

greater than the weights on B (p = 0.0002) using data from both first and second halves. Thus,

we cannot reject H1 for r = 0.8.

We find evidence supporting H2. The estimated weights on A for r = 0.8 are significantly

greater than the weights on A for r = 0.2 with p-value of 0.0003 and 0.0001 for the first and

second half, respectively. In contrast, the estimated weights on B for r = 0.8 are significantly
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smaller than the weights on B for r = 0.2 with p-value of 0.0003 and 0.0006, respectively.

4.2 Endogenous Information Acquisition (Stage 2)

4.2.1 Descriptive Evidence on Information Acquisition

There are four possible information acquisition strategies: buy A only, buy B only, buy both clues

and buy no clues. Figure 1 plots the frequency of each strategy in each treatment over time.

[Insert Figure 1 here]

The frequency of buying no clues (depicted in circle) is close to 0 in all treatments. This strat-

egy is strictly dominated by other strategies. The frequency of buying B (depicted in diamond)

is also very small. This strategy is strictly dominated by buying A. The frequency of buying A

is greater than buying B in all treatments. The two other strategies vary by treatments. For

r = 0.2, the frequency of buying both clues (depicted in triangle) is the highest. For r = 0.8 and

c = 200, the frequency of buying A (depicted in square) is the highest. For r = 0.8 and c = 5,

the strategies of buying A and buying both have similar frequencies.

Table 7 reports the frequency of each strategy observed in each independent group in each

session, using data from the first (second) half of each session.

[Insert Table 7 here]

There is no evidence of a time trend. The strategy is similar between the first ten rounds

and last ten rounds. We use the last ten rounds for our following discussion. For r = 0.2, the

frequency of buying both clues is the greatest among all four strategies and this frequency is 86%

when the cost is 5 and 64% when the cost is 200. For r = 0.8, when the cost is 200, the frequency

of buying A only is 77%, the highest among the four strategies; when the cost is 5, the frequency

of buying A only is similar to the frequency of buying both clues. For r = 0.8/c = 5, among

the six group-level observations, one group converges towards buying A only with a frequency

approaching 90% in the last ten rounds. Two groups converge towards buying both clues with a
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frequency approaching 83% and 75%, respectively. For the other three groups, both strategies of

buying A only and buying both clues are selected with high frequency.

To evaluate the stability of information acquisition strategy over time, we calculate the tran-

sition matrix of information acquisition strategies for all the four treatments using data from all

rounds. Results are reported in Table 8.

[Insert Table 8 here]

For r = 0.2, buying both clues is the absorbent state. The likelihood of continuing to buy

both clues is 98.31% when the cost is 5 and 89.37% when the cost is 200. For r = 0.8 and c = 5,

buying A only and buying both clues are both absorbent states. The likelihood of continuing to

buy A only is 84.08% and the likelihood of continuing to buy both clues is 85.55%. For r = 0.8

and c = 200, most observations are buying A only and the likelihood of continuing this strategy

is 89.6%.

At the subject level, we observe that most individuals do not change their information ac-

quisition decisions. Only 16 out of 144 subjects changed their information acquisition decision

more than 5 times during stage 2. Nine subjects changed their information acquisition decision

more than 10 times. We classify these type of subjects as “indeterminate.” Table 9 reports the

percentage of subjects adopting each information acquisition strategy.

[Insert Table 9 here]

4.2.2 Hypotheses Tests

Our Hypotheses 3, 4, and 5 are related to the acquisition of clue B because the acquisition of clue

A does not vary with our manipulations. We plot the frequency of buying A and B separately in

Figure 2.

[Insert Figure 2 here]
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Figure 2 Panel A plots the frequency of buying A. There are no systematic differences in the

frequency of buying A across various treatments. The frequency of buying A converges toward

100% in all treatments. Panel B of Figure 2 plots the frequency of buying B, which varies by

treatments systematically. For r = 0.2, the frequency of buying B approaches 100% for the

treatment with c = 5, and this frequency is reduced when the cost is 200. For r = 0.8, the

frequency of buying B is the lowest in the treatment with c = 200, and this frequency is higher

when c = 5. The frequency of buying B is always higher when r = 0.2 than when r = 0.8.

We run a Probit regression to test our hypotheses on the acquisition of clue B. The dependent

variable, Buy B, is a dummy variable which is 1 if a subject buys clue B and 0 otherwise. Table

10 reports the regression results. Standard errors are clustered at the subject level.

[Insert Table 10 here]

The explanatory variable Partner BuyB is a dummy variable, which is 1 if the partner

buys clue B and 0 otherwise. H3 predicts that a subject is more likely to acquire clue B if the

matched partner also acquires clue B; therefore, the coefficient on Partner BuyB is expected to

be positive. Consistent with H3, we find that the coefficient on Partner BuyB is 0.905, which

is significantly positive (p < 0.001).

Hypothesis 4 predicts that the likelihood of buying B decreases with r. Our explanatory

variable includes r, a dummy variable, which is 1 if r = 0.8 and 0 if r = 0.2. Consistent with H4,

we find that the coefficient on r is -1.576, which is significantly negative (p < 0.001).

Hypothesis 5a predicts that cost of information acquisition has no effect on the likelihood

of acquiring clue B for r = 0.2. In contrast, Hypothesis 5b predicts that cost of information

acquisition reduces the likelihood of acquiring clue B for r = 0.8. We include a dummy variable

Cost, which is 1 if c = 200 and 0 if c = 5. In addition, we include an interaction between r and

Cost. We find that the coefficient on Cost is -0.945, which is significantly negative (p < 0.01).

There is a significant main effect of cost on the acquisition of clue B. However, the interaction

term between r and Cost is not statistically significant, which suggests that the effect of cost

on the acquisition of clue B does not differ between high and low r treatments. Our evidence
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supports H5b, but rejects H5a. Higher cost of information acquisition reduces acquisition of clue

B in both high and low r treatments.

5 Discussions

5.1 Limited Levels of Reasoning

In this section, we examine whether the incongruity between the observed and theoretical signal

weights, and information acquisition decisions can be explained by subjects’ limited levels (depths)

of reasoning (level-k model) in the sense of Nagel (1995) and Stahl and Wilson (1994, 1995). The

equilibrium weights we have developed in Section 2.1 are based on strong assumptions of players’

rationality—i.e., they can make the fixed-point argument in solving Nash equilibria. Experimental

evidence suggests that subjects’ responses can systematically deviate from Nash equilibrium (e.g.,

Crawford et al., 2013). Subjects tend to avoid the fixed-point argument as well as the indefinitely

iterated dominance reasoning required in equilibrium definition.

A level-k model is based on the assumption that subjects’ behaviors can be classified by

different depths of reasoning. A level-0 player chooses her behavior randomly without forming

any beliefs about her opponent. A level-1 player believes that her opponent is a level-0 player,

and best responds to this belief. Similarly, a level-2 player best responds to a level-1 opponent,

a level-3 player to a level-2 opponent, and so on. In general, a level-k player best responds to a

level-k-1 opponent by taking a level-k action. However, no player can anticipate how an opponent

with the same or higher level (i.e., equally smart or smarter opponent) will act. This feature of

a level-k model circumvents the need for a player to be able to use the fixed-point argument to

solve a Nash equilibrium (e.g., Stahl and Wilson, 1994). Theoretically, as k →∞, a level-k action

corresponds to the Nash equilibrium action.

