
Chapman University
Chapman University Digital Commons

Engineering Faculty Articles and Research Fowler School of Engineering

2011

Relation Liftings on Preorders and Posets
Marta Bílková
Academy of Sciences of the Czech Republic

Alexander Kurz
Chapman University, akurz@chapman.edu

Daniela Petrişan
University of Leicester

Jiří Velebil
Czech Technical University in Prague

Follow this and additional works at: https://digitalcommons.chapman.edu/engineering_articles

Part of the Algebra Commons, Logic and Foundations Commons, Other Computer Engineering
Commons, Other Computer Sciences Commons, and the Other Mathematics Commons

This Conference Proceeding is brought to you for free and open access by the Fowler School of Engineering at Chapman University Digital Commons.
It has been accepted for inclusion in Engineering Faculty Articles and Research by an authorized administrator of Chapman University Digital
Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
Bílková M., Kurz A., Petrişan D., Velebil J. (2011) Relation Liftings on Preorders and Posets. In: Corradini A., Klin B., Cîrstea C. (eds)
Algebra and Coalgebra in Computer Science. CALCO 2011. Lecture Notes in Computer Science, vol 6859. Springer, Berlin,
Heidelberg

https://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/fowler_engineering?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

Relation Liftings on Preorders and Posets

Comments
This paper was originally presented at the Conference on Algebra and Coalgebra in Computer Science
(CALCO) in 2011. DOI: 10.1007/978-3-642-22944-2_9

Copyright
The authors

This conference proceeding is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/
engineering_articles/62

https://doi.org/10.1007/978-3-642-22944-2_9
https://digitalcommons.chapman.edu/engineering_articles/62?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles/62?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages

ar
X

iv
:1

21
0.

14
33

v1
 [

cs
.L

O
]

 4
 O

ct
 2

01
2

Relation Liftings on Preorders and Posets ∗

Marta B́ılková
Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague

Alexander Kurz†

Department of Computer Science, University of Leicester, United Kingdom

Daniela Petrişan
Department of Computer Science, University of Leicester, United Kingdom

Jǐŕı Velebil‡

Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

October 5, 2012

Abstract

The category Rel(Set) of sets and relations can be described as a category of spans and as the Kleisli
category for the powerset monad. A set-functor can be lifted to a functor on Rel(Set) iff it preserves
weak pullbacks. We show that these results extend to the enriched setting, if we replace sets by posets or
preorders. Preservation of weak pullbacks becomes preservation of exact lax squares. As an application
we present Moss’s coalgebraic over posets.

Contents

1 Introduction 2

2 Monotone relations 2

3 Exact squares 10

4 The universal property of (−)⋄ : Pre −→ Rel(Pre) 18

5 The extension theorem 19

6 Examples 20

7 An Application: Moss’s Coalgebraic Logic over Posets 25

8 Conclusions 27

∗In terms of results and numbering, the material has appeared in our CALCO 2011 paper of the same title, but some typos
were corrected and proofs and a small number of further comments were added.

†Alexander Kurz acknowledges the support of EPSRC, EP/G041296/1.
‡Marta B́ılková and Jǐŕı Velebil acknowledge the support of the grant No. P202/11/1632 of the Czech Science Foundation.

1

http://arxiv.org/abs/1210.1433v1

1 Introduction

Relation lifting [Ba, CKW, HeJ] plays a crucial role in coalgebraic logic, see eg [Mo, Bal, V].
On the one hand, it is used to explain bisimulation: If T : Set −→ Set is a functor, then the largest

bisimulation on a coalgebra ξ : X −→ TX is the largest fixed point of the operator (ξ× ξ)−1 ◦T on relations
on X , where T is the lifting of T to Rel(Set) −→ Rel(Set). (The precise meaning of ‘lifting’ will be given in
the Extension Theorem 5.3.)

On the other hand, Moss’s coalgebraic logic [Mo] is given by adding to propositional logic a modal
operator ∇, the semantics of which is given by applying T to the forcing relation ⊆ X ×L, where L is the
set of formulas: If α ∈ T (L), then x ∇α ⇔ ξ(x) T () α.

In much the same way as Set-coalgebras capture bisimulation, Pre-coalgebras and Pos-coalgebras capture
simulation [R, Wo, HuJ, Kl, L, BK]. This suggests that, in analogy with the Set-based case, a coalgebraic
understanding of logics for simulations should derive from the study of Pos-functors together with on the
one hand their predicate liftings and on the other hand their ∇-operator. The study of predicate liftings of
Pos-functors was begun in [KaKuV], whereas here we lay the foundations for the ∇-operator of a Pos-functor.
In order to do this, we start with the notion of monotone relation for the following reason. Let (X,≤) and
(X ′,≤′) be the carriers of two coalgebras, with the preorders ≤,≤′ encoding the simulation relations on X
and X ′, respectively. Then a simulation between the two systems will be a relation R ⊆ X ×X ′ such that
≥ ; R ; ≥′ ⊆ R, that is, R is a monotone relation. Similarly, will be a monotone relation. To summarise,
the relations we are interested in are monotone, which enables us to use techniques of enriched category
theory (of which no prior knowledge is assumed of the reader).

For the reasons outlined above, the purpose of the paper is to develop the basic theory of relation liftings
over preorders and posets. That is, we replace the category Set of sets and functions by the category Pre

of preorders or Pos of posets, both with monotone (i.e. order-preserving) functions. Section 2 introduces
notation and shows that (monotone) relations can be presented by spans and by arrows in an appropriate
Kleisli-category. Section 3 recalls the notion of exact squares. Section 4 characterises the inclusion of
functions into relations (−)⋄ : Pre −→ Rel(Pre) by a universal property and shows that the relation lifting T
exists iff T satisfies the Beck-Chevalley-Condition (BCC), which says that T preserves exact squares. The
BCC replaces the familiar condition known from Rel(Set), namely that T preserves weak pullbacks. Section 5
lists examples of functors (not) satisfying the BCC and Section 6 gives the application to Moss’s coalgebraic
logic over posets.

Related work. The universal property of the embedding of a (regular) category to the category of relations
is stated in Theorem 2.3 of [He]. Theorem 4.1 below generalizes this in passing from a category to a simple
2-category of (pre)orders.

Liftings of functors to categories of relations within the realm of regular categories have also been studied
in [CKW].

2 Monotone relations

In this section we summarize briefly the notion of monotone relations on preorders and we show that their
resulting 2-category can be perceived in two ways:

1. Monotone relations are certain spans , called two-sided discrete fibrations .

2. Monotone relations form a Kleisli category for a certain KZ doctrine on the category of preorders.

Definition 2.1. Given preorders A and B, a monotone relation R from A to B, denoted by

A ✕
R // B

is a monotone map R : Bop × A −→ 2 where by 2 we denote the two-element poset on {0, 1} with 0 ≤ 1.

2

Remark 2.2. Unravelling the definition: for a binary relation R, R(b, a) = 1 means that a and b are related
by R. Monotonicity of R then means that if R(b, a) = 1 and b1 ≤ b in B and a ≤ a1 in A , then R(b1, a1) = 1.

Relations compose in the obvious way. Two relations as on the left below

A ✕
R // B B ✕

S // C A ✕
S·R // C

compose to the relation on the right above by the formula

S ·R(c, a) =
∨

b

R(b, a) ∧ S(c, b) (2.1)

hence the validity of S ·R(c, a) is witnessed by at least one b such that both R(b, a) and S(c, b) hold.

Remark 2.3. The supremum in formula (2.1) is, in fact, exactly a coend in the sense of enriched category
theory, see [Ke].

The above composition of relations is associative and it has monotone relations A ✕
A // A as units,

where A (a, a′) holds iff a ≤ a′. Moreover, the relations can be ordered pointwise: R −→ S means that
R(b, a) entails S(b, a), for every a and b. Hence we have a 2-category of monotone relations Rel(Pre).

Remark 2.4. Observe that one can form analogously the 2-category Rel(Pos) of monotone relations on
posets . In all what follows one can work either with preorders or posets. We will focus on preorders in the
rest of the paper, the modifications for posets always being straightforward. Observe that both Rel(Pre) and
Rel(Pos) have the crucial property: The only isomorphism 2-cells are identities.

