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ALGEBRAIC THEORIES OVER NOMINAL SETS

ALEXANDER KURZ, DANIELA PETRIŞAN, AND JIŘÍ VELEBIL

ABSTRACT. We investigate the foundations of a theory of algebraic data types with vari-
able binding inside classical universal algebra. In the first part, a category-theoretic study
of monads over the nominal sets of Gabbay and Pitts leads us tointroduce new notions of
finitary based monads and uniform monads. In a second part we spell out these notions in
the language of universal algebra, show how to recover the logics of Gabbay-Mathijssen
and Clouston-Pitts, and apply classical results from universal algebra.

1. INTRODUCTION

The nominal sets of Gabbay and Pitts [10] give an elegant and powerful treatment of vari-
able binding which is, on the one hand, close to informal practice and, on the other hand,
lends itself to rigorous formalisation in theorem provers or programming languages. Nom-
inal sets have been extraordinarily successful as witnessed by a wide range of work.

Closely related, albeit less developed, are the models of variable binding based on presheaf
categories[I, Set]. These are categories of functorsI → Set where the indexing category
I consists of contexts (=sets of free variables) and maps between them (such as weakenings
and renamings). This started with [9, 13] and was axiomatised in [23] to treat differentI
in a uniform way. We focus on the indexing categoryI associated with nominal sets (more
below) and leave the general theory for future work.

This paper presents the foundations of a theory of algebraicdata types with variable bind-
ing. We do this inside standard many-sorted universal algebra. In particular, the logics
arising are (fragments of) the standard ones based on equational logic. This enables us to
leverage the existing theory of universal algebra and we illustrate this by transferring two
classical theorems to nominal sets: Birkhoff’s variety theorem (or HSP-theorem) charac-
terising equationally definable classes of algebras; and the quasivariety theorem character-
ising implicationally definable classes (Section 5).

We proceed in the following way. Although the categoryNom of nominal sets is not equa-
tionally definable itself, it embeds in a canonical way into apresheaf category[I, Set],
sorted over contexts. Like any presheaf category,[I, Set] is a many-sorted variety, ie equa-
tionally definable. Thus, over[I, Set], universal algebra can be done in the usual way, by
adding operations and equations. Transferring this back tonominal sets, it turns out that
the logic thus obtained is more general than what is usually intended when working with
nominal sets. The reason is that over[I, Set] we have access to individual contexts and can
define theories which do not treat contexts in a uniform way. This is repaired by introduc-
ing uniform theories. We then show that the (quasi)variety theorems specialise to uniform
theories (Section 4).

Three points are worth noting:

The third author acknowledges the support of the grant MSM6840770014 of the Ministry of Education of the
Czech Republic.
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Nominal sets and sets-in-context.There has been some debate on whether nominal sets
or sets-in-context are preferable. We illustrate how both have their advantages. On the
one hand, our concept of a uniform theory originates from Gabbay’s discovery [11] that
classes of algebras over nominal sets (in the sense of [11]) are closed under abstraction
(Definition 3.16). On the other hand, the sets-in-context approach of[I, Set] allows us to
use universal algebra directly and we obtain Gabbay’s HSP-theorem and novel variations
as a corollary of the classical theorems.

Category theory (CT). Category theory appears in this work for several reasons. First,
CT offers a widely accepted notion of algebraic theory over acategory, namely that of a
monad. Thus, an account of algebraic theories over nominal sets ignoring monads would
be incomplete. Second, the relationship between nominal sets and sets-in-context is best
formulated in CT, see for example the crucial ‘transport theorems’ of Section 3.3. Third,
CT allows for proofs at the right level of abstraction, thus providing more general results
and opening new directions, some of which we will discuss in the conclusions.

Fb-monads.The categorical analysis of monads on nominal sets leads us to add fb-monads
to the powerful toolbox of CT in computer science. They arisebecause monads on nom-
inal sets are too general to remain in the realm of equationallogic and universal algebra.
Whereas fb-monads are precisely those monads which can be presented in universal alge-
bra. Moreover, they can be transported from nominal sets to[I, Set] and back: Loosely
speaking, universal algebra does not see the difference between the two categories.

The structure of the paper is as follows. Section 3 studies monads on nominal sets and
[I, Set] and introduces fb-monads and uniform monads. Section 4 develops universal alge-
bra over[I, Set] and gives a syntactic description of the notion of uniform theory. Section
5 applies these results to algebras over nominal sets and shows that the work of Gabbay
and Mathijssen [12] and Clouston and Pitts [5] fit in our framework.

2. PRELIMINARIES

Notations. If A is a small category andK an arbitrary category the functor category
[A ,K ] has as objects functors fromA to K and as morphisms natural transformations
between functors.

For an endofunctorL on a categoryA , we consider the category ofL-algebras, denoted
byAlg(L), whose objects are defined as pairs(A,α) such thatα : LA → A is a morphism
in A . A morphism ofL-algebrasf : (A,α) → (A′, α′) is a morphismf : A → A′ of A

such thatf ◦ α = α′ ◦ Lf .