Prior literature on beauty-contest games have used level-k models to explain subjects’ nonequi-

librium behavior (Cornand and Heinemann, 2013; Baeriswyl and Cornand, 2016). Unlike these

studies, we have an additional stage of information acquisition. A level-k player in our setup
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has a 2-dimensional strategy 〈(ωA,k, ωB,k) , (zA,k, zB,k)〉, where (ωA,k, ωB,k) are optimal signal

weights, and (zA,k, zB,k) are optimal information acquisition decisions. One innovation in our

theory development is to derive information acquisition equilibria at limited levels of reasoning.

Consistent with the spirit of a level-k model, we start by assuming that a level-0 action has

a uniform distribution over the action space. That is, a level-0 player’s choice of signal weights

and information acquisition decision are random and do not depend on information costs. We

then recursively derive optimal signal weights and information acquisition decisions for level-1

upwards. Derivation of level-k signal weights and information acquisition equilibria are shown in

the appendix.

Table 2 summarizes signal weights at level-1 to level-4, and at equilibrium for r ∈ {0.2, 0.8}.

Comparing estimated group-specific weights reported in Table 6 with weights assuming limited

levels of reasoning summarized in Table 2, the observed average weights are close to the weights of

level-2 reasoning for r = 0.8. Using the second half data, the average estimated weights on signal

A is 0.61 for r = 0.8, which is not significantly different from the weights of level-2 reasoning 0.68

(p = 0.146). The average estimated weights on signal B is 0.39, which is not significantly different

from the weights of level-2 reasoning 0.30 (p = 0.774). For r = 0.2, however, the observed weights

are close to the weights of level-1 reasoning. Using the second half data, the average estimated

weights on A is 0.47 for r = 0.8, which is not significantly different from the weights of level-1

reasoning 0.49 (p = 0.146). The average estimated weights on B is 0.53, which is not significantly

different from the weights of level-1 reasoning 0.49 (p = 0.388). The estimated weight on A is

significantly smaller than the predicted weight on A of level-2 reasoning 0.54 (p = 0.03), and the

estimated weights on B is significantly greater than the weights on A of level-2 reasoning 0.45

(p = 0.019). Our results are similar to the findings of Cornand and Heinemann (2013), which

show that subjects’ level of reasoning is higher for higher values of r.

Table 3 presents optimal information acquisition decisions at level-1 to level-4, and at equi-

librium for r ∈ {0.2, 0.8}. It shows that at r = 0.2, the optimal information acquisition decision

is acquiring both the signals at any level of reasoning. At r = 0.8, and c = 200, acquiring only

signal one is the unique optimal decision at all levels of reasoning above level-1. However, at
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r = 0.8, and c = 5, acquiring both signals is the unique optimal decision at all levels except

level-3, where the optimal decision is acquiring only signal one with higher clarity. The intuition

is that, while high complementarity increases a subject’s likelihood of acquiring only signal A, low

information cost enhances the odds of acquiring both signals. At level-3, the complementarity

effect dominates the cost effect. In other levels, low costs overwhelm the complementarity effect.

Table 11 summarizes the values of expected benefits at level-1 to level-4, and at equilibrium for

r ∈ {0.2, 0.8}.

[Insert Table 11 near here]

5.2 Acquisition Equilibria with Estimated Weights

To further examine the difference between observed and predicted information acquisition deci-

sions for the treatment r = 0.8/c = 5, we replace equilibrium signal weights at the beauty contest

stage by their estimated weights, and then work backward to calculate optimal information acqui-

sition decision. Specifically, we replace equilibrium signal weights for information profiles 11(11),

11(10), and 10(11) by their estimated weights from Table 6. For example, in information profile

11(11), we replace equilibrium signal weights of ωA = 0.81, ωB = 0.18 (Table 2) by their esti-

mated weights of ωA = 0.61, ωB = 0.39 (last 10 rounds). Similarly, for information profiles 11(10)

and 10(11), we replace equilibrium signal weights of ωA = 0.87, ωB = 0.11 (untabulated) by their

estimated weights of ωA = 0.51, ωB = 0.49 (untabulated).11 All other weights are kept at their

equilibrium levels. The resulting information acquisition equilibria are: 10(10) and11(11), which

are consistent with the experimental data.

Our theoretical analysis assuming that subjects use the experimentally estimated weights

suggests that both buy A only and buy both clues are equilibria for the treatment r = 0.8 and

c = 5. Results shown in Table 7 on the information acquisition by groups indicate the presence

of two equilibria. The highest frequency of information acquisition strategy is to buy A only for

11For information choice profiles, 11(01) and 01(11), we left signal weights at their equilibrium values
because we could not derive estimated weights due to the small sample size (N=9).
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three out of the six groups, and to buy both clues for the other three groups. When there are

multiple equilibria, subjects need to learn over time to coordinate on one of the two equilibria.

The convergence toward these two equilibria appears to be incomplete in most groups. Subjects

indicated in their post-experiment questionnaire that they were more likely to buy B if their

partners bought B in the past round(s). To examine such a dynamic adaptation process, we run

Probit regressions on subjects’ decisions to buy B. The explanatory variables include own decision

and partners’ decision to acquire B in the past round. Lag BuyB is 1 if a subject acquires B

in the previous round and 0 otherwise. Lag Partner BuyB is 1 if a subject’s partner in the

previous round acquires B and 0 otherwise. Our regression uses the data from the last ten rounds

and standard errors are clustered at the group level. Results are shown in Table 12.

[Insert Table 12 near here]

One interesting observation in the Probit regression (Table 12) is that the Lag Partner BuyB

is significant and positive only in the treatment r = 0.8/c = 5. In other treatments, a player’s

decision to acquire signal B does not depend on his partner’s past acquisition of B. For the

treatment r = 0.8/c = 5, the regression coefficient on Lag Partner BuyB is 0.552, which is

significantly positive (p = 0.022). This evidence confirms the dynamics indicated in the post-

experiment questionnaire. That is, subjects were more likely to buy B if their partners bought

B in the previous round. This indicates that subjects tried to coordinate on one of the two

equilibria, buy A only or buy both.

5.3 Clue Uses

Prior research in psychology has shown that people tend to use information more when it comes

at a cost compared to when it is given for free. Thaler (1980) notes that “paying for the right to

use a good or service will increase the rate at which the good will be utilized, ceteris paribus. This

hypothesis will be referred to as the sunk cost effect.” If this sunk cost effect is present in our

setting, we then expect the use of information to differ when clues are exogenously given versus

when clues are acquired endogenously. Here, we study whether such a sunk cost effect exists in
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our setting. Specifically, we compare the weights subjects place on clues A and B when the clues

are provided exogenously (Table 6) free of costs with those under endogenous information choices

(Table 13) when subjects pay for clues. In Table 13, we estimate the weights on clue A and B

using the regression model (16) for each treatment conditional on partners’ clue choices. We test

whether the weight on A is different from that on B. We pooled data from all sessions in each

treatment because the number of observations in each session is small.