Remark. The forgetful functor V : Pre −→ Set extends to a faithful functor Rel(V) : Rel(Pre) −→ Rel(Set)
where Rel(Set) is the usual category of sets and relations.

2.A The functor (−)⋄ : Pre −→ Rel(Pre)

We describe now the functor (−)⋄ : Pre −→ Rel(Pre) and show its main properties. The case of posets is
completely analogous. For a monotone map f : A −→ B define two relations

A ✕
f⋄

// B B ✕
f⋄

// A

by the formulas f⋄(b, a) = B(b, fa) and f⋄(a, b) = B(fa, b).

Lemma 2.5. For every f : A −→ B in Pre there is an adjunction in Rel(Pre)

f⋄ ⊣ f⋄ : B ✕ // A .

Proof. This is easy: observe that if A (a, a′) = 1, then

f⋄ · f⋄(a, a
′) =

∨

b

f⋄(a′, b) ∧ f⋄(b, a) =
∨

b

B(fa′, b) ∧ B(b, fa) = B(fa, fa′) = 1

since f is a monotone map. Hence ηf : A −→ f⋄ · f⋄ holds.
For the comparison f⋄ · f

⋄ −→ B, suppose that

f⋄ · f
⋄(b, b′) =

∨

a

f⋄(b, a) ∧ f⋄(a, b′) =
∨

a

B(b, fa) ∧ B(fa, b′) = 1

and use the transitivity of the order on B to conclude that B(b, b′) = 1.

3

It is now easy to show that the triangle equalities

f⋄
f⋄η

f

//

■■
■■

■■
■■

■■
■

■■
■■

■■
■■

■■
■ f⋄ · f

⋄ · f⋄

εff⋄
��

f⋄

and

f⋄ ηff⋄

//

■■
■■

■■
■■

■■
■

■■
■■

■■
■■

■■
■ f⋄ · f⋄ · f

⋄

f⋄εf

��

f⋄

hold and they witness the adjunction f⋄ ⊣ f⋄.

Remark 2.6. Left adjoint morphisms in Rel(Pre) can be characterized as exactly those of the form f⋄ for

some monotone map f . Therefore, if L ⊣ R : B ✕ // A in Rel(Pre), then there exists a monotone map
f : A −→ B such that f⋄ = L and f⋄ = R. Moreover, f is uniquely determined by L,R iff B is a poset.

To prove the claim, denote by η : A −→ R ·L the unit and by ε : L ·R −→ B the counit of L ⊣ R. First
we prove that for every a there is a b0 such that

R(a, b0) ∧ L(b0, a) = 1

and that b0 is unique up to isomorphism:

1. Due to η there is at least one b such that

R(a, b) ∧ L(b, a) = 1

holds: since A (a, a) = 1, it is the case that R · L(a, a) = 1.

2. Suppose that
R(a, b1) ∧ L(b1, a) = 1 and R(a, b2) ∧ L(b2, a) = 1

hold. Therefore the equalities

R(a, b1) ∧ L(b2, a) = 1 and R(a, b2) ∧ L(b1, a) = 1

hold as well. Then, due to ε, we have that B(b1, b2) = 1 and B(b2, b1) = 1. In other words, we have
b1 ≤ b2 and b2 ≤ b1, that is, b1 ∼= b2 and, if B is a poset then, using antisymmetry, we conclude that
b1 = b2.

Define fa = b0, which determines f uniquely iff B is a poset. That the assignment a 7→ fa is monotone,
follows from the existence of η. Finally, we need to prove L = f⋄, that is, L(b, a) = B(b, fa) for all b, a. We
know L(fa, a) and R(a, fa) by definition of f . Suppose B(b, fa), then L(b, a) follows by monotonicity of L.
Conversely, suppose L(b, a). Using ε : L · R −→ B, we have

∨
a L(b, a) ∧ R(a, b′) ≤ B(b, b′) and choosing

b′ = fa, we get 1 = L(b, a) ∧R(a, fa) ≤ B(b, fa).

Observe that if f −→ g, then f⋄ −→ g⋄ holds. For if B(b, fa) = 1 then B(b, ga) = 1 holds by
transitivity, since fa ≤ ga holds. Moreover, taking the lower diamond clearly maps an identity monotone

map idA : A −→ A to the identity monotone relation A ✕
A =(idA)⋄

// A . Further, taking the lower
diamond preserves composition:

(g · f)⋄(c, a) = C (c, gfa) =
∨

b

C (c, gb) ∧ B(b, fa) = g⋄ · f⋄(c, a)

Hence we have a functor (−)⋄ : Pre −→ Rel(Pre) enriched in preorders. Moreover, (−)⋄ is locally fully
faithful , i.e., f⋄ −→ g⋄ holds iff f −→ g holds.

4

2.B Rel(Pre) as a Kleisli category

The 2-functor (−)⋄ : Pre −→ Rel(Pre) is a proarrow equipment with power objects in the sense of Sec-
tion 2.5 [MRW]. This means that (−)⋄ has a right adjoint (−)† such that the resulting 2-monad on Pre is
a KZ doctrine and Rel(Pre) is (up to equivalence) the corresponding Kleisli 2-category. All of the following
results are proved in the paper [MRW], we summarize it here for further reference.

The 2-functor (−)† works as follows:

1. On objects, A † = [A op , 2], the lowersets on A , ordered by inclusion.

2. For a relation R from A to B, the functor R† : [A op , 2] −→ [Bop , 2] is defined as the left Kan
extension of a 7→ R(−, a) along the Yoneda embedding yA : A −→ [A op , 2]. This can be expressed
by the formula:

R†(W) = b 7→
∨

a

Wa ∧R(b, a)

i.e., b is in the lowerset R†(W) iff there exists a in W such that R(b, a) holds.

It is easy to prove that (−)† is a 2-functor and that (−)† ⊣ (−)⋄ is a 2-adjunction of a KZ type. The latter
means that if we denote by

(L, y,m) (2.2)

the resulting 2-monad on Pre, then we obtain the string of adjunctions L(yA) ⊣ mA ⊣ yLA , see [M1], [M2],
for more details.

The unit of the above KZ doctrine is the Yoneda embedding yA : A −→ [A op , 2] and the multiplication
mA : [[A op , 2]op , 2] −→ [A op , 2] is the left Kan extension of identity on [A op , 2] along y[A op ,2]. In more
detail:

mA (W) = a 7→
∨

W

W (W) ∧W (a)

where W is in [[A op , 2]op , 2] and W is in [A op , 2]. Hence a is in the lowerset mA (W) iff there exists a
lowerset W in W such that a is in W . The following result is proved in Section 2.5 of [MRW]:

Proposition 2.7. The 2-functor (−)⋄ : Pre −→ Rel(Pre) exhibits Rel(Pre) as a Kleisli category for the KZ
doctrine (L, y,m).

2.C Relations as spans

Monotone relations are going to be exactly certain spans, called two-sided discrete fibrations [S4].

Definition 2.8. A span (d0, E , d1) : B −→ A from B to A is a diagram

E
d0

{{①①
①① d1

##❋
❋❋

❋

A B

of monotone maps. The preorder E is called the vertex of the span (d0, E , d1).

Remark 2.9. Given a span (d0, E , d1) : B −→ A , the following intuitive notation might prove useful: a
typical element of E will be denoted by a wiggly arrow

d0(e)
e ///o/o/o d1(e)

and d0(e) will be the domain of e and d1(e) the codomain of e.

5

Definition 2.10. A span (d0, E , d1) : B −→ A in Pre is a two-sided discrete fibration (we will say just
fibration in what follows), if the following three conditions are satisfied. For every situation below on the
left, there is a unique fill in on the right, denoted by (d0)∗(e

′), respectively (d1)∗(e):

a

��

a′
e′

///o/o/o b′

a
(d0)∗(e

′)
///o/o/o

��

b′

a′
e′

///o/o/o b′

a
e ///o/o/o b

��

b′

a
e ///o/o/o b

��

a
(d1)∗(e)

///o/o/o b′

Every situation on the left can be written as depicted on the right:

a
e ///o/o/o

��

b

��

a′
e′

///o/o/o b′

a
e ///o/o/o b

��

a ///o/o/o

��

b′

a′
e′

///o/o/o b′

Remark. Fibrations are jointly mono. In particular, if B,A are discrete then (d0, E , d1) : B −→ A is a
fibration iff it is a jointly mono.