If A is a category andM = (M,µ, η) is a monad onA thenA M denotes the category
of Eilenberg-Moore algebras for the monadM. These are algebras forM that behave well
with respect to the multiplication and unit of the monad, see[19] for a precise definition.

If L is either a functor or a monad we use the ad-hoc notationL-Alg for algebras forL.

If S is a set andA an object in a cocomplete categoryK , S •A denotes the copower, that
is, the coproduct ofS-copies ofA.

Universal algebra (UA) and UA-presentations.A signature(Srt ,Op) in the sense of
UA, or aUA-signature, is given by a setSrt (of sorts) and a setOp of operation symbols
op : w → s wherew is a finite word overSrt ands ∈ Srt . A UA-theory〈Srt ,Op, E〉 is
given by a UA-signature and a setE of equations andAlg(Srt ,Op, E) is the class of its
models. If a categoryA is isomorphic toAlg(Srt ,Op, E) we say that〈Srt ,Op, E〉 is a
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UA-presentationof A and callA a variety. A varietyA comes with a forgetful functor
UA : A → SetSrt , which has a left-adjointFA .

Monads. Any adjunctionF ⊣ U : K → X gives rise to a monadT = UF , which in
turn determines the categoryX T of algebras for the monad. IfT is finitary (=preserves
filtered colimits [2]) andX = SetSrt , thenX T is a variety. Conversely, any variety
A ∼= Alg(Srt ,Op, E) is isomorphic to(SetSrt )T whereT = UA FA is a finitary monad.
We say that〈Srt ,Op, E〉 is a UA-presentation of the monadT.

Nominal Sets. We consider a countable setN of names and the groupS(N ) of finitely
supported permutations onN (that is permutations that fix all but a finite set of names).
Let · : S(N ) × X → X be a left action of the groupS(N ) on a setX . We say that a
finite subsetS ⊂ N supports an elementx of X , if for any permutationπ ∈ S(N ) that
fixes the elements ofS we haveπ · x = x. A nominal setis a left action(X, ·) such that
any element ofX is supported by a finite set.

For each elementx of a nominal set there exists a smallest set, in the sense of inclusion,
which supportsx. This set, denoted bysupp(x), is called thesupportof x. We say that
a ∈ N is freshfor x if a 6∈ supp(x).

A morphism of nominal setsf : (X, ·) → (Y, ◦) is anequivariantmap between the carrier
sets:f(π · x) = π ◦ f(x) for all x ∈ X . Let Nom be the category of nominal sets and
equivariant maps.

Nominal sets and the functor category[I, Set]. The notion of support equipsNom with a
forgetful functorU , which in turn generates the variety[I, Set] and the embeddingNom →
[I, Set]. Here,I is the category whose objects are finite subsets ofN and morphisms are
injective maps. The underlying discrete subcategory is denoted by|I|.

To defineU : Nom → [|I|, Set], we let, for a nominal setX ,UX(S) be the set of elements
of X supported byS. U has a left adjointF : [|I|, Set] → Nom.1 Let T denote the monad
on [|I|, Set] generated byF ⊣ U . The category of Eilenberg-Moore algebras for the monad
T is equivalent to[I, Set]. The adjunctionF ⊣ U is not monadic, but rather ofdescent type:
this means that the comparison functorI : Nom → [I, Set] is full and faithful.

(1) Nom

I

22

U

��

⊥ [I, Set]

I∗

ss

UT

zz

[|I|, Set]

F T

::

F

UU

Tee

Nom is equivalent to the full reflective subcategory of[I, Set] consisting of pullback pre-
serving functors, and this category is actually a Grothendieck topos. The comparison func-
tor I : Nom → [I, Set] has a left adjointI∗. We know thatI preserves filtered colimits and
all limits, while I∗ preserves finite limits and all colimits.

Abstraction. Let (X, ·) be a nominal set. We consider the set[N ]X consisting of equiv-
alence classes of pairs(a, x) ∈ N × X for the equivalence relation∼ given by(a, x) ∼
(b, y) if and only if there existsc ∈ N \ {a, b}, such thatc is fresh forx and fory and

1The nominal setsFY are the strong nominal sets of [24].
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(a c) · x = (b c) · y. Let [a]x denote the equivalence class of(a, x). There is a left
action ofS(N ) on [N ]X given byπ ◦ [a]x = [π(a)]π · x, so the set[N ]X can be en-
dowed with a nominal set structure. In fact, the above construction extends to a functor
[N ] : Nom → Nom, calledabstractionorN -abstraction in [10].

We have a similar notion of abstraction on[I, Set], given by a functorδ : [I, Set] → [I, Set]
defined in Figure 3. As one might expect,[N ] and δ are related to each other via the
adjunctionI∗ ⊣ I, see Section 3.3.

3. FINITARY BASED AND UNIFORM MONADS

The aim of this section is two-fold: First, to study monads onNom. Second, to show how
to transport monads fromNom to [I, Set]. The category theoretic analysis is simplified by
abstracting from (1) and studying instead

(2) K L
33

��

⊥ (XT)M
ss

��

K

I

33

U

��

L << ⊥ X
T

I∗

tt

UT

{{

Mbb

X

F T

<<

F

SS

Tbb

whereK andX T replaceNom and[I, Set]. L andM are monads,K L and(XT)M are
the associated categories of algebras.