[Insert Table 13 here]

We separate our analysis using the first ten rounds and last ten rounds data so that this result

can be compared with a similar analysis using data in stage 1 where both clues are exogenously

given (see Table 6). For r = 0.2, the estimated weights on A and B are not significantly different

from each other. For r = 0.8, only a small number of observations exist when the cost is 200;

when the cost is 5, we find the estimated weight on A is significantly greater than the estimated

weight on B using the last ten rounds data (p = 0.04). The estimated weights on A is 0.61 and

on B is 0.38, which are similar to results in stage 1 where clues are exogenously given (Table

6). Overall, subjects’ use of information under endogenous information choice is similar to that

under exogenously provided information, implying the absence of the sunk cost effect.

6 Concluding Remarks

We study how beauty contest incentives affect players’ acquisition and use of multiple information

sources with different contents and clarities. We provide experimental evidence that strong beauty

contest incentives lead players to completely ignore an information source with high content if

it has low clarity. Instead, players acquire information from a source with higher clarity despite

its lower content. Our theory predicts that, when information is exogenously provided, players’

desire to coordinate induces them to under-weight information with low clarity and high content.

Our experimental results suggest that the under-use of information with low clarity is weaker

than theoretical predictions assuming an infinite level of higher order beliefs, but closer to level-2
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reasoning in a cognitive behavioral model.

When players acquire information endogenously, our theory predicts that the coordination

motive can induce players to completely ignore information with low clarity despite its high

content. Our experimental evidence suggests that the under-acquisition of information with low

clarity is even stronger than our theoretical predictions. In anticipation of the over-use of the less-

clear information at the beauty contest stage, subjects underacquire the less-clear information

more often than equilibrium predictions.

These results have important practical implications for a firm’s disclosure choices when coor-

dination motives are present. Investors can ignore a firm’s disclosure if it is not sufficiently clear,

even though the disclosure has high content with all the technical details. More damagingly, to

gather information, investors focus their attention to outside non-firm information sources, which

can be arguably more clear, but have lower content, than firm disclosures. In a post-truth age

with so-called “fake news” and “alternative facts,” this is a concern for firms as well as regulators

and standard setters.

Our paper takes the first step to understanding the differential impacts of content and clarity

on the use and acquisition decisions in situations in which coordination motives predominate.

There are several avenues for future research. We assume information choice to be discrete; i.e.,

acquire or not acquire. Future studies may examine how a subject’s attention choice changes

continuously with a source’s content and clarity. For example, conditional on acquiring a signal,

does a subject’s attention to that signal increase monotonically with the source content and clarity,

or the attention changes non-monotonically? Another potential avenue for future research is to

endogenize the beauty contest motive by examining investors’ use and acquisition behaviors in

short-horizon trading in financial markets.

29



APPENDIX

A Derivations

A.1 Equilibrium Signal Weights

Here, we derive signal weights for a symmetric information choice profile 11(11). Since both

players acquire signals from both information sources, we conjecture that their linear action

strategies follow (4) and (5). By (3), player i’s optimal action is

ai = (1− r)E
[
θ|xiA, xiB

]
+ rE

[
θ̄ + ω̂jA

(
xjA − θ̄

)
+ ω̂jB

(
xjB − θ̄

)
|xiA, xiB

]
, (A.1)

where “hat” represents conjectured value. After replacing the values of E
[
θ|xiA, xiB

]
, E
[
xjA − θ̄|xiA, xiB

]
,

and E
[
xjB − θ̄|xiA, xiB

]
, player i’s optimal action is

ai = (1− r)

[
θ̄ +

{
σ2θ
(
α2
B + κ2B

)
D

}(
xiA − θ̄

)
+

{
σ2θ
(
α2
A + κ2A

)
D

}(
xiB − θ̄

)]
+ rθ̄

+ rω̂jA

[{
α2
A

(
α2
B + κ2B

)
+ σ2θ

(
α2
A + α2

B + κ2B
)

D

}(
xiA − θ̄

)
+

{
κ2Aσ

2
θ

D

}(
xiB − θ̄

)]

+ rω̂jB

[{
κ2Bσ

2
θ

D

}(
xiA − θ̄

)
+

{
α2
B

(
α2
A + κ2A

)
+ σ2θ

(
α2
A + α2

B + κ2A
)

D

}(
xiB − θ̄

)]
. (A.2)

Comparing coefficients of
(
xiA − θ̄

)
and

(
xiB − θ̄

)
in (4) and (A.2), we have

ωiA =
(1− r)σ2θ

(
α2
B + κ2B

)
+ rω̂jA

{
α2
A

(
α2
B + κ2B

)
+ σ2θ

(
α2
A + α2

B + κ2B
)}

+ rω̂jBκ
2
Bσ

2
θ

D
(A.3)

ωiB =
(1− r)σ2θ

(
α2
A + κ2A

)
+ rω̂jAκ

2
Aσ

2
θ + rω̂jB

{
α2
B

(
α2
A + κ2A

)
+ σ2θ

(
α2
A + α2

B + κ2A
)}

D
. (A.4)

In equilibrium, ω̂ln = ωln for any l ∈ {i, j} and any n ∈ {A,B}. For a symmetric equilibrium,

ωiA = ωiA = ωA and ωiB = ωjB = ωB, which with (A.3) and (A.4) lead to two equations and two
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unknowns. After some algebra, the equilibrium weights are:

ωA =

1
(1−r)α2

A+κ
2
A

1
(1−r)σ2

θ
+ 1

(1−r)α2
A+κ

2
A

+ 1
(1−r)α2

B+κ2B

(A.5)

ωB =

1
(1−r)α2

B+κ2B
1

(1−r)σ2
θ

+ 1
(1−r)α2

A+κ
2
A

+ 1
(1−r)α2

B+κ2B

. (A.6)

A.2 Expected Losses

Note that for any n ∈ {A,B}

ai − θ = ωi0ζθ +
∑

n=A,B

ωin
(
ηn + εin

)
,

and

ai − aj = −
(
ωi0 − ω

j
0

)
ζθ +

∑
n=A,B

(
ωin − ωjn

)
ηn +

∑
n=A,B

(
ωinε

i
n − ωjnεjn

)
where ωi0 = 1− ωiA − ωiB and ωj0 = 1− ωjA − ω

j
B. Thus

E
[
(ai − θ)2

]
=

(
ωi0
)2
σ2θ +

∑
n=A,B

(
ωin
)2
α2
n +

∑
n=A,B

(
ωin
)2
κ2n (A.7)

E
[
(ai − aj)2

]
=

(
ωi0 − ω

j
0

)2
σ2θ +

∑
n=A,B

(
ωin − ωjn

)2
α2
n +

∑
n=A,B

[(
ωin
)2

+
(
ωjn
)2]

κ2n.(A.8)

A.3 Limited Levels of Reasoning

A.3.1 Level-k Signal Weights

Here, we derive the optimal level-k weights for the information choice profile 11(10). The weights

for the rest of the cases can be derived using an analogous method. Like Nagel (1995) and Stahl

and Wilson (1994), we assume that an level-0 action has a uniform distribution over the action

space, which, in our case, is the reals. Following Cornand and Heinemann (2013); Baeriswyl and

Cornand (2016), we define a level-1 action to be the first order expectation of the state conditional
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on the player’s information set:

ai1 = E
[
θ|Ii

]
. (A.9)

Given the information choice profile 11(10), suppose that, for any k > 0, player i believes that

player j attaches weight ωjA,k to the signal from A such that player j’s level-k action is

ajk = θ̄ + ωjA,k(x
j
A − θ̄).