Definition 2.11. A comma object of monotone maps f : A −→ C , g : B −→ C is a diagram

f/g
p1

//

p0

��

ր

B

g

��

A
f

// C

where elements of the preorder f/g are pairs (a, b) with f(a) ≤ g(b) in C , the preorder on f/g is defined
pointwise and p0 and p1 are the projections. The whole “lax commutative square” as above will be called a
comma square.

Example 2.12. Every span (p0, f/g, p1) : A −→ B arising from a comma object of f : A −→ C ,
g : B −→ C is a fibration.

A monotone relation B ✕
R //A induces a fibration (d0, E , d1) : B −→ A with E = {(a, b) | R(a, b) = 1}

ordered by (a, b) ≤ (a′, b′), if a ≤ a′ and b ≤ b′; and (d0, E , d1) induces the relation R(a, b) = 1 ⇔ ∃e ∈
E . d0(e) = a, d1(e) = b.

Proposition 2.13. Fibrations in Pre correspond exactly to monotone relations. Moreover, if (d0, E , d1) :
B −→ A is the fibration corresponding to a relation R : B ✕ //A , then R = (d0)⋄ · (d1)

⋄.

Proof. This is seen by the following Grothendieck construction:

1. Given a relation R : A op × B −→ 2, define the span (d0, E , d1) : B −→ A as follows:

6

(a) Objects of E are pairs (a, b), where a and b are objects of A and B, respectively, with R(a, b) = 1.
A typical object is going to be denoted by

a
(a,b)

///o/o/o b

(b) The preorder relation on E : we put (a, b) ≤ (a′, b′), if a ≤ a′, b ≤ b′ in A , B, respectively.
Diagrammatically:

a
(a,b)

///o/o/o

��

b

��

a′
(a′,b′)

///o/o/o b′

(where we write, e.g., a −→ a′ to denote a ≤ a′).

(c) The monotone maps d0 : E −→ A and d1 : E −→ B are then the obvious domain and codomain
projections.

We verify now that (d0, E , d1) is a fibration.

(a) Suppose
a

��

a′
(a′,b′)

///o/o/o b′

is given. We define the cartesian lift as follows:

a
(a,b′)

///o/o/o

��

b′

a′
(a′,b′)

///o/o/o b′

Here we have used the fact that R is monotone.

(b) Given

a
(a,b)

///o/o/o b

��

b′

and g : b −→ b′, proceed analogously to the above: define the unique opcartesian lift as follows

a
(a,b)

///o/o/o b

��

a
(a,b′)

///o/o/o b′

(c) Suppose we are given a morphism

a
(a,b)

///o/o/o

��

b

��

a′
(a′,b′)

///o/o/o b′

7

in E . Then it is straightforward to see that it is equal to the composite

a
(a,b)

///o/o/o b

��

a
(a,b′)

///o/o/o

��

b′

a′
(a′,b′)

///o/o/o

@A
//

GF

b′
BC
oo

ED

2. Given a fibration (d0, E , d1) : B −→ A , consider the following definition

R(a, b) = 1 iff there is e in E with d0(e) = a and d1(e) = b

That the assignment (a, b) 7→ R(a, b) gives a monotone map

R : A
op × B −→ 2

is taken care of by the three conditions of Definition 2.10. In other words, we have obtained a relation
from B to A .

Corollary. If (d0, E , d1) : B −→ A is the fibration corresponding R : B ✕ //A , then Rel(V)R =
Rel(V)((d0)⋄ · (d1)

⋄) = (V d0)⋄ · (V d1)
⋄.

Proof. On the left we have that Rel(V)((d0)⋄ · (d1)
⋄)(b, a) = 1 iff there is w ∈ E such that b ≤ d0(w) and

d1(w) ≤ a. On the right we have that ((V d0)⋄ · (V d1)
⋄)(b, a) = 1 iff there is w ∈ E such that b = d0(w) and

d1(w) = a. Since (d0, E , d1) is a fibration the two conditions are equivalent.

Remark 2.14. The proposition can be extended to any category enriched in Pre. The details are as follows.
A span (d0, E , d1) : B −→ A in Pre is a two-sided discrete fibration, if the following three conditions are
satisfied:

1. For each m : K −→ E , a, a′ : K −→ A , b : K −→ B and α : a′ −→ a such that triangles

K
m //

a
!!
❇❇

❇❇
❇❇

❇❇
E

d0

��

K
m //

b
!!
❇❇

❇❇
❇❇

❇❇
E

d1

��

A B

commute, there is a unique m̄ : K −→ E and a unique d∗0(α) : m̄ −→ m such that

K
m̄ //

a′

!!
❇❇

❇❇
❇❇

❇❇
E

d0

��

K
m̄ //

b
!!
❇❇

❇❇
❇❇

❇❇
E

d1

��

A B

and

K

m̄ //

m
//

↓d∗
0
(α) E

d0 // A = K

a′

//

a
//

↓α A

K

m̄ //

m
//

↓d∗
0
(α) E

d1 // B = K
b // B

commute. The 2-cell d∗0(α) is called the cartesian lift of α.

8

2. For each m : K −→ E , a : K −→ A , b, b′ : K −→ B and β : b −→ b′ such that triangles

K
m //

a
!!
❇❇

❇❇
❇❇

❇❇
E

d0

��

K
m //

b
!!
❇❇

❇❇
❇❇

❇❇
E

d1

��

A B

commute, there is a unique m̄ : K −→ E and a unique d∗1(β) : m ⇒ m̄ such that

K
m̄ //

a
!!
❇❇

❇❇
❇❇

❇❇
E

d0

��

K
m̄ //

b′ !!
❇❇

❇❇
❇❇

❇❇
E

d1

��

A B

and

K

m //

m̄
//

↓d∗
1
(β) E

d0 // A = K
a // A

K

m //

m̄
//

↓d∗
1
(β) E

d1 // B = K

b //

b′
//

↓β B

commute. The 2-cell d∗1(β) is called the opcartesian lift of β.

3. Given any σ : m ⇒ m′ : K −→ E, then the composite d∗0(d0σ) · d
∗
1(d1σ) is defined and it is equal to σ.

The easiest way of treating fibrations abstractly is that they are algebras for two (2-)monads simultaneously:
they are two-sided modules in a certain precise sense. See [S2] and [S4].

Example 2.15. Suppose that f : A −→ B is monotone. Recall the relations f⋄ : A ✕ // B and f⋄ : B ✕ // A .
Their corresponding fibrations are the spans

idB/f
p0

yysss
ss

p1

%%❑
❑❑❑

❑
f/idB

p0

yysss
ss

p1

%%❑
❑❑❑

❑

B A A B

arising from the respective comma squares.

Example 2.16. The relation (yA)⋄ from LA to A will be called the elementhood relation and denoted by
∈A , since (yA)⋄(a,A) = LA (yA a,A) = A(a) holds by the Yoneda Lemma.

2.D Composition of fibrations

Suppose that we have two fibrations as on the left below. We want to form their composite E ⊗ F as a
fibration.

E

dE

0

��✝✝
✝✝
✝✝ dF

1

��
✾✾

✾✾
✾✾

F

dF

0

��☎☎
☎☎
☎☎ dF

1

��
✿✿

✿✿
✿✿

C B B A

E ⊗ F
dE⊗F

0

}}⑤⑤
⑤⑤
⑤⑤
⑤ dE⊗F

1

!!
❈❈

❈❈
❈❈

❈

C A

The idea is similar to the ordinary relations: the composite is going to be a quotient of a pullback of spans,
this time the quotient will be taken by a map that is surjective on objects, hence absolutely dense.