Our assumptions are the following.X andK are locally finitely presentable (l.f.p.) cate-
gories [2] andF ⊣ U : K → X is a finitary adjunction of descent type. This means that
the comparison functorI : K → X

T is full and faithful, whereT is the monad generated
by the adjunction. Equivalently,F ⊣ U is of descent type if every commutative diagram

(3) FUFUA
εFUA //

FUεA
// FUA

εA
// A

is a coequalizer, whereε denotes the counit ofF ⊣ U .

The main contribution of this section is a notion of functors/monads that can comfortably
be transported back and forth fromK toX T using the above adjunctionI∗ ⊣ I. These are
exactly those functors/monads that are determined by theirbehaviour on finitely generated
free objects. They can be presented by finitary signatures ofa special kind: the only
admissible arities are objects, free on finitely presentable (f.p.) objects ofX . As we will
see in the next section, this means that they can be presentedby operations and equations
in the sense of universal algebra.

We recall first what is meant by signatures and equational presentations in category theory.
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arities in[|I|, Set]fp :
NS,a = |I|(S ∪ {a},−) for S ⊆f N anda 6∈ S.

fb-signature:
Σδ : [|I|, Set]fp → [I, Set]
Σδ(NS,a) = I(S,−), empty otherwise.

polynomial functor induced by the signature:
HΣδ

: [I, Set] → [I, Set] given asHΣδ
= LanFΣδ

HΣδ
(X) =

∐
NS,a

X(S ∪ {a}) • I(S,−).

equations omitted (but see Figure 3)

FIGURE 1. Kelly-Power (KP) presentation ofδ

3.1. Finitary (based) signatures. In [15], Kelly and Power proved that finitary monads
on a general l.f.p. categoryK indeed capture the idea of equational presentations of alge-
bras onK . Moreover, the monadic approach coincides with the UA-approach described in
Section 2 in case whenK = SetSrt whereSrt is a set (of sorts). That is, the presentation
(in the sense of Kelly and Power) of any finitary monadT onSetSrt is a UA-presentation,
i.e.,(SetSrt )T is equivalent to a many-sorted variety in the sense of universal algebra. Fig-
ure 2 shows such a presentation whereT is as in (1).

The concept of an equational presentation in a general l.f.p. category generalizes the triad

finitary signatures, terms of depth≤ 1, equational theories

of universal algebra on (many-sorted) sets to the triad

finitary signatures, finitary endofunctors, finitary monads

of category theory.

The important ingredient of the presentation result of Kelly and Power [15] is the recog-
nition of properties of the adjunction between the elementsof the above triad: for every
finitary monadT on K , there exist two finitary signaturesΓ andΣ and a coequalizer
diagram

FΓ
//
// FΣ

//
T

in the category of finitary monads onK , whereFΓ andFΣ are free (finitary) monads onΓ
andΣ, respectively. Afinitary signatureΣ onK is a familyΣn of objects ofK indexed
by f.p. objectsn in K . Similarly forΓ.

In fact, the above coequalizer expresses exactly the fact thatT-algebras are precisely those
Σ-algebras satisfying equations specified by the parallel pair. We refer the reader to [15]
for more details.

In what follows, aspecial kindof finitary signature onK will prove to be useful:

Definition 3.1. Given an adjunctionF ⊣ U : K → X of descent type, anfb-signature
onK is a familyΣn of objects ofK , indexed by f.p. objectsn in X .

Notice that every object of the formFn is f.p. inK . Hence fb-signatures are exactly those
finitary signatures onK that have “nonempty” objects of operations only for aritiesof the
formFn, n f.p. in X . That is, as opposed to finitary signatures, fb-signatures take arities
in X instead ofK .
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3.2. Finitary and based functors/monads.The functorial counterpart of fb-signatures is
the following notion:

Definition 3.2. A functorL : K → K is calledbasedif L preserves all coequalizers of
type (3). A monadM = (M,µ, η) onK is called based ifM is a based functor. A finitary
and based functor/monad is called anfb-functor/monad.

Remark 3.3. It can be proved that fb-endofunctors ofK are exactly those that are deter-
mined by their values on objects of the formFn, wheren is f.p. inX .

Let Endfb(K ) denote the full subcategory of[K ,K ] consisting of fb-functors, and let
Mndfb(K ) denote the category of fb-monads onK . Any fb-monad onK can be pre-
sented by operations taking arities from finitely presentable objects ofX . To make this
precise:

Theorem 3.4. An fb-functor/monad onK can be presented by operations taking arities
from f.p. objects ofX . Conversely, if a monad has such a presentation then it is finitary
based.

Remark 3.5. Since any fb-functor/monad isa fortiori finitary, it can be equationally pre-
sented in the sense of Kelly and Power[15] using arities fromKfp . The import of the above
result is that arities are “finitely generated” free objectsFn. Therefore, one can work with
aritiesn which are f.p. inX .