By the optimality condition (3), player i’s best response (level-k+1 action) to j’s action is

aik+1 = (1− r)E
[
θ|xiA, xiB

]
+ rE

[
θ̄ + ωjA,k(x

j
A − θ̄)|x

i
A, x

i
B

]
= θ̄ +

[
(1− r)σ2θ

(
α2
B + κ2B

)
+ rωjA,k

{
α2
A

(
α2
B + κ2B

)
+ σ2θ

(
α2
A + α2

B + κ2B
)}

D

] (
xiA − θ̄

)
+

[
(1− r)σ2θ

(
α2
A + κ2A

)
+ rωjA,kκ

2
Aσ

2
θ

D

] (
xiB − θ̄

)
,

where

D ≡
(
α2
A + κ2A

) (
α2
B + κ2B

)
+ σ2θ

(
α2
A + κ2A + α2

B + κ2B
)
. (A.10)

Thus, player i’s level-k+1 signal weights are:

ωiA,k+1 =
(1− r)σ2θ

(
α2
B + κ2B

)
+ rωjA,k

{
α2
A

(
α2
B + κ2B

)
+ σ2θ

(
α2
A + α2

B + κ2B
)}

D
(A.11)

ωiB,k+1 =
(1− r)σ2θ

(
α2
A + κ2A

)
+ rωjA,kκ

2
Aσ

2
θ

D
. (A.12)

Player j believes that player i attaches weight ωiA,k to the signal from A, and ωiB,k to the

signal from B such that player i’s Lk action is

aik = θ̄ + ωiA,k(x
i
A − θ̄) + ωiB,k(x

i
B − θ̄). (A.13)
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Player j’s best response to player i’s action is

ajk+1 = (1− r)E
[
θ|xjA

]
+ rE

[
θ̄ + ωiA,k(x

j
A − θ̄) + ωiB,k(x

j
B − θ̄)|x

j
A

]
= θ̄ +

[
(1− r)σ2θ + rωiA,k

(
σ2θ + α2

A

)
+ rωiB,kσ

2
θ

σ2θ + α2
A + κ2A

](
xjA − θ̄

)
.

Thus, j’s level-k+1 signal weight is

ωj1,k+1 =
(1− r)σ2θ + rωiA,k

(
σ2θ + α2

A

)
+ rωiB,kσ

2
θ

σ2θ + α2
A + κ2A

. (A.14)

As defined in (A.9), player i’s level-1 action is

ai1 = E
[
θ|xiA, xiB

]
= θ̄ +

[
σ2θ
(
α2
B + κ2B

)
D

] (
xiA − θ̄

)
+

[
σ2θ
(
α2
A + κ2A

)
D

] (
xiB − θ̄

)
,

such that player i’s level-1 signal weights are

ωiA,1 =
σ2θ
(
α2
B + κ2B

)
D

; ωiB,1 =
σ2θ
(
α2
A + κ2A

)
D

, (A.15)

where D is defined in (A.10). Similarly, player j’s level-1 signal weight is

ωjA,1 =
σ2θ

σ2θ + α2
A + κ2A

. (A.16)

Player i’s level-2 signal weights, ωiA,2 and ωiB,2, are derived by replacing j’s level-1 weights

from (A.16) in (A.11)-(A.12). Similarly, use (A.15) in (A.14) to derive j’s level-2 signal weight,

ωjA,2, which, in turn, is used to derive i’s level-3 signal weights, ωiA,3 and ωiB,3, and so on.
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A.3.2 Level-k Information Acquisition

For calculating the ex-ante expected utility for player i, we use Lk signal weights of player i, and

level-k-1 weights of player j. Specifically, for any k > 1, i’s level-k ex-ante expected utility is

U ik = ū− Lik − C
(
xi
)
, (A.17)

where, for any n ∈ {A,B}, the expected loss function at level k is:

Lik =

[
(1− r)

(
ωi0,k

)2
+ r

(
ωi0,k − ω

j
0,k−1

)2]
σ2θ (A.18)

+

2∑
n=1

[
(1− r)

(
ωin,k

)2
+ r

(
ωin,k − ω

j
n,k−1

)2]
α2
n

+

2∑
n=1

[
(1− r)

(
ωin,k

)2
+ r

{(
ωin,k

)2
+
(
ωjn,k−1

)2}]
κ2n.

Using a similar notational convention as before, we denote a player’s level-k ex-ante expected

utility as

U ik,ab(cd) = U ik,ziA,k=a,z
i
B,k=b

(zjA,k−1 = c, ziB,k−1 = d).

A level-k player uses these utilities to derive his optimal information acquisition decision.

For the assumed parameter set in (15), players’ optimal information acquisition decisions at

level-1-level-4 are shown in Table 3. For example, consider the case of r = 0.8 and c = 5. At

level-1, a player’s optimal acquisition decision is (ziA,1 = 1, ziB,1 = 1). The methodology used

for the derivation is the following. A level-1 player’s ex-ante expected utilities (i.e., U i1,ab(cd))

are calculated using the values of {ωiA,1, ωiB,1} (derived by using (A.9)). For a level-1 player, his

opponent is a level-0 player, who places equal probability to any of the four possible information

acquisition choices, {(1, 1), (1, 0), (0, 1), (0, 0)}. A level-1 player computes his expected payoffs
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over the distribution of his level-0 opponent’s choices as

U i1,ab ≡
1

4

[
U i1,ab(11) + U i1,ab(10) + U i1,ab(01) + U i1,ab(00)

]
,

for any a, b ∈ {1, 0}. Thus, a level-1 optimal information acquisition decision is

(ziA,1 = a∗, ziB,1 = b∗) = arg max
a,b

U i1,ab,

that is, he chooses an information profile (a∗, b∗) that corresponds to the maximum of U i1,11, U
i
1,10,

U i1,01 and U i1,00. The optimal acquisition decision turns out to be (ziA,1 = 1, ziB,1 = 1).

A level-2 player uses his level-2 signal weights (ωiA,2 and ωiB,2), and his opponent’s level-1

signal weights (ωjA,1 and ωjB,1) to derive his ex-ante expected utilities using (A.17) and (A.18).

Since a level-1 opponent’s optimal acquisition decision is (zjA,1 = 1, zjB,1 = 1), a level-2 player’s

optimal information acquisition choice is given by

(ziA,2 = a∗, ziB,2 = b∗) = arg max
a,b

U i2,ab(11),

that is, he chooses an information profile (a∗, b∗) that corresponds to the maximum of U i2,11(11),

U i2,10(11), U i2,01(11) and U i2,00(11). As shown in Table 3, the level-2 optimal acquisition decision

for r = 0.8 and c = 5 is (ziA,2 = 1, ziB,2 = 1).