Remark 2.17. A monotone map e : A −→ B is called absolutely dense (see [ABSV] and [BV]) iff

B(b, b′) =
∨

a

B(b, ea) ∧ B(ea, b′),

9

that is, e is absolutely dense iff e⋄ · e
⋄ = id . Clearly, every monotone map surjective on objects is absolutely

dense. The converse is true if B is a poset. If B is a preorder, then e is absolutely dense when each strongly
connected component of B contains at least one element in the image of e.

In defining the composition of fibrations we proceed as follows: construct the pullback

E ◦ F
q1

//

q0

��

F

dF

0

��

E
dE

1

// B

and define E ⊗ F to be the following preorder:

1. Objects are wiggly arrows of the form c ///o/o/o a such that there exists b ∈ B with (c ///o/o/o b, b ///o/o/o a) ∈
E ◦ F .

2. Put c ///o/o/o a to be less or equal to c′ ///o/o/o a′ iff c ≤ c′ and a ≤ a′.

Define a monotone map w : E ◦F −→ E ⊗F in the obvious way and observe that it is surjective on objects
and, hence, absolutely dense.

We equip now E ⊗ F with the obvious projections dE⊗F

0 : E ⊗ F −→ C and dE⊗F

1 : E ⊗ F −→ A .
Then the following result is immediate.

Lemma 2.18. The span (dE⊗F

0 , E ⊗ F , dE⊗F

1) : A −→ C is a fibration.

To summarize, we have

Proposition. Let S,R be monotone relations with associated fibrations E ,F . Then the relation associated
with E ⊗ F is S ·R, that is, we can write E S·R = E S ⊗ E R.

3 Exact squares

The notion of exact squares replaces the notion of weak pullbacks in the preorder setting and exact squares
will play a central rôle in our extension theorem. Exact squares were introduced and studied by René Guitart
in [Gu].

Definition 3.1. A lax square in Pre

P
p1

//

p0

��

ր

B

g

��

A
f

// C

(3.3)

is exact iff the canonical comparison in Rel(Pre) below is an iso (identity).

P

❯(p0)⋄
��

ց

B✕
(p1)

⋄

oo

❯g⋄
��

A C✕
f⋄

oo

(3.4)

Remark 3.2. In defining the canonical comparison, we use the adjunctions (p1)⋄ ⊣ (p1)
⋄ and f⋄ ⊣ f⋄

guaranteed by Lemma 2.5.
Using the formula (2.1) we obtain an equivalent criterion for exactness namely that

C (fa, gb) =
∨

w

A (a, p0w) ∧ B(p1w, b) (3.5)

10

Example 3.3. We give examples of exact squares in Pre. They all come from Guitart’s paper [Gu], Exam-
ple 1.14. The proofs follow immediately from the description (3.5) above.

1. The square

A
f

//

1A

��

ր

B

1B

��

A
f

// B

where the comparison is identity, is always exact since

B(fa, b) =
∨

w

A (a, w) ∧ B(fw, b)

holds by the Yoneda Lemma. Such a square is called a Yoneda square in [Gu].

2. The square

A
1A //

f

��

ր

A

f

��

B
1B

// B

where the comparison is identity, is always exact since

B(b, fa) =
∨

w

B(b, fw) ∧ A (w, a)

holds by the Yoneda Lemma. Again, squares of this form are called Yoneda squares in [Gu].

3. Every comma square

f/g
d1

//

d0

��

ր

B

g

��

A
f

// C

is exact.

4. Every op-comma square

C
g

//

f

��

ր

B

i1

��

A
i0

// f ⊲ g

is exact.

5. The square

A
1A //

1A

��

ր

A

f

��

A
f

// B

(where the comparison is identity) is exact iff f is an order-embedding, i.e., iff the following holds:
fa ≤ fa′ iff a ≤ a′.

Such f ’s can also be called fully faithful .

11

6. The square

A
e //

e

��

ր

B

1B

��

B
1B

// B

(where the comparison is identity) is exact iff e is absolutely dense, i.e., iff

B(b, b′) =
∨

a

B(b, ea) ∧ B(ea, b′).

See, e.g., [ABSV] and [BV] for more details on absolutely dense maps.

7. The square

X
f

//

1X

��

ր

A

u

��

X
1X

// X

is exact iff f ⊣ u : A −→ X holds. Moreover, the comparison in the above square is the unit of f ⊣ u.

8. The square

A
1A //

u

��

ր

A

1A

��

X
f

// A

is exact iff f ⊣ u : A −→ X holds. Moreover, the comparison in the above square is the counit of
f ⊣ u.

9. The square

X ′ f
//

1
X ′

��

ր

A

u

��

X ′

j
// X

is exact iff f ⊣j u : A −→ X holds, i.e., iff f is a left adjoint of u relative to j.

In general, relative adjointness means the existence of an isomorphism

X (jx′, ua) ∼= A (fx′, a)

natural in x′ and a, and due to

A (fx′, a) ∼=
∨

w

X
′(w, x′) ∧ A (fw, a)

this means precisely the exactness of the above square.

10. The square

A
j

//

h
��

ր

B

l
��

X
1X

// X

12

is exact iff the comparison exhibits l as an absolute left Kan extension of h along j. In fact,

X (x, lb) =
∨

a

X (x, ha) ∧ B(ja, b)

asserts precisely that

(a) l is a left Kan extension of h along j.

For any k : B −→ X we need to prove l −→ k iff h −→ k · j.

i. Suppose lb ≤ kb for all b. Choose any a. Then ha ≤ lja by the square above. Since lja ≤ kja
by assumption, hence ha ≤ kja.

ii. Suppose ha ≤ kja for all a. To prove lb ≤ kb for all b, it suffices to prove that x ≤ lb implies
x ≤ kb, for all x. Suppose x ≤ lb, i.e., X (x, lb) = 1. Hence

∨
a X (x, ha) ∧ B(ja, b) = 1.

Choose a to witness x ≤ ha and ja ≤ b. From our assumption we obtain x ≤ kja, hence
x ≤ kb.

(b) l is an absolute left Kan extension of h along j.

We need to prove that for any f : X −→ X ′, f · l is a left Kan extension of f · h along j. That
is, for any k : B −→ X ′ we need to prove f · l −→ k iff f · h −→ k · j.

This is proved in the same manner as above.

Observe that item 7 above is a special case of absolute Kan extensions by Bénabou’s Theorem: f ⊣ u
holds if the unit exhibits u as an absolute left Kan extension of identity along f .

Example 3.4. Every square (3.3) where f and p1 are left adjoints, is exact iff p0 · p
r
1 = f r · g, where we

denote by f r and pr1 the respective right adjoints.
This is proved as follows. Firstly, the comparison f · p0 −→ g · p1 is equivalent to the comparison

p0 · p
r
1 −→ f r · g due to adjunctions f ⊣ f r and p1 ⊣ pr1. Further, we have

∨

w

A (a, p0w) ∧ B(p1w, b) =
∨

w

A (a, p0w) ∧ P(w, pr1b) = A (a, p0p
r
1b)

and
C (fa, gb) = A (a, f rgb)

It follows that the square (3.3) is exact iff

A (a, p0p
r
1b) = A (a, f rgb).

By the Yoneda Lemma, this is equivalent to p0 · p
r
1 = f r · g.

Example 3.5. If the square on the left is exact, then so is the square on the right:

P
p1

//

p0

��

ր

B

g

��

A
f

// C

Pop
pop
0 //

pop
1

��

ր

A op

fop

��

Bop

gop
// C op

To prove the claim, by (3.5), we need

C
op(gopb, fopa) =

∨

w

B
op(b, pop1 w) ∧ A

op(pop0 w, a)

But
C

op(gopb, fopa) = C (fa, gb)

13

and ∨

w

B
op(b, pop1 w) ∧ A

op(pop0 w, a) =
∨

w

A (a, p0w) ∧ B(p1w, b)

and this finishes the proof.

Lemma 3.6. Suppose that (dS0 , E
S , dS1) and (dR0 , E

R, dR1) are two-sided discrete fibrations. Then the pullback

E S ◦ E R q1
//

q0
��

E R

dR
0

��

E S

dS
1

// B

considered as a lax commutative square where the comparison is identity, is exact.