We can apply all the above results to endofunctors/monads onX T. Fb-endofunctors on
X T are exactly those that aredetermined by values on finitely generated free algebras,
since based now means relative to the monadic adjunctionF T ⊣ UT : X

T → X .

Example 3.6. The presentation of the abstraction functor from Section 2 is given in Fig-
ure 1 and, using the notation from universal algebra, in Figure 3.

The following two results will be used in the Section 4 to showthat fb-monads have pre-
sentations in the sense of universal algebra. In a slogan, these results show that fb-monads
are ‘universal algebraic’.

Proposition 3.7. SupposeU : X T → SetSrt is a many-sorted variety. An endofunc-
tor/monad onX T is finitary based iff it preserves sifted colimits2.

Theorem 3.8(monadic composition theorem). Suppose thatT is a finitary monad on an
l.f.p. categoryX andM an fb-monad onX T. Then the composite

(X T)M //
X T // X

of the forgetful functors is monadic.

3.3. Transporting monads and algebras.Since fb-functors are exactly those determined
by values on “finitely generated” free objects, they have nice properties w.r.t. transport back
and forth along the adjunctionI∗ ⊣ I. The reason for their nice behaviour is, essentially,
thatI is a comparison functor and such functors interact nicely with free objects.

Theorem 3.9. The assignmentL 7→ ILI∗ constitutes a functorΦ : Endfb(K ) →

Endfb(X
T) that lifts to a functorΦ̂ : Mndfb(K ) → Mndfb(X

T). BothΦ and Φ̂ are
full, faithful and have left adjoints. The left adjoint ofΦ is given byW 7→ I∗WI.

Example 3.10. δ and[N ], as well as polynomial functors are transported to each other.

2For an introduction to sifted colimits see [3].
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Next, we consider the effect of transport on algebras. It turns our that the adjunctionI∗ ⊣ I
lifts to an adjunction between the categories of algebras.

Theorem 3.11.Consider a fb-functor/monadL onK and letM = ILI∗ be its “transport
alongI”. Then there are diagrams

L-Alg K
//

��

M-Alg

��

K
I

//L << X T Mbb

L-Alg

��

M-AlgK∗

oo

��

KL << X T
I∗

oo Mbb

commuting up to isomorphism, the left-hand one being a pseudopullback. Moreover,K∗ ⊣
K holds.

Pseudopullbacks are a “bicategorical” notion of pullbacks. The pseudopullback condition
means that everyM -algebra with carrier fromK is anL-algebra. This will be used in
Section 5.

3.4. Uniform monads. An important feature of nominal sets, but also other categories
for variable binding [23] is the presence of an abstraction functor, sayD. It is therefore of
interest to study functors (monads)H which have the property thatD lifts to H-algebras,
that is, there is a ‘distributive law’HD → DH : GivenHA → A we obtain anH-algebra
HDA → DHA → DA overDA.

From now on, we instantiateK in (2) withNom, henceD is either[N ] or δ as in Section 2.
We leave a more general development for future work.

Definition 3.12. An endofunctorH onNom (or [I, Set]) is calleduniform if there exists a
natural transformationH [N ] → [N ]H (or Hδ → δH).

Example 3.13. Polynomial functors andδ are uniform. Figure 5 shows an fb-functor that
is not uniform.

In the case of monads, the natural transformation needs to satisfy an additional property
and is then called a distributive law [14].

Definition 3.14. A monad onNom, respectively on[I, Set], is called uniform if it has a
distributive law over[N ], respectively overδ.

Example 3.15. δ is uniform. In Figure 5 we describe a fb-functor that is not uniform.

This allows us to define abstraction of algebras. We spell it out for δ and uniform functors,
the remaining cases are analogous.

Definition 3.16. SupposeH is a uniform functor by means of a distributive lawτ : Hδ →
δH . Then the abstraction of anH-algebra(A, a) is anH-algebra(δA,Ha ◦ τA).

Proposition 3.17. If an fb-functor/monadL onNom distributes over[N ], then the trans-
portM alongI distributes overδ. Conversely, ifM distributes overδ then[N ] distributes
overL.
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operation symbolsOp[I,Set]:

(b/a)S : S ∪ {a} → S ∪ {b} a 6= b, a 6∈ S, b 6∈ S
wS,a : S → S ∪ {a} a 6∈ S

equationsE[I,Set]:

(a/b)S(b/a)S(x) = x
(b/a)S∪{d}(d/c)S∪{a}(x) = (d/c)S∪{b}(b/a)S∪{c}(x)
(c/b)S(b/a)S(x) = (c/a)S
(b/a)S∪{c}wS∪{a},c(x) = wS∪{b},c(b/a)S
(b/a)SwS,a(x) = wS,b(x)
wS∪{b},awS,b(x) = wS∪{a},bwS,a(x)

FIGURE 2. UA-theory of[I, Set]

4. UNIVERSAL ALGEBRA OVER [I, Set]

In this section we see that fb-monads on[I, Set] are given by universal algebra (UA) theo-
ries on[I, Set]. Corresponding to the concept of uniform monad we introducethe notions
of uniform signature, uniform equations and uniform UA-theories. Similar to Birkhoff’s
variety theorem, we can characterise classes of algebras definable by uniform equations as
those that are closed under images, subalgebras, products and abstraction. We also prove
the uniform analogue of the quasivariety theorem.