Similarly, a level-3 player uses his level-3 signal weights (ωiA,3 and ωiB,3), and his opponent’s

level-2 signal weights (ωjA,2 and ωjB,2) to derive his ex-ante expected utilities, and best responds

to his opponent’s level-2 optimal acquisition decision (zjA,2 = 1, zjB,2 = 1). As shown in Table 3,

the level-3 optimal acquisition decision for r = 0.8 and c = 5 is (ziA,3 = 1, ziB,3 = 0). Optimal

information choices at level-4 and upwards are derived in a similar way.
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Table 1: Expected Benefits of Information Acquisition

B1′0(10) B1′0(00) B01′ (01) B01′ (00) B11(11) B11(00) B1′1(11) B1′1(01) B11′ (11) B11′ (10)

r = 0 39096 39096 39096 39096 39543 39543 447 447 447 447

r = 0.2 36271 25021 35940 25021 36618 25307 542 437 344 290

r = 0.8 9032 1564 7857 1564 9065 1582 933 345 32 22

This table presents expected benefits of a player when he acquires one, two or none of the signals for parameter values in (15).
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Table 2: Signal Weights

level-1 level-2 level-3 level-4 ... Equilibrium Weights

r = 0.8
ωA 0.49 0.68 0.75 0.78 ... 0.80

ωB 0.49 0.30 0.23 0.20 ... 0.18

r = 0.2
ωA 0.49 0.54 0.55 0.55 ... 0.55

ωB 0.49 0.45 0.44 0.44 ... 0.44

This table shows theoretical weights on signals A and B—for exogenous information structure—for equi-
librium as well as level-k models for parameter values in (15).

Table 3: Information Acquisition Decisions

level-1 level-2 level-3 level-4 ... Equilibrium

r = 0.8
c = 200 (1, 1) (1, 0) (1, 0) (1, 0) ... (1, 0)

c = 5 (1, 1) (1, 1) (1, 0) (1, 1) ... (1, 1)

r = 0.2
c = 200 (1, 1) (1, 1) (1, 1) (1, 1) ... (1, 1)

c = 5 (1, 1) (1, 1) (1, 1) (1, 1) ... (1, 1)

This table shows information acquisition decisions for equilibrium and level-k models for parameter values
in (15). Each decision shows player i’s information acquisition choices for signals A and B, (ziA,k ∈
{1, 0}, ziB,k ∈ {1, 0}), at level-k reasoning. A player at level-k best responds to a player at level-k-1.
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Table 4: Experimental Design

Low Cost (c = 5) High Cost (c = 200)

Low Coordination HR/HC HR/LC
(r = 0.2) (3 sessions) (3 sessions)

High Coordination LR/HC LR/LC
(r = 0.8) (3 sessions) (3 sessions)

This table summarizes the experimental design and the number of sessions. We adopt a 2X2, between-
subjects design that manipulates information acquisition cost (High Cost or Low Cost) and the coordina-
tion incentives parameter (High Coordination or Low Coordination). We conducted three experimental
sessions for each treatment. Each session includes 30 rounds. In Round 1-10 (Stage 1), clue A and clue
B are provided to subjects at no cost. In Round 11-30 (Stage 2), subjects make information acquisition
decisions.

Table 5: Guesses relative to Clues (Stage 1)

r = 0.2 r = 0.8

Inside [Min(xA, xB), Max(xA, xB)] 0.85 0.88
Closer to clue A 0.47 0.64
Middle 0.15 0.10
Closer to clue B 0.38 0.26
Inside [Min(xA, xB , 500), Max(xA, xB , 500)] 0.99 1.00

Number of Obs. 720 720
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Table 6: Estimated Clue Weights by Group (Stage 1)

Panel A: Group specific weights on clues

Treatment Session.Group First Half Second Half
Clue A Clue B Clue A Clue B

r = 0.2/c = 5 1.1 0.56 0.42 0.42 0.59
1.2 0.53 0.46 0.5 0.51
2.1 0.47 0.53 0.4 0.63
2.2 0.46 0.52 0.42 0.6
3.1 0.52 0.45 0.5 0.5
3.2 0.53 0.47 0.52 0.46

r = 0.2/c = 200 4.1 0.5 0.51 0.51 0.5
4.2 0.51 0.48 0.49 0.49
5.1 0.52 0.48 0.49 0.53
5.2 0.6 0.4 0.58 0.42
6.1 0.46 0.5 0.5 0.42
6.2 0.31 0.66 0.28 0.69

Average 0.5 0.49 0.47 0.53
Theoretical 0.55 0.44 0.55 0.44

r = 0.8/c = 5 7.1 0.58 0.4 0.54 0.46
7.2 0.69 0.31 0.69 0.31
8.1 0.59 0.4 0.59 0.43
8.2 0.69 0.3 0.7 0.27
9.1 0.58 0.43 0.54 0.48
9.2 0.62 0.38 0.64 0.38

r = 0.8/c = 200 10.1 0.55 0.44 0.57 0.41
10.2 0.56 0.43 0.56 0.43
11.1 0.56 0.43 0.58 0.42
11.2 0.74 0.26 0.74 0.26
12.1 0.58 0.41 0.56 0.44
12.2 0.61 0.39 0.58 0.4

Average 0.61 0.38 0.61 0.39
Theoretical 0.8 0.18 0.8 0.18

Panel B: p-values for Wilcoxon signed rank tests (one-tailed)

Null Alternative First Half Second Half

H1 r = 0.2 ωA = ωB ωA > ωB 0.39 0.83
r = 0.2 ωA = 0.55 ωA < 0.55 0.02 0.003
H1 r = 0.8 ωA = ωB ωA > ωB 0.0002 0.0002
r = 0.8 ωA = 0.81 ωA < 0.81 0.0002 0.0002
H2 ωr=0.2

A = ωr=0.8
A ωr=0.2

A < ωr=0.8
A 0.0003 0.0001

H2 ωr=0.2
B = ωr=0.8

B ωr=0.2
B > ωr=0.8

B 0.0003 0.0006
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Table 7: Clue Acquisitions by Group

First Half Second Half
Treatment Session.Group Buy A Buy B Both None Buy A Buy B Both None

r = 0.2/c = 5 1.1 3% 7% 88% 2% 0% 15% 85% 0%
1.2 0% 0% 100% 0% 0% 0% 100% 0%
2.1 23% 10% 67% 0% 25% 8% 67% 0%
2.2 5% 0% 95% 0% 0% 0% 100% 0%
3.1 0% 2% 98% 0% 0% 0% 100% 0%
3.2 8% 22% 70% 0% 0% 33% 67% 0%

Average 7% 7% 86% 0% 4% 9% 86% 0%
Theoretical 0% 0% 100% 0% 0% 0% 100% 0%

r = 0.2/c = 200 4.1 50% 27% 17% 7% 70% 20% 10% 0%
4.2 15% 37% 47% 2% 5% 25% 70% 0%
5.1 7% 18% 67% 8% 3% 18% 78% 0%
5.2 12% 3% 80% 5% 0% 0% 100% 0%
6.1 37% 13% 50% 0% 33% 2% 65% 0%
6.2 33% 13% 53% 0% 23% 17% 60% 0%