Proof. Suppose that dS1 (e) ≤ dR0 (f) holds. Then we have a situation

c
e ///o/o/o b ≤ b′

f
///o/o/o a

and there exists w in E S ◦ E R of the form

c
e′ ///o/o/o b′

f
///o/o/o a

that clearly satisfies e ≤ p0(e
′, f) and p1(e

′, f) ≤ f .

Given monotone relations A ✕
R //B and B ✕

S //C , the two-sided fibration corresponding to the com-
position S ·R is the composition of the fibrations corresponding to S and R as described in Section 2.D. The
properties described in the next Corollary are essential for the proof of Theorem 4.1.

Corollary 3.7. Form, for a pair R, S, of monotone relations the following commutative diagram

E S·R

GF

dS·R
0

��

ED

dS·R
1

��

E S ◦ E R

q0

xxrr
rr
rr
rrr q1

&&▲
▲▲▲

▲▲▲
▲▲

w

OO

E S

dS
0

{{①①
①①
①①
① dS

1

&&▼
▼▼

▼▼
▼▼

▼▼
−→ E R

dR
0

xxqq
qq
qq
qq
q dR

1

##●
●●

●●
●●

C B A

where the lax commutative square in the middle is a pullback square (hence the comparison is the identity),
and w is a map, surjective on objects, coming from composing E S and E R as fibrations. Then the square is
exact and w is an absolutely dense monotone map.

In the extension theorem we will demand that a certain functor T : Pre −→ Pre preserves exact squares,
whereas the proof of the theorem actually only needs the at first sight weaker requirement that T preserves
strict exact squares and preserves the exactness of comma squares of the form 1A /1A (the former being
needed for preservation of composition and the latter for preservation of identities). It therefore seems of
interest to present the following result.

Proposition. For a locally monotone T : Pre −→ Pre, or T : Pos −→ Pos, the following are equivalent:

1. T preserves lax exact squares.

14

2. T preserves strict exact squares and exactness of comma squares of the form 1A /1A , for all A .

3. T preserves strict exact squares and exactness of comma squares of the form f/1B, 1A /f , for all
f : A −→ B.

4. T preserves strict exact squares and exactness of comma squares.

Proof. (1) implies (2): clear.

(2) implies (3): Suppose f : A −→ B is a monotone map. We prove that T preserves exactness of the
comma square

f/1B

π0

||②②
②②
②②
②② π1

""
❊❊

❊❊
❊❊

❊❊

A

f
""
❋❋

❋❋
❋❋

❋❋
❋ −→ B

1B
||①①
①①
①①
①①
①

B

That T preserves exactness of comma squares of the form 1A /f is proved analogously.
Define e : P −→ f/1B by the universal property in

P

e

��

f/1B

π0

||②②
②②
②②
②② π1

""
❊❊

❊❊
❊❊

❊❊

A

f
""
❋❋

❋❋
❋❋

❋❋
❋ −→ B

1B
||①①
①①
①①
①①
①

B

=

P

s′
1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ s′

0

##●
●●

●●
●●

●●

A

1A

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ f

❆❆

❆❆
❆❆

❆❆
(i)

1B/1B

s1

{{✇✇
✇✇
✇✇
✇✇
✇ p′

1

##❋
❋❋

❋❋
❋❋

❋❋

A

f

❇❇

❇❇
❇❇

❇❇
(ii)

B

1B

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ 1B

##❍
❍❍

❍❍
❍❍

❍❍
(iii)
−→ B

1B
{{✇✇
✇✇
✇✇
✇✇
✇

B

1B
❇❇

❇❇
❇❇

❇❇
(iv)

B

1B
{{✈✈
✈✈
✈✈
✈✈
✈

B

(3.6)

where (i), (ii), (iv) are pullbacks, and (iii) is a comma square.
Clearly, e : P −→ f/1B maps (a, b′, b) in P to (a, b) in f/1B and e is a monotone surjection.
The image under T of the diagram on the right of (3.6) is exact by assumptions. Hence the image under T

of the diagram on the left of (3.6) is exact. Since e is a surjection, e⋄·e
⋄ = 1f/1B

. Hence (Te)⋄·(Te)
⋄ = 1T (f/g)

holds since T preserves surjections (express surjectivity as a strict exact square). Thus

(Tπ0)⋄ · (Tπ1)
⋄ = (Tπ0)⋄ · (Te)⋄ · (Te)

⋄ · (Tπ1)
⋄

= (Tf)⋄ · (Tg)⋄

proving exactness of

T (f/1B)

Tπ0

zztt
tt
tt
tt
t

Tπ1

$$❏
❏❏

❏❏
❏❏

❏❏

TA

Tf
%%❑

❑❑
❑❑

❑❑
❑❑

−→ TB

1TByytt
tt
tt
tt
tt

TB

15

(3) implies (4): Suppose

f/g

π0

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ π1

!!
❇❇

❇❇
❇❇

❇❇

A

f
!!
❉❉

❉❉
❉❉

❉❉
−→ B

g
}}④④
④④
④④
④④

C

is a comma square and define e : P −→ f/g by the universal property in

P

e

��

f/g

π0

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ π1

!!
❇❇

❇❇
❇❇

❇❇

A

f
!!
❉❉

❉❉
❉❉

❉❉
−→ B

g
}}④④
④④
④④
④④

C

=

P

s′
1

||②②
②②
②②
②② s′

0

""
❊❊

❊❊
❊❊

❊❊

f/1C

p′
0

||②②
②②
②②
②② s0

""
❊❊

❊❊
❊❊

❊❊

(i)
1C/g

s1

||②②
②②
②②
②② p′

1

""
❉❉

❉❉
❉❉

❉❉

A

f
""
❋❋

❋❋
❋❋

❋❋
❋

(ii)
−→ C

1C

||①①
①①
①①
①①
①

1C

""
❋❋

❋❋
❋❋

❋❋
❋

(iii)
−→ B

g
||②②
②②
②②
②②
②

C

1C
""
❋❋

❋❋
❋❋

❋❋
❋

(iv)
C

1C
||①①
①①
①①
①①
①

C

(3.7)

where (i) and (iv) are pullbacks, (ii) and (iii) are comma squares.
Clearly, e : P −→ f/g maps (a, c, b) in P to (a, b) in f/g and e is a monotone surjection.
The image under T of the diagram on the right of (3.7) is exact by assumptions. Hence the image under T

of the diagram on the left of (3.7) is exact. Since e is a surjection, e⋄ ·e
⋄ = 1f/g. Hence (Te)⋄ ·(Te)

⋄ = 1T (f/g)

holds since T preserves surjections (express surjectivity as a strict exact square). Thus

(Tπ0)⋄ · (Tπ1)
⋄ = (Tπ0)⋄ · (Te)⋄ · (Te)

⋄ · (Tπ1)
⋄

= (Tf)⋄ · (Tg)⋄

proving exactness of

T (f/g)

Tπ0

zz✈✈
✈✈
✈✈
✈✈ Tπ1

$$❍
❍❍

❍❍
❍❍

❍

TA

Tf
$$■

■■
■■

■■
■■

−→ TB

Tg
zz✉✉
✉✉
✉✉
✉✉
✉

TC

(4) implies (1): Suppose that the lax square

P
p1

//

p0

��

B

g

��

A
f

//

ր

C

is exact.