4.1. Equational theories. As explained in Section 2, our notions of many-sorted sig-
nature(Srt ,Op), equational theory〈Srt ,Op, E〉, algebrasAlg(Srt ,Op, E) are those of
Universal Algebra. We are interested inSrt = |I|. Referring to Figure 2, we call

(4) 〈|I| , Op[I,Set] ⊎Op , E[I,Set] ⊎ E〉

a theory overI. If equations inE do not contain nested occurrences of operation inOp we
say that the theory is ofrank 1, see Figure 1 for an example.

Proposition 4.1 ([17, 16]). A theory〈Srt ,Op, E〉 over I of rank 1 determines a functor
M : [I, Set] → [I, Set]. Moreover,Alg(M) ∼= Alg(Srt ,Op, E).

In one-sorted universal algebra such a functor is typicallya polynomial functorX 7→
LX =

∐
n∈N

Set(n,X) •Σn, whereSet(n,X) •Σn denotes the coproduct ofSet(n,X)-
many copies ofΣn. HenceΣn is the set ofn-ary operations. Here, apart from polynomial
functors, we are also interested in functors specifying operations involving binders, the
most basic one being theδ of Figure 3.
Specifying additional operations by a functor has the advantage that the initial algebra of
terms comes equipped with an inductive principle. For an example see howλ-terms form
the initial algebra for a functor in [9, 10, 13].

4.2. Relating KP- and UA-presentations. We argue that the fb-monads from Section 3
are precisely those monads that have a UA-presentation.

Example 4.2. Consider a UA-signature as in (4) withOp containing one operationapp :
∅, ∅ → ∅ andE = ∅. ConsiderN : |I| → Set defined asN(∅) = 2 and empty otherwise.
The corresponding fb-signatureΣ : |[|I|, Set]fp | → [I, Set] maps all f.p. objects in[|I|, Set]
to 0 with the exception ofN which is mapped toI(∅,−) . The endofunctor presented byΣ
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operation symbolsOpδ:

[a]S : S ∪ {a} → S
for all finite setsS anda /∈ S

equationsEδ:

(c/b)S [a]S∪{b}t = [a]S∪{c}(c/b)S∪{a}t t : S ∪ {a, b}
[a]St = [b]S(b/a)St t : S ∪ {a}
wS,b[a]St = [a]S∪{b}wS∪{a},bt t : S ∪ {a}

FIGURE 3. UA-presentation ofδ

then isHΣ(X) = (X(∅) × X(∅)) • I(∅,−). Going back fromHΣ to a UA-presentation
gives us the theory of Figure 5. This theory is different fromthe one we started with, but
the two theories are equivalent: they define isomorphic categories of algebras.

This example can be generalised and similar to Proposition 4.1 we have

Proposition 4.3. Every UA-theory overI gives rise to an fb-monad on[I, Set].

Conversely, fb-functors/monads have UA-presentations.

Theorem 4.4. Every fb-functor on[I, Set] has a presentation as a UA-theory overI of rank
1.

This is a consequence of Proposition 3.7 and [17, 16].

Theorem 4.5. Every fb-monad on[I, Set] has a presentation as a UA-theory overI.

This is a consequence of Theorem 3.8.

4.3. Uniform UA-theories. Let us give an intuitive motivation for the notions introduced
in this section. Assume we want to investigate algebraic theories over nominal sets by
studying their transport to[I, Set]. Suppose we have some notion of signature and equa-
tions over nominal sets, such as the nominal logics of [12, 5]. A nominal setX satisfies
an equation, if for any instantiation of the variables, possibly respecting some freshness
constraints, we get equality inX . Notice that the support of the elements ofX used to
instantiate the variables can be arbitrarily large. Let us think what this means in terms of
the corresponding presheafIX . For a finite set of namesS, IX(S) is the set of elements
of X supported byS. SoIX should satisfy not one, but a set of ‘uniform’ equations, (for
an example, see Figure 6). This means that we should be able toextend in a ‘uniform’ way
the operation symbols together with their arities, the sortof the equations and the sort of
the variables. We formalize this below, following the same lines as in [18]. Moreover, we
prove that this concrete syntax implements the notions introduced in Section 3.4.

Definition 4.6. A UA-signature overI of the form〈|I| , Op[I,Set] ⊎Op 〉 is called uniform
if the setOp of operation symbols can be organized as a presheaf, abusively also denoted
byOp ∈ [I, Set], such that any operation symbolf ∈ Op(S) has arity of the form

f : S1, . . . , Sn → S0

with∪Si = S. Additionally, we require that for any injective mapu : S → T the operation
symbolOp(u)(f) has arity

Op(u)(f) : T \ u[S \ S1], . . . , T \ u[S \ Sn] → T \ u[S \ S0]
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whereu[S \ Si] denotes the direct image ofS \ Si underu. For simplicity letu · f denote
Op(u)(f).