Average 26% 19% 52% 4% 23% 14% 64% 0%
Theoretical 0% 0% 100% 0% 0% 0% 100% 0%

r = 0.8/c = 5 7.1 53% 2% 42% 3% 58% 0% 42% 0%
7.2 57% 0% 43% 0% 65% 2% 33% 0%
8.1 53% 0% 47% 0% 38% 0% 62% 0%
8.2 30% 0% 70% 0% 17% 0% 83% 0%
9.1 23% 0% 77% 0% 25% 0% 75% 0%
9.2 78% 8% 13% 0% 90% 5% 5% 0%

Average 49% 2% 49% 1% 49% 1% 50% 0%
Theoretical 0% 0% 100% 0% 0% 0% 100% 0%

r = 0.8/c = 200 10.1 67% 7% 18% 8% 88% 8% 3% 0%
10.2 87% 0% 2% 12% 100% 0% 0% 0%
11.1 48% 2% 47% 3% 42% 13% 43% 2%
11.2 77% 2% 7% 15% 82% 0% 18% 0%
12.1 60% 27% 8% 5% 77% 23% 0% 0%
12.2 78% 20% 0% 2% 73% 27% 0% 0%

Average 69% 9% 14% 8% 77% 12% 11% 0%
Theoretical 100% 0% 0% 0% 100% 0% 0% 0%
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Table 8: Transition Matrix of Information Acquisition Decisions

Panel A: r = 0.2/c = 5

Acquisition Strategy in t Transition Probability from t to t+ 1 Obs.

None Buy A Buy B Buy Both
None 0% 100% 0% 0% 1
Buy A 0% 70.27% 10.81% 18.92% 37
Buy B 1.79% 5.36% 83.93% 8.93% 56
Both 0% 0.68% 1.02% 98.31% 590

Panel B: r = 0.2/c = 200

Acquisition Strategy in t Transition Probability from t to t+ 1 Obs.

None Buy A Buy B Buy Both
None 30.77% 23.08% 15.38% 30.77% 13
Buy A 1.23% 70.55% 14.72% 13.5% 163
Buy B 3.54% 15.04% 59.29% 22.12% 113
Both 0% 6.58% 4.05% 89.37% 395

Panel C: r = 0.8/c = 5

Acquisition Strategy in t Transition Probability from t to t+ 1 Obs.

None Buy A Buy B Buy Both
None 50% 50% 0% 0% 2
Buy A 0.3% 84.08% 1.80% 13.81% 333
Buy B 0% 60.00% 20.00% 20.00% 10
Both 0% 13.86% 0.59% 85.55% 339

Panel D: r=0.8/c=200

Acquisition Strategy in t Transition Probability from t to t+ 1 Obs.

None Buy A Buy B Buy Both
None 35.71% 53.57% 3.57% 7.14% 28
Buy A 1.80% 89.60% 4.40% 4.20% 500
Buy B 2.78% 26.39% 66.67% 4.17% 72
Both 3.57% 21.43% 3.57% 71.43% 84
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Table 9: Classification of individual by acquisition strategy

Buy A Buy B Both None Indeterminate

r = 0.2/c = 5 3% 11% 86% 0% 0%
r = 0.2/c = 200 19% 14% 58% 0% 8%
r = 0.8/c = 5 42% 0% 50% 0% 8%
r = 0.8/c = 200 75% 6% 11% 0% 8%

Table 10: Probit Regression on Decisions to Acquire Clue B

Explanatory Variables Dependent Variable

Buy B Buy B

r −1.576 ∗ ∗∗
(0.386)

Cost −0.945 ∗ ∗
(0.403)

Cost*r 0.186
(0.510)

Partner BuyB 0.905 ∗ ∗∗
(0.247)

Intercept 1.593 ∗ ∗∗ −0.259
(0.314) (0.181)

Observations 2880 2880
R-squared 0.25 0.09

*** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors (in parentheses) are clustered at the group level.
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Table 11: Expected Benefits for Limited Depths of Reasoning

r = 0.8 r = 0.2

level-1 level-2 level-3 level-4 Eqm. level-1 level-2 level-3 level-4 Eqm.

B1′0(10) 39096 39058 9032 9032 9032 39096 39086 36271 36271 36271
B1′0(00) 39096 1564 1564 1564 1564 39096 25021 25021 25021 25021

B01′(01) 39096 37732 7748 7776 7857 39096 38753 35940 35940 35940
B01′(00) 39096 1564 1564 1564 1564 39096 25021 25021 25021 25021

B11(11) 39543 39247 9019 9051 9065 39543 39456 36618 36618 36618
B11(00) 39543 1582 1582 1582 1582 39543 25307 25307 25307 25307

B1′1(11) 447 843 951 972 933 447 534 541 541 542
B1′1(01) 447 413 387 380 345 447 438 437 437 437

B11′(11) 447 170 −14 18 32 447 365 343 344 344
B11′(10) 447 22 22 22 22 447 290 290 290 290

This table shows a player’s expected benefits for different levels of reasoning.
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Table 12: Probit Regression of the Effect of Past Behavior on Decision to Acquire B. (Last 10 Rounds)

r=0.2/c=5 r=0.2/c=200 r=0.8/c=5 r=0.8/c=200

Lag BuyB 3.621∗∗∗ 2.283∗∗∗ 2.391∗∗∗ 2.332∗∗∗

(0.348) (0.607) (0.243) (0.184)
Lag Partner BuyB 0.231 0.489 0.552∗∗ −0.128

(0.233) (0.344) (0.241) (0.163)
Intercept −1.318∗∗∗ −1.097∗∗∗ −1.493∗∗∗ −1.489∗∗∗

(0.211) (0.143) (0.106) (0.233)
R square 0.71 0.46 0.5 0.44
Number of Obs. 360 360 360 360

*** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors (in parentheses) are clustered at the group level.

Table 13: Estimated Clue Weights (Stage 2) Conditional on Acquiring Both Clues

First Half Second Half
clue A clue B Diff. Sig. N clue A clue B Diff. Sig. N

r = 0.2/c = 5 0.53 0.45 p = 0.44 246 0.50 0.49 p = 0.84 294
r = 0.2/c = 200 0.49 0.50 p = 0.87 98 0.52 0.46 p = 0.76 180
r = 0.8/c = 5 0.52 0.47 p = 0.65 74 0.61 0.38 p = 0.04 112
r = 0.8/c = 200 0.49 0.51 p = 0.758 12 0.50 0.50 p = 0.99 12
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Figure 1: Information Acquisition Strategy by Treatment and Round
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(A) Frequency of Clue A Acquired (Include Strategy of Buy A and Buy Both)

(B) Acquisition of Clue B by Treatment (Include Buy B and Buy Both)

Figure 2: Frequency of Clue A and B Acquired by Treatments
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Experimental Instructions  

[General Introduction] 

This is an experiment in decision making under uncertainty. You will be paid in cash at the end of the 

experiment based on your performance.  

If you have any questions during the experiment, please raise your hand and wait for an experimenter to 

come to you.  Please do not talk or try to communicate with other participants during the experiment.   

You are part of a group of 12 persons participating in this experiment and each of you is allocated into 

two groups of 6 persons. You will only interact with the other 5 persons in your group, but not interact 

with anyone in the other group. The two groups are completely independent. 

This experiment has two parts. In each part, you play a guessing game. You play the same game 

repeatedly. In each round, you will be randomly matched with one of the other 5 persons in your group. 

In part one, there are 10 rounds. In part two, there are 20 rounds.  