16

Observe that there is an equality

S

e

��

f/g

π0

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ π1

!!
❇❇

❇❇
❇❇

❇❇

A

f
!!
❉❉

❉❉
❉❉

❉❉
−→ B

g
}}④④
④④
④④
④④

C

=

S

s′
1

{{①①
①①
①①
①①
①

s′
0

""
❋❋

❋❋
❋❋

❋❋
❋

1A /p0
p′
0

||①①
①①
①①
①① s0

##❋
❋❋

❋❋
❋❋

❋

(i)
p1/1B

s1

||①①
①①
①①
①① p′

1

""
❋❋

❋❋
❋❋

❋❋

A

1A
##●

●●
●●

●●
●●

(ii)
−→ P

p0

{{✇✇
✇✇
✇✇
✇✇
✇

p1

##●
●●

●●
●●

●●
(iii)
−→ B

1B
{{✇✇
✇✇
✇✇
✇✇
✇

A

f
##●

●●
●●

●●
●●

(iv)
−→ B

g
{{✇✇
✇✇
✇✇
✇✇
✇

C

(3.8)

where the diagrams on the right are: (i) is a pullback, (ii) and (iii) are comma objects, and (iv) is the
original lax exact square. On the left, the morphism e : S −→ f/g is induced by the universal property
of comma squares. Observe that e is a monotone surjection: e maps (a, w, b) in S to (a, b) in f/g, and for
(a, b) in f/g there is (a, w, b) in S by exactness.

Therefore, the diagram

S

e

��

f/g

π0

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ π1

!!
❇❇

❇❇
❇❇

❇❇

A

f
!!
❉❉

❉❉
❉❉

❉❉
−→ B

g
}}④④
④④
④④
④④

C

=

S

π0·e

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ π1·e

❆❆

❆❆
❆❆

❆❆

A

f

❇❇

❇❇
❇❇

❇❇
−→ B

g
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

C

is exact, i.e., the equality
(π0)⋄ · e⋄ · e

⋄ · (π1)
⋄ = f⋄ · g⋄

holds. This follows from e⋄ · e
⋄ = 1f/g, since e is surjective and from the fact that comma squares are exact.

By assumption, in the diagram

T (f/g)

Ts′
1

yyrr
rr
rr
rr
rr Ts′

0

%%▲
▲▲

▲▲
▲▲

▲▲
▲

T (1A /p0)
Tp′

0

yyss
ss
ss
ss
s

Ts0

&&▼
▼▼

▼▼
▼▼

▼▼
▼

T (i)
T (p1/1B)

Ts1

xxqq
qq
qqq

qqq Tp′
1

%%❏
❏❏

❏❏
❏❏

❏❏

TA

1TA %%❑
❑❑

❑❑
❑❑

❑❑
❑

T (ii)
−→ TP

Tp0

xxqqq
qqq

qqq
qq

Tp1

&&▼
▼▼▼

▼▼▼
▼▼▼

▼
T (iii)
−→ TB

1TByyss
ss
ss
ss
ss

TA

Tf
&&▼

▼▼▼
▼▼

▼▼▼
▼▼

T (iv)
−→ TB

Tg
xxqqq

qq
qqq

qqq

TC

17

the square T (i) is strict exact, and T (ii), T (iii) are lax exact squares. Also, the whole diagram is exact,
being the image of the diagram

S

e

||③③
③③
③③
③③

e

""
❉❉

❉❉
❉❉

❉❉

f/g

1f/g
!!
❈❈

❈❈
❈❈

❈❈
f/g

1f/g
}}④④
④④
④④
④④

f/g

π0

||③③
③③
③③
③③ π1

""
❉❉

❉❉
❉❉

❉❉

A

f
""
❊❊

❊❊
❊❊

❊❊
❊ −→ B

g
||②②
②②
②②
②②
②

C

under T (use assumptions: the upper square is strict exact, and the lower square is a comma object).
We prove that T (iv) is exact. Indeed:

(Tf)⋄ · (Tg)⋄ = (1TA)⋄ · (Tf)⋄ · (Tg)⋄ · (1TB)⋄

= (Tp′0)⋄ · (Ts
′
1)⋄ · (Ts

′
0)

⋄ · (Tp′1)
⋄

= (Tp′0)⋄ · (Ts0)
⋄ · (Ts1)⋄ · (Tp

′
1)

⋄

= (1TA)⋄ · (Tp0)⋄ · (Tp1)
⋄ · (1TB)⋄

= (Tp0)⋄ · (Tp1)
⋄

4 The universal property of (−)⋄ : Pre −→ Rel(Pre)

We prove now that the 2-functor (−)⋄ : Pre −→ Rel(Pre) has an analogous universal property to the case of
sets. From that, the result on a unique lifting of T to T will immediately follow, see Theorem 5.3 below.

Theorem 4.1. The 2-functor (−)⋄ : Pre −→ Rel(Pre) has the following three properties:

1. Every f⋄ is a left adjoint.

2. For every exact square (3.3) the equality f⋄ · g⋄ = (p0)⋄ · (p1)
⋄ holds.

3. For every absolutely dense monotone map e, the relation e⋄ is a split epimorphism with the splitting
given by e⋄.

Moreover, the functor (−)⋄ is universal w.r.t. these three properties in the following sense: if K is any
2-category where the isomorphism 2-cells are identities, to give a 2-functor H : Rel(Pre) −→ K is the same
thing as to give a 2-functor F : Pre −→ K with the following three properties:

1. Every Ff has a right adjoint, denoted by (Ff)r.

2. For every exact square (3.3) the equality Ff r · Fg = Fp0 · (Fp1)
r holds.

3. For every absolutely dense monotone map e, Fe is a split epimorphism, with the splitting given by
(Fe)r.

18

Proof. It is trivial to see that (−)⋄ has the above three properties.
Given a 2-functor H : Rel(Pre) −→ K, define F to be the composite H · (−)⋄. Such F clearly has the

above three properties, since 2-functors preserve adjunctions.
Conversely, given F : Pre −→ K, define HA = FA on objects, and on a relation R = (dR0)⋄ · (d

R
1)

⋄ define
H(R) = FdR0 · (FdR1)

r, where (FdR1)
r is the right adjoint of FdR1 in K.

It is easy to verify that H so defined preserves identities: the identity relation idA on A is represented
as a fibration

1A /1A

p0

}}③③
③③
③③
③③ p1

!!
❉❉

❉❉
❉❉

❉❉

A A

coming from the exact comma square

1A /1A

p1
//

p0

��

ր

A

1A

��

A
1A

// A

(4.9)

Hence H(idA) = Fp0 · (Fp1)
r = F (1A) = 1FA = 1HA holds by our assumptions on F .

For preservation of composition use Corollary 3.7: first

H(S) ·H(R) = FdS0 · (FdS1)
r · FdR0 · (FdR1)

r

by definition. Further, by exactness of the pullback from Corollary 3.7 and our assumption on F , we have

FdS0 · (FdS1)
r · FdR0 · (FdR1)

r = FdS0 · Fq0 · (Fq1)
r · (FdR1)

r

and, finally, since Fw is split epi by Corollary 3.7 and our assumption on F , we obtain

FdS0 · Fq0 · Fw · (Fw)r · (Fq1)
r · (FdR1)

r = FdR·S
0 · (FdR·S

1)r = H(R · S)

and the proof is complete.

Remark. There is an analogous theorem with “Pos” replacing “Pre” and “surjective” replacing “absolutely
dense”.

5 The extension theorem

Definition 5.1. We say that a locally monotone functor T : Pre −→ Pre satisfies the Beck-Chevalley
Condition (BCC) if it preserves exact squares.

Remark 5.2. A functor satisfying the BCC has to preserve order-embeddings, absolutely dense monotone
maps and absolute left Kan extensions. This follows from Example 3.3. Examples of functors (not) satisfying
the BCC can be found in Section 6.

Theorem 5.3. For a 2-functor T : Pre −→ Pre the following are equivalent:

1. There is a 2-functor T : Rel(Pre) −→ Rel(Pre) such that

Rel(Pre)
T // Rel(Pre)

Pre
T

//

(−)⋄

OO

Pre

(−)⋄

OO

(5.10)

19

2. The functor T satisfies the BCC.

3. There is a distributive law T ·L −→ L ·T of T over the KZ doctrine (L, y,m) described in (2.2) above.

Proof. The equivalence of 1. and 3. follows from general facts about distributive laws, using Proposition 2.7
above. See, e.g., [S1]. For the equivalence of 1. and 2., observe that T satisfies the BCC iff

Pre
T // Pre

(−)⋄
// Rel(Pre)

satisfies the three properties of Theorem 4.1 above.

Remark. There is an analogous theorem with “Pos” replacing “Pre”.