The intention here is thatS \ Si is the set of names bound byf at the corresponding
position. For example, the operations in Figure 3 form a uniform signature. They can be
structured as a presheaf as follows:

(5)
[a]S ∈ Op(S ∪ {a})
wb · [a]S = [a]S∪{b}

(b/a)S · [a]S = [b]S

For such a signature we define the notions of uniform term and uniform equation. The in-
tuition here is that a uniform equation generates a set of equations in the sense of universal
algebra.

A uniform term t : T for a uniform signature is a termt of typeT formed according
to the rules in Figure 4. Each rule can be instantiated in an infinite number of ways:T
ranges over finite sets of names anda, b over names. The notationT ⊎ {a} indicates that
an instantiation of the schema is only allowed for those setsT and those atomsa where
a 6∈ T . A uniform equationis a pair of uniform terms of the same sortu = v : T , such that
any variableX appears with the same typeTX in bothu andv. A uniform theoryconsists
of a set of uniform equations.

A uniform equationu = v : T is not an equation in the sense of universal algebra, but it
generates a set of equations indexed over all finite sets of namesS that are disjoint from
T . We will call these equations the translations ofu = v : T by S, and they are defined
below. These translations should involve enlarging the sort of the variables. However this
is not always possible, for example if we have a subtermwaX of an equation, then the sort
of X cannot contain the namea.

Definition 4.7. The freshness set of a variableX appearing with sortTX in an equation
E of the formu = v : T is the set

FrE(X) =
⋃

t:T

T \ TX

where the union is taken over all sub-termst of eitheru or v that contain the variableX .

Example 4.8. As an example, let us consider a set of operation symbols

aS : S ∪ {a}
appS : S, S → S
[a]S : S ∪ {a} → S

In fact these operations subject to some equations give a presentation for the functorLX =
N+δX+X×X , whose initial algebra is the presheaf ofα-equivalence classes ofλ-terms,
see[18, Section 4]for details on this.

For the uniform equation[a]∅app{a}(waX, a∅) = X the freshness set ofX is Fr(X) =

{a}. In Figure 6 we see that this equation corresponds to equations in other nominal logics
having as side condition thata is fresh forX .

Definition 4.9. The translation of an equationE of the formu = v : TE by a namea 6∈ TE

is an equationtra (u) = tra (v) of sortT ∪ {a}, where the translationtra (t : T ) (with
a 6∈ T ) of a sub-termt of eitheru or v is defined recursively by
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(6)

tra (f(t1, . . . , tn) : T0)
(a 6∈T )
= (wa · f)(tra (t1), . . . , tra (tn))

tra (f(t1, . . . , tn) : T0)
(a∈T )
= wa(f(t1, . . . , tn))

tra (wbt : T ⊎ {b}) = wS∪{a},b tra (t : T )

tra ((b/c)t : T ⊎ {b})
(a 6=c)
= (b/c)T∪{a} tra (t : T ⊎ {c})

tra ((b/a)t : T ⊎ {b}) = wa(b/a)T t

tra (X : TX) = waXTX
if a ∈ FrE(X)

tra (X : TX) = X ′
TX∪{a} if a 6∈ FrE(X)

where in the first two conditionsf : T1, . . . , Tn → T0 is an operation symbol inOp. In
the last conditionX ′

TX∪{a} is a variable of sortTX ∪ {a}.
The translation of an equationE of the formu = v : TE by a setS = {a1, . . . , ak}

disjoint fromTE is a defined astra1
(. . . trak

(u = v : T ) . . . ) : T ∪ S. (The chosen order
of the elements ofS is irrelevant).

We will say that a set of (standard universal algebra) equations isuniformly generatedby
a uniform theoryU if it consists of all possible translations of the uniform equations inU .

Example 4.10. The UA-theory expressing the eta-equivalence of theλ-calculus is uni-
formly generated by the uniform equation of the last line of Figure 6.

Definition 4.11. A uniform UA-theory overI is a theory〈|I| , Op[I,Set] ⊎ Op , E[I,Set] ⊎
E ⊎EOp〉 such that the set of equationsE is uniformly generated by a uniform theory and
EOp is the set of equations of the form:

(wa · f)(wax1, . . . , waxn) = waf(x1, . . . , xn)
((a/b)S\{b} · f)(〈a/b〉S1\{b}x1, . . . , 〈a/b〉Sn\{b}xn) =
〈a/b〉S0\{b}f(x1, . . . , xn)

for f ∈ Op(S) having arityS1, . . . , Sn → S0, a 6∈ S and b ∈ S, with the additional
convention that〈a/b〉Si\{b} denotes the identity onSi if b 6∈ Si and(a/b)S\{b} if b ∈ Si.

Next, we will see that there is a strong connection between uniform UA-theories and the
concept of abstraction. The reason for this is the existenceof an isomorphism for every
finite setS anda /∈ S

A(S ∪ {a}) ∼= δA(S)

that mapsx ∈ A(S ∪ {a}) to [a]Sx.