Your earnings are measured in francs, and your objective is to maximize your francs.  At the end of the 

experiment, the computer will randomly select four rounds, and the sum of the francs in the four 

rounds selected will be used to determine your cash payoff. We will convert your francs into dollars at 

500 francs = 1 US dollar. Please read the instructions carefully and make your decisions wisely.  

[Part 1] 

There is an unknown number, Y. This unknown number is different in each round but identical for all the 

participants in the same group.  

In each round, you are asked to make a guess. Your payoff in each stage is described below. 

. 	 . 	 	  

Your payoff is higher the closer your guess is to the unknown number Y, and the closer your guess is to 

your partner’s guess (about Y). To maximize your payoff, your guess has to be as close as possible to Y as 

well as to your partner’s guess. However, note that your losses from deviating from Y are four times of 

your losses from deviating from your partner’s guess. Thus, it is more important to be close to the 

unknown number Y than to the guess of your partner.  

Example 1: Suppose the true value of Y is 400 and your partner’s guess is 450. How much is your payoff 

in francs if your guess is 410?  

Answer: 3000‐0.8*(410‐400)^2‐0.2*(410‐450)^2=3000‐0.8*100‐0.2*1600=3000‐80‐320=2600. 

 



Example 2: Suppose that the true value of Y is 400 and that your partner’s guess is 450, how much is 

your payoff in francs if your guess is 440? 

Answer: 3000‐0.8*(440‐400)^2‐0.2*(440‐450)^2=3000‐0.8*1600‐0.2*100=3000‐1280‐20=1700. 

As you can see from the examples above, you make more francs if your guess is closer to the true value 

of Y than if your guess is closer to the guess of your partner because your losses from the deviation from 

Y are four times that of your losses from the deviation from your partner’s guess. 

In this experiment, you and your partner do not know Y, but both of you will receive two clues about Y, 

which will inform you about Y. In the rest of the instructions, we first explain how Y is generated. Then 

we explain how clues are generated. 

 Unknown Number Y  

For each round, the computer will randomly select a number Y. Y is drawn from a normal distribution 

with a mean of 500 and standard deviation of 200. Below is a picture of the likelihood of drawing each 

possible Y: 

 As you can see from the picture, the number that is most likely to be drawn is the mean (500) and the 

chance of  the other numbers being drawn decreases as  they move  further away  from  the mean. The 

standard deviation tells you how dispersed (i.e., spread out) the possible payoffs are. With approximately 

67%  chance, Y will be within one  standard deviation  (200) around  the mean. This  indicates  that Y  is 

between 300 (500–200) and 700 (500+200) about two‐thirds of the time. With approximately 95% chance, 

Y will be within  two  standard deviations  (200×2=400)  around  the mean  500.  This  indicates  that  Y  is 

between 100 (500–400) and 900 (500+400) about 95% of the time. 

In each round, the computer randomly draws a number according to the distribution outlined above. 

Different values of the number Y are drawn independently in each round, which means that the value of 

Y in one round is entirely unrelated to the values of Y in all of the other rounds. 

 

 

 



 Clues about Y 

Each player will receive two clues about Y. The two clues are Clue A and Clue B. The computer generates 

each of the two clues by adding two errors terms to Y. One error is a common error, which is the same 

for you and your partner. The other error is a private error, which is different between you and your 

partner. Thus, your clue A is likely to be different from your partner’s clue A, and your clue B is likely to 

be different from your partner’s clue B. Below we first explain how the computer generate two clue As, 

one for you and one for your partner.  

Clue A 

After the computer draws the unknown number Y, the computer generates Clue A in the following way.  

First, the computer draws one common error. This common error is randomly selected from a normal 

distribution with a mean 0 and a standard deviation 30. The chance of the common error being 0 is the 

highest. With approximately 67% chance, the error will be within one standard deviation (30) around 

the mean (0), that is, between ‐30 (0–30) and 30 (0+30). With approximately 95% chance, the error will 

be within two standard deviations (30×2=60) around the mean 0, that is, between ‐60 and 60. 

Second, the computer draws a private error for each participant independently. The private errors are 

also randomly selected from a normal distribution with mean 0, but the standard deviation is 5. The 

computer draws the two private errors independently. Thus, the private error for you is likely 

different from the private error for your partner. The chance of the private error being 0 is the highest. 

With approximately 67% chance, private errors will be within one standard deviation, i.e., between ‐5 

and 5.  With approximately 95% chance, private errors will be within two standard deviations, i.e., 

between ‐10 and 10.   

Third, the computer calculates Clue A by first adding the common error to Y and then adding individual 

specific private error.  

Your Clue A = Y + Common error A (std. dev. 30) + Your Private error A (std. dev. 5) 

Partner Clue A = Y + Common error A (std. dev. 30) + Partner Private error A (std. dev. 5) 

Note that the Clue A that you receive is likely different from the Clue A that your partner receives, 

because the private errors are different between you and your partner. 

Example of Clue A:  

Suppose Y drawn by the computer is 400. First, the computer draws a common error from the normal 

distribution with mean 0 and standard deviation 30. The computer adds this common error to Y to get 

Y’, therefore Y’ will be between 340 (400‐2x30) and 460 (400+2x30) with 95% chance. Suppose the 

common error is ‐25. Y’ =400‐25=375.  

Next the computer draws two private errors from the normal distribution with mean 0 and standard 

deviation 5. With 95% chance, the private errors drawn will be within two standard deviations, that is,  



‐10 and 10. The computer adds the private error to Y’ to get Clue A. Suppose the private error drawn for 

you is ‐3; the Clue A you receive will be 375‐3=372. Suppose the private error drawn for your partner is 

+5; the Clue A your partner receives will be 375+5=380.  

 

In this example, your clue A is 372 and your partner clue A is 380. The true Y is 400. Both clues are 

different from Y because of errors contained in the clues. Your clue A is different from your partner’s 

clue A because the private errors are different. However, the private error is relatively small, so your 

clue A and your partner clue A are not that far apart.  

The table below provides 10 examples of Clue As for a given Y. Please see how your clue is different 

from Y and different from your partner’s Clue A.  

Example of signal draws (Clue A) 

Y  Common Error  
(c) 

Your Private Error 
(p) 

Your partner's 
Private Error 

(p’) 

Your Clue A 
(Y+c+p) 

Your partner's 
Clue A 
(Y+c+p’) 

386  16  ‐1  ‐1  401  401 

620  39  ‐4  ‐1  655  658 

670  ‐8  4  ‐2  666  660 

120  1  7  8  128  129 

874  13  0  ‐6  887  881 

622  ‐12  1  3  611  613 

483  30  6  0  519  513 

627  9  ‐6  1  630  638 

189  64  ‐2  3  251  256 

342  ‐49  6  ‐1  299  292 

 

 

 



Clue B 

Clue B is generated in the same way as Clue A, except that the standard deviations of the errors are 

different. For Clue B, the standard deviation of the common error is 5, and the standard deviation of 

the private error is 30. The procedure to draw Clue B is the same as Clue A.  

Example of Clue B:  

Suppose Y drawn by the computer is 400. First, the computer draws a common error from the normal 

distribution with mean 0 and standard deviation 5. Suppose the common error is ‐8. Y’’=400‐8=392.  