Corollary 5.4. If T is a locally monotone functor, the lifting T is computed as

T (R) = (Td0)⋄ · (Td1)
⋄

where (d0, E , d1) is the two-sided discrete fibration corresponding to R.

Corollary. Let T : Pre −→ Pre and T0 : Set −→ Set such that TD = DT0 and V T = T0V where
V : Pre −→ Set is the forgetful functor and D is its left-adjoint. Then T satisfies the BCC iff T0 preserves
weak pullbacks.

Proof. We show that T preserves composition of relations if T0 does. By Corollary 5.4 and the corollary after
Proposition 2.13, we have Rel(V)T = T0Rel(V). Let S,R be two monotone relations. We have Rel(V)T (S ·
R) = T0Rel(V)(S · R) = T0(Rel(V)S · Rel(V)R) = T0(Rel(V)S) · T0(Rel(V)R) = Rel(V)T (S) · Rel(V)T (R) =
Rel(V)(TS · TR), hence T (S ·R) = TS · TR by Rel(V) being faithful.

Conversely, any pullback in Set is mapped by D to a pullback in Pre and then to an exact square by
T . Now from TD = DT0 and the fact that any exact square of sets is a weak pullback it follows that T0

preserves weak pullbacks.

6 Examples

Example 6.1. All the “Kripke-polynomial” functors satisfy the Beck-Chevalley Condition. This means the
functors defined by the following grammar:

T ::= constX | Id | T ∂ | T + T | T × T | LT

where constX is the constant-at-X , T ∂ is the dual of T , defined by putting

T ∂
A = (TA

op)op

and LX = [X op , 2] (the lowersets on X , ordered by inclusion). Observe that L∂X = [X , 2]op , hence
L∂X = UX (the uppersets on X , ordered by reversed inclusion).

To check that BCC is satisfied, suppose that the square

P
p1

//

p0

��

ր

B

g

��

A
f

// C

(6.11)

is exact.

20

1. The functor constX .

The image of square (6.11) under constX is the square

X
1X //

1X

��

ր

X

1X

��

X
1X

// X

where the comparison is the identity. This is an exact square (it is a Yoneda square).

2. The functor Id .

This functor obviously satisfies the Beck-Chevalley Condition.

3. Suppose T satisfies the Beck-Chevalley Condition.

The square

Pop
pop
0 //

pop
1

��

ր

A op

fop

��

Bop

gop
// C op

is exact by Example 3.5 and, by assumption, so is the square

T (Pop)
T (pop

0
)
//

T (pop
1
)

��

ր

TA op

T (fop)

��

T (Bop)
T (gop)

// T (C op)

Finally, the square

(T (Pop))op
(T (pop

1
))op
//

(T (pop
0
))op

��

ր

(T (Bop))op

(T (gop))op

��

(T (A op))op
(T (fop))op

// (T (C op))op

is exact by Example 3.5 and this is what we were supposed to prove.

4. Suppose both T1 and T2 satisfy the Beck-Chevalley Condition. We prove that T1 + T2 does satisfy it.

The image of (6.11) under T1 + T2 is

T1P + T2P
T1p1+T2p1

//

T1p0+T2p0

��

ր

T1B + T2B

T1g+T2g

��

T1A + T2A
T1f+T2f

// T1C + T2C

The assertion follows from the fact that coproducts are disjoint in Pre.

5. Suppose both T1 and T2 satisfy the Beck-Chevalley Condition. We prove that T1 × T2 does satisfy it.

21

The image of (6.11) under T1 × T2 is

T1P × T2P
T1p1×T2p1

//

T1p0×T2p0

��

ր

T1B × T2B

T1g×T2g

��

T1A × T2A
T1f×T2f

// T1C × T2C

The assertion follows from how products are formed in Pre.

6. Suppose that T satisfies the Beck-Chevalley Condition. We prove that LT does satisfy it again.

It suffices to prove that L satisfies the Beck-Chevalley Condition. The image of square (6.11) under L

is the square

LP
Lp1

//

Lp0

��

ր

LB

Lg

��

LA
Lf

// LC

First recall how L is defined on monotone maps: for example, Lf : LA −→ LC is defined as a left Kan
extension along fop : A op −→ C op . This means that, for every lowerset W : A op −→ 2,

(Lf)(W) =
∨

a

C
op(fopa,−) ∧Wa

or, in a more readable fashion,

(Lf)(W) : c 7→
∨

a

C (c, fa) ∧Wa

Hence c is in the lowerset (Lf)(W) iff there is a in W such that c ≤ fa. Observe that L is indeed
a functor: it clearly preserves identities and composition (for that, see Theorem 4.47 of [Ke]) up to
isomorphisms. But these canonical isomorphisms are identities, since [X op , 2] is always a poset .

We employ Example 3.4: both Lf and Lp1 are left adjoints with (Lf)r = [fop , 2] and (Lp1)
r = [pop1 , 2].

Hence it suffices to prove that
Lp0 · [p

op
1 , 2] = [fop , 2] · Lg

Moreover, by the density of principal lowersets of the form B(−, b0) in LB and the fact that all the
monotone maps Lp0, [p

op
1 , 2], [fop , 2], Lg preserve suprema (since they all are left adjoints), it suffices

to prove that
(Lp0 · [p

op
1 , 2])(B(−, b0)) = ([fop , 2] · Lg)(B(−, b0)) (6.12)

holds for all b0.

The left-hand side is isomorphic to

Lp0(B(p1−, b0)) = a 7→
∨

w

A (a, p0w) ∧ B(p1w, b0)

By exactness of (6.11), this means that

Lp0(B(p1−, b0)) = a 7→ C (fa, gb0)

Observe further that
(Lg)(B(−, b0)) = c 7→

∨

b

C (c, gb) ∧ B(b, b0)

22

hence
(Lg)(B(−, b0)) = c 7→ C (c, gb0)

by the Yoneda Lemma.

The right hand side of (6.12) is therefore isomorphic to

([fop , 2] · Lg)(B(−, b0)) = [fop , 2](c 7→ C (c, gb0)) = a 7→ C (fa, gb0)

Example 6.2. Recall the adjunction Q ⊣ I : Pos −→ Pre, where I is the inclusion functor and Q(A) is
the quotient of A obtained by identifying a and b whenever a ≤ b and b ≤ a. The functors Q and I are
locally monotone and map exact squares to exact squares. Hence, if T : Pre −→ Pre satisfies the BCC, so
does QTI : Pos −→ Pos.

Example 6.3. The powerset functor P : Pre −→ Pre is defined as follows. The order on PA is the Egli-
Milner preorder, that is, P(A,B) = 1 if and only if

∀a ∈ A ∃b ∈ B a ≤ b and ∀b ∈ B ∃a ∈ A a ≤ b (6.13)

Pf(A) is the direct image of A. The functor P is locally monotone and satisfies the BCC.
The finitary powerset functor Pω is defined similarly: PωA consists of the finite subsets of A equipped

with the Egli-Milner preorder. Pω is locally monotone and satisfies the BCC.
The powerset functor P is locally monotone and satisfies the BCC. This follows from the unnumbered

corollary of Section 5. For a direct argument consider an exact square:

P
p1

//

p0

��

ր

B

g

��

A
f

// C

(6.14)

By (3.5) we have to show that for A ∈ PA and B ∈ PB

PC (Pf(A),Pg(B)) =
∨

W

PA (A,Pp0(W)) ∧ PB(Pp1(W), B) (6.15)

Assume PC (Pf(A),Pg(B)) = 1. Then

∀a ∈ A ∃b ∈ B fa ≤ gb and ∀b ∈ B ∃a ∈ A fa ≤ gb (6.16)

We have to find W ∈ PP such that PA (A,Pp0(W)) and PB(Pp1(W), B). Let W = {w ∈ P | ∃a ∈
A a ≤ p0w and ∃b ∈ B p1w ≤ b}. It is easy to see that W satisfies ∀w ∈ W ∃a ∈ A A (a, p0w) and
∀w ∈ W ∃b ∈ B B(p1w, b). Consider a ∈ A. By (6.16) there exists b ∈ B such that C (fa, gb). By (3.5)
there exists w ∈ W such that A (a, p0w). So PA (A,Pp0(W)) = 1. Similarly, we can show that for all b ∈ B
exists w ∈ W with B(p1w, b). This shows that P preserves exact squares, hence it satisfies the BCC.