Consider a uniform signature as in Definition 4.6 and letA be an algebra for the uniform
theory〈|I| , Op[I,Set] ⊎ Op , E[I,Set] ⊎ EOp〉. We can define theabstractionof A to be
an algebra with carrierδA and the interpretation of an operation symbol inOp(S) of the
form f : S1, . . . , Sn → S0 given by:

f δA([a]S1
x1, . . . , [a]Sn

xn) = [a]S0
(wa · f

A)(x1, . . . , xn)

for somea /∈ S.

The next proposition is based on the observation that an algebraδA satisfies an equationE
if and only if the algebraA satisfies the translationtra E of an equation by anewnamea.
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t1 : T1, . . . , tn : Tn

f(t1, . . . tn) : T0

(f : T1, . . . , Tn → T0 ∈ Op(T ))

t : T

wat : T ⊎ {a}

t : T ⊎ {a}

(b/a)t : T ⊎ {b} X : TX

FIGURE 4. Uniform terms

operations:

appS : ∅, ∅ → S for all S ⊆f N

equations:

waappS(x, y) = appS∪{a}(x, y)

(b/a)SappS∪{a}(x, y) = appS∪{b}(x, y)

FIGURE 5. UA-Presentation of a non-uniform functorL0(X) =
(X(∅)×X(∅)) • I(∅,−)

Proposition 4.12.A class of algebras for a uniform UA-theory〈|I| , Op[I,Set]⊎Op , E[I,Set]⊎
EOp〉 defined by uniform equationsE is closed under abstraction.

From this it follows that a class of algebras for a uniform UA-theory defined by additional
uniform equations is closed under abstraction. This means that the abstraction functorδ
lifts to a functor̃δ on the categories of algebras for a uniform UA-theory. Therefore, similar
to Proposition 4.1 we have:

Proposition 4.13. The functor on[I, Set] determined by a uniform UA-theory of rank 1 is
uniform in the sense of Definition 3.12.

Example 4.14. The functorδ has a uniform presentation given in Figure 3. As a coun-
terexample, consider the functorL0 presented in Figure 5. Although the operations can be
structured as a presheaf, the presentation is not uniform.

Similar to Proposition 4.3 we obtain

Proposition 4.15. Every uniform UA-theory overI gives rise to a uniform fb-monad on
[I, Set], see Definition 3.14.

4.4. Results from universal algebra. In one-sorted universal algebra, Birkhoff’s vari-
ety theorem characterizes equationally definable classes of algebras as those closed under
HSP, that is, homomorphic images, subalgebras and products. The theorem is not true in
general for many-sorted algebras, see [1]: An equationallydefinable class of many-sorted
algebras is closed under homomorphic images, subalgebras,products anddirected colim-
its. However, because of the special structure of the categoryI, as pointed out in [18], we
have:

Theorem 4.16. Consider a UA-theory overI and letA denote its algebras. Then a class
C ⊆ A is equationally definable if and only if it is closed under HSP.

There exists a similar characterization of finitary quasivarieties for many-sorted algebras.
These are classes of algebras definable by implications, where by implication we mean
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here a formula
(u1 = v1) ∧ · · · ∧ (un = vn) ⇒ (u0 = v0)

whereui = vi are equations. The next theorem is an instance of the well known quasiva-
riety theorem.

Theorem 4.17. Let A be the category of algebras for a UA-theory overI. Then a class
C ⊆ A is implicationally definable if and only it is closed under subalgebras, products and
filtered colimits.

For the uniform UA-theories we can provide similar characterizations. The next theorem
generalises [18, Theorem 5.23]. On a category of algebrasA given by a uniform UA-theory
we have an abstraction operator given by Proposition 4.12. We have

Theorem 4.18.Consider a uniform UA-theory overI and letA denote its algebras. Then
a classC ⊆ A is equationally definable by additional uniform equations if and only if it is
closed under HSPA, that is, homomorphic images, subalgebras, products and abstraction.

Definition 4.19. A uniform implication of typeT is a formula

(u1 = v1) ∧ · · · ∧ (un = vn) ⇒ (u0 = v0) : T

whereui = vi : Ti are uniform equations fori = 0, . . . , n andT = T0 ∪ · · · ∪ Tn.

Each uniform implication of typeT generates a set of standard universal algebra implica-
tions, indexed by finite setsS with S ∩ T = ∅. We do this by translating each uniform
equation(ui = vi) : Ti as in (6), with the only difference being that in the last two rela-
tions, we useFru0=v0(X) ∪ · · · ∪ Frun=vn(X) instead ofFrui=vi(X).

Consider the category of algebrasA for a uniform UA-theory. We say thatC ⊆ A is im-
plicationally definable by uniform implications if there exits a set of uniform implications
I such thatC is definable by the set of UA-implications generated by all the elements ofI.
Then we can prove:

Theorem 4.20. Consider a UA-theory overI and letA denote its algebras. Then a class
C ⊆ A is implicationally definable by uniform implications if andonly if it is closed under
subalgebras, products, filtered colimits and abstraction.

5. UNIVERSAL ALGEBRA OVER NOMINAL SETS

Building on the general theory developed in Section 3, we cannow transfer properties and
results obtained in universal algebra on[I, Set] to nominal sets. To achieve this we use the
next theorem, which can be derived from Theorem 3.11.