Next the computer draws two private errors from the normal distribution with mean 0 and standard 

deviation 30. Suppose the private error drawn for you is ‐20; the Clue B you receive will be 392‐20=372. 

Suppose the private error drawn for your partner is +28; the Clue B your partner receives will be 

392+28=420.  

 

In this example, your clue B is 372 and your partner’s clue B is 420. The true Y is 400. Your clue B is 

different from your partner clue B because the private errors are different. Since the private error in 

clue B is relatively large compared to clue A, your clue B and your partner clue B are likely to differ more 

from each other than your clue A and your partner clue A.  

The table below provides 10 examples of Clue Bs for a given Y. Please see how your Clue B deviates from 

Y and from your partner’s Clue B. 

 

 

 

 



Example of signal draws (Clue B) 

Y  Common Error  
(c) 

Your Private Error 
(p) 

Your partner's 
Private Error 

(p’) 

Your Clue A 
(Y+c+p) 

Your partner's 
Clue A 
(Y+c+p’) 

386  ‐9  22  ‐6  399  371 

620  ‐8  14  ‐10  626  602 

670  1  ‐5  8  666  679 

120  6  40  4  166  130 

874  ‐1  9  12  882  885 

622  4  45  ‐13  671  613 

483  ‐1  7  ‐53  489  429 

627  9  2  ‐17  638  619 

189  2  24  63  215  254 

342  9  21  ‐7  372  344 

 

Clue Summary 

Each player has two clues about Y: Clue A and Clue B. The computer generates each clue independently 

by adding to Y two error terms, one common error and one private error.  

Your Clue A = Y + Common error A (std. dev. 30) + Private error A (std. dev. 5) 

Your Clue B = Y + Common error B (std. dev. 5) + Private error B (std. dev. 30) 

On average, you expect the size of the total error including common and private errors to be the same 

for Clue A and Clue B.  Thus, you expect both clues to be equally informative about the unknown 

number Y.  

Similarly, the computer generates two clues about Y for your partner.  

Partner Clue A = Y + Common error A (std. dev. 30) + Partner Private error A (std. dev. 5) 

Partner Clue B = Y + Common error B (std. dev. 5) + Partner Private error B (std. dev. 30). 

Both the Clue A and Clue B are most likely to be different between you and your partner, because 

private errors are independently drawn. Since the private errors for Clue B is more dispersed (standard 

error is 30) than the private errors for Clue A (standard error is 5), you expect to see that your Clue B 

and your partner’s Clue B are farther apart from each other than your Clue A and your Partner’s Clue 

A.   

After all participants submit their decisions for the guessing game, you will receive the feedback 

information including the Y, your partner’s clues, your partner’s guess, and your payoff.  

   



[Part 2] 

Your task is the same as Part I except that you have to now purchase the two clues at a cost. Clue A and 

Clue B are available to you only if you pay a cost to buy them. Before you play the guessing game, you 

have to decide whether you want to purchase the clues. If you buy one clue, you pay a cost of 5 francs. 

The cost is the same for Clue A and Clue B. If you buy both the clues, you pay a total cost of 10 francs. 

The costs are the same for you and your partner.  

You select among one of the 4 choices: buy none, buy only Clue A, buy only Clue B, or buy both clues. 

Similarly, your partner also has to decide whether to purchase clues at cost and choose among the 

above 4 choices. You and your partner make clue purchasing decisions simultaneously. After you and 

your partner submit clue purchasing decisions, you will be informed about each other’s clue purchasing 

decisions. The computer will send you the clues you purchased, and send your partner the clues he/she 

purchased. Finally, both of you make your decisions in the guessing game.  

After all participants submit their decisions for the guessing game, you will receive the feedback 

information including the Y, your partner’s clue purchase decision, the clues, your partner’s guess, and 

your payoff. 

   



 

Quiz 

Q1. The random number Y is equally likely to be a number between 100 and 900. 

_____ True               _____ False 

Answer: F 

Q2. If the Y in the current round is 700, then Y in the next round is likely to be close to 700.  

_____ True              _____ False 

Answer: F 

Q3. Your clue A is the same as your partner’s clue A. Your clue B is the same as your partner’s clue B. 

_____ True             _____ False 

Answer: F 

Q4. The common error in Clue A is the same for both players, but the private errors are different for you 

and your partner.  

_____ True             _____ False 

Answer: T 

Q5. The common error for Clue A has mean of 0 and standard deviation of 30. On average, the error is 

expected to be 0. In 95% of cases, the error will be within two standard deviations. That is, the common 

error will be between ___________and ____________in 95% of cases. 

Answer: ‐60 and +60 

Q6. The common error for Clue B has mean of 0 and standard deviation of 5. On average, the error is 

expected to be 0. In 95% of cases, the error will be within two standard deviations. That is, the common 

error will be between ___________and ____________in 95% of cases. 

Answer: ‐10 and 10 

Q7. The computer draws the private errors for you and your partner independently. It is most likely that 

your private error is different from your partner’s private error.  

_____ True             _____ False 

Answer: T 

Q8. On average, you expect that Clue A and Clue B are equally informative about the true value Y. 



_____ True             _____ False 

Answer: T 

Q9. On average, you expect that your Clue A is closer to your partner’s Clue A than your Clue B to your 

partner’s Clue B because the private errors of Clue A have smaller dispersions than the private errors of 

Clue B.  

_____ True             _____ False 

Answer: T 

Q10: In Part 1, you are given Clue A and Clue B. Suppose that the true value of Y is 600 and that your 

partner’s guess is 650, how much is your payoff in francs if your guess is 640?_________ 

Answer: 3000‐0.8*(640‐600)^2‐0.2*(640‐650)^2  =3000‐0.8*1600‐0.2*100 = 1700. 

Q11. In part 2, you have the option to buy clues at a cost. How much do you have to pay to buy one 

clue?_______How much do you have to pay to buy two clues?______ 

Answer: 5; 10 

Q12: In part 2, suppose that the true value of Y is 600 and that your partner’s guess is 650, how much is 

your payoff in francs if your guess is 640 and you bought both clue A and B?_________ 

Answer: 3000‐0.8*(640‐600)^2‐0.2*(640‐650)^2 – 10 =3000‐0.8*1600‐0.2*100 – 10 = 1690. 

Q13. In part 2, you are not able to know which clues your partner has purchased before you submit your 

guess. 

_____ True             _____ False 

Answer: F 

 

  



Post-Experimental Questionnaire 
 

Major_____ 

Age_____ 

Gender_____ 

 
 

 
 
 

1. In Part 1, you are given two clues. How did you use the two clues? Did you use both 
clues in the same way or differently? 
 
 

2. In Part 2, you have options to buy two clues. How did you make the clue-buying 
decisions? Did your clue-buying decision change over time after you saw other players’ 
decision (e.g., other players’ clue-buying decisions and guessing decisions)? 

 
 

 
3. In Part 2, how did you use the clue or clues you buy to make your decisions in the 

guessing game? 
 
 

 
 

4. Were the instructions clear? If not, which parts were not clear?   
 



(A) Stage 1 (exogenous information)

(B) Stage 2 (endogenous information)

Figure 3: Screenshots of two stages of the game.
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