Theorem 5.1. Any fb-monad/functorL onNom induces a UA-theoryΦ on [I, Set], so that
the category ofL-algebras is the category ofΦ-algebras ‘restricted alongI ’.

There are several approaches in the literature to develop algebraic theories over nominal
sets: nominal (universal) algebra of [12] and NEL of [5]. These approaches fit in the
general framework developed here, and more importantly, wecan prove new results for
them using our technique.

For example, the signatures defined in [12] are given by functors of the formN +[N ]+Σ,
whereN is the constant functor,[N ] is the abstraction functor andΣ is a polynomial func-
tor. These functors are uniform and finitary based. In fact, in [18, Section 6] we have given
syntactical translations of theories of nominal algebra and NEL into uniform theories, for
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nominal algebra ([12]):
a#X ⊢ [a]app(X, a) = X

NEL ([5, Fig. 4]):
a //≈ x ⊢ La(A x Va) ≈ x

UA-theory:
[a]SappS∪{a}(wS,aXS , aS) = XS

for all finite S, a 6∈ S andXS variable of sort S

uniform UA-theory:
[a]app{a}(waX, a) = X

FIGURE 6. η-rule for untypedλ-calculus

an example see Figure 6. As anticipated in Example 4.8 we translate a freshness condition
a#X by adding operations symbols of the formwa in front of the variableX .

In our general setting, we can characterise the equationally definable subcategories of al-
gebras on nominal sets. First, let us see what we mean by this.

Definition 5.2. LetL be a functor onNom. A full subcategoryC ofL-algebras is equation-
ally definable by a UA-theoryΦ on I if C consists ofL-algebras(A, a) withK(A, a) |= Φ,
whereK : L-Alg → Φ-Alg is the lifting ofI as in Theorem 3.11.

The next theorem follows from Theorem 4.16 and the observation that aΦ-algebra which
lies in the closure under HSP ofIC and has as carrier a nominal set is in fact an object of
IC. Here,IC is the subcategory ofΦ-Alg, obtained as the image ofC underI.

Theorem 5.3. LetL be a fb-functor/monad onNom. A class ofL-algebras is equationally
definable if and only if it is closed under homomorphic imagesof support-preserving maps,
under subalgebras and under products.

Remark 5.4. We obtain closure under homomorphic images of support-preserving maps
rather than all homomorphic images becauseI only preserves the former.

But we can do better than that for algebras for a functorL, whose transport on[I, Set] is
given by a uniform UA-theory of rank 1. In the remainder of this section by algebras over
nominal sets we understand algebras for such functors. FromTheorem 4.18 we derive

Theorem 5.5. A class of algebras over nominal sets is definable by uniform equations if
and only if it is closed under homomorphic images, subalgebras, products, and abstraction.

Similarly, using Theorem 4.20 we can prove a quasivariety theorem for algebras over nom-
inal sets:

Theorem 5.6. A class of algebras over nominal sets is definable by uniform implications
if and only if it is closed under subalgebras, products, filtered colimits and abstraction.

These theorems can be transferred to nominal algebras [12] and NEL [5], using the transla-
tions given in [18], for example we recover Gabbay’s HSPA-theorem of [11]. Additionally
we obtain new results such as:

Theorem 5.7. Categories of nominal algebras in the sense of[12] are given by uniform
monads onNom.
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This is obtained using the fact that the translation of nominal algebra into uniform theories
are semantically invariant ([18, Theorem 6.8]), and that uniform theories are given by
uniform fb-monads.

6. CONCLUSIONS

We have shown how algebra with variable binding can be done inside standard many-
sorted universal algebra. Our framework comprises nominalsets as well as the associated
presheaf model of variable binding. Of particular importance here are the results of Section
3.3 which show that universal algebra can not detect the difference between the two. It
also sheds new light on the different proposals of equational logic for nominal sets [5, 12],
as they can be compared now as describing slightly differentfragments of the uniform
theories described in Section 4.3.

Future work:

• To extend by ‘uniform implications’ the logics of [12] and [5].

• To transfer more results of universal algebra and to developapplications to the theory of
algebraic data types.

• To ‘nominalise’ other areas of theoretical computer science based on universal algebra.

• In particular, there is ongoing work on nominal regular languages and their automata.
Appropriate notions of finite algebras are obtained via the named sets of [6].

• Applications to process algebras with name binders. For example, the logic developed
in [4] falls into our framework, as do Stark’s algebraic models of theπ-calculus [22].

• Our general aims are related to those of Fiore and Hur [7], butinstead of developing
an abstract framework we focus on particular models and stayinside classical universal
algebra. A precise relationship needs to be worked out.

• To extend our framework to other presheaf models of variablebinding according to the
general theory developed in [23].

• To deal with recursion, presheaf models over cpos have been studied in [8, 21]. Let us
note that Section 3 as well as [20] work in the enriched setting, suggesting to replaceSet
by cpos. This raises the interesting question of what ‘enriched equational logic’ is.
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[15] G. Kelly and J. Power. Adjunctions whose counits are coequalizers and presentations of enriched monads.
J.Pure Appl. Algebra, 89, 1993.
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