The proof that Pω satisfies the BCC goes along the same lines.

Example 6.4. Given a preorder A , a subset A ⊆ A is called convex if x ≤ y ≤ z and x, z ∈ A imply y ∈ A.
The convex powerset functor Pc : Pos −→ Pos is defined as follows. PcA is the set of convex subsets

of A endowed with the Egli-Milner order. Pcf(A) is the direct image of A. This is a well defined locally
monotone functor. Notice that Pc ∼= QPI. This follows from the fact that if A is a poset and A,B ∈ PIA ,
then PIA (A,B) = 1 and PIA (B,A) = 1 if and only if A and B have the same convex hull. Hence, by
Example 6.2, Pc satisfies the BCC.

The finitely-generated convex powerset Pc
ω is defined similarly to Pc. The only difference is that the

convex sets appearing in Pc
ωA are convex hulls of finitely many elements of A . Then Pc

ω is locally monotone
and is isomorphic to QPωI, thus it also satisfies the BCC. Again, we have that Pc

ω = QPωI and Pc
ω satisfies

the BCC.
Observe that both functors are self-dual: (Pc)∂ = Pc and (Pc

ω)
∂ = Pc

ω.

23

Example 6.5. Since the lowerset functor L : Pre −→ Pre satisfies the Beck-Chevalley Condition by Exam-

ple 6.1, we can compute its lifting L : Rel(Pre) −→ Rel(Pre). We show how L works on the relation A ✕
R //B .

The value L(R) is, by Theorems 4.1 and 5.3, given by (Ld0)⋄ · (Ld1)
⋄ where (d0, E

R, d1) : A −→ B is the
two-sided discrete fibration corresponding to R. Using the formula (2.1) for relation composition, we can
write

L(R)(B,A) =
∨

W

LB(B,Ld0(W)) ∧ LA (Ld1(W), A) (6.17)

where B : Bop −→ 2 and A : A op −→ 2 are arbitrary lowersets. Since Ld1 is a left adjoint to restriction
along dop1 : (E R)op −→ A op , we can rewrite (6.17) to

L(R)(B,A) =
∨

W

LB(B,Ld0(W)) ∧ LE
R(W,A · dop1)

and, by the Yoneda Lemma, to
L(R)(B,A) = LB(B,Ld0(A · dop1))

Hence the lowersets B and A are related by L(R) if and only if the inclusion

B ⊆ Ld0(A · dop1)

holds in [Bop , 2]. Recall that

Ld0(A · dop1) = b 7→
∨

w

B(b, d0w) ∧ (A · dop1)(w)

Therefore the inclusion B ⊆ Ld0(A · dop1) is equivalent to the statement: For all b in B there is (b1, a1) such
that R(b1, a1) and b ≤ b1 and a1 in A.

Observe that the above condition is reminiscent of one half of the Egli-Milner-style of the relation lifting
of a powerset functor. This is because L is the “lower half” of two possible “powerpreorder functors”. The
“upper half” is given by U : Pre −→ Pre where U = L∂ .

Example 6.6. The relation liftings P, Pc, Pω, Pc
ω of the (convex) powerset functor and their finitary

versions yield the “Egli-Milner” style of the relation lifting. More precisely, for a relation B ✕
R //A we

have P(R)(B,A) (respectively Pω(R)(B,A), Pc(R)(B,A), Pc
ω(R)(B,A)) if and only if

∀a ∈ A ∃b ∈ B R(b, a) and ∀b ∈ B ∃a ∈ A R(b, a).

To compute the lifting of Pc, consider a monotone relation A ✕
R //B and the induced fibration (d0, E , d1) :

A −→ B. We know that Pc(R) = (Pcd0)⋄ · (P
cd1)

⋄, so

Pc(R)(B,A) =
∨

E

Pc
B(B,Pcd0(E)) ∧ PA (Pcd1(E), A) (6.18)

We prove that Pc(R)(B,A) = 1 implies ∀a ∈ A ∃b ∈ B R(b, a) and ∀b ∈ B ∃a ∈ A R(b, a). Consider
a witness E and a ∈ A. Since PcA (Pcd1(E), A) = 1, there exists (b′, a′) ∈ E such that A (a′, a). Since
PcB(B,Pcd0(E)) = 1, there exists b ∈ B such that B(b, b′). Since R is monotone and R(b′, a′) = 1 we
obtain R(b, a) = 1. So ∀a ∈ A ∃b ∈ B R(b, a). The second part is analogous.

Conversely, if ∀a ∈ A ∃b ∈ B R(b, a) and ∀b ∈ B ∃a ∈ A R(b, a), define the subset of E as follows:

E = {b ///o/o/o a | b ∈ B, a ∈ A}

Then E is convex, since both B and A are convex. Both PcB(B,Pcd0(E)) = 1 and PcA (Pcd1(E), A) = 1
hold for obvious reasons. Hence Pc(R)(B,A) = 1 holds.

24

Example 6.7. To find a functor that does not satisfy the BCC, it suffices, by Remark 5.2, to find a locally
monotone functor T : Pre −→ Pre that does not preserve order-embeddings. For this, let T be the connected
components functor , i.e., T takes a preorder A to the discretely ordered poset of connected components of
A . T does not preserve embedding f : A −→ B indicated below.

A B

• •
a b

• •
a b

•
c

✡✡
✡ ✹✹
✹

7 An Application: Moss’s Coalgebraic Logic over Posets

We show how to develop the basics of Moss’s coalgebraic logic over posets. For reasons of space, this
development will be terse and assume some familiarity with, e.g., Sections 2.2 and 3.1 of [KuL].

Since the logics will have propositional connectives but no negation (to capture the semantic order on
the logical side) we will use the category DL of bounded distributive lattices. We write F ⊣ U : DL −→ Pos

for the obvious adjunction; and P : Posop −→ DL where UPX = [X , 2] and S : DL −→ Pos
op where

SA = DL(A, 2). Note that UP = [−, 2] and recall L = [(−)op , 2]. Further, let T : Pos −→ Pos be a locally
monotone finitary functor that satisfies the BCC.

We define coalgebraic logic abstractly by a functor L : DL −→ DL given as

L = FT ∂U

where the functor T ∂ : Pos −→ Pos is given by T ∂X = (T (X op))op . By Example 6.1, T ∂ satisfies the BCC.
The formulas of the logic are the elements of the initial L-algebra FT ∂U(L) −→ L. The formula given by
some α ∈ T ∂U(L) is written as ∇α. The semantics is given by a natural transformation

δ : LP −→ PT op

Before we define δ, we need for every preorder A , the relation1

[A , 2] ✕
∋A //A op

given by the evaluation map evA : A × [A , 2] −→ 2. Observe that

∋A = (yA op)⋄ (7.19)

since (yA op)⋄(a, V) = [A , 2](yA opa, V) = V a holds by the Yoneda Lemma.

Lemma 7.1. For every monotone map f : A −→ B we have

[A , 2] ✕
∋A // A op

[B, 2] ✕
∋B

//

❯[f,2]⋄
OO

Bop

❯ (fop)⋄
OO

Diagrammatic Proof. The square

A op
yA op

//

fop

��

L(A)

L(f)

��

Bop
yBop

// L(B)

1The type of ∋X conforms with the logical reading of ∋ as . Indeed, ∋(x, ϕ) & ϕ ⊆ ψ ⇒ ∋(x, ψ) and ∋(x, ϕ) & x ≤ y ⇒

∋(y, ϕ), where ϕ,ψ are uppersets of X .

25

commutes in Pre, since y is natural. Hence the square

A op ✕
(yA op)⋄

//

❯(fop)⋄

��

L(A)

❯(L(f))⋄
��

Bop ✕
(yBop)⋄

// L(B)

commutes in Rel(Pre) since (−)⋄ is a 2-functor.
Now observe that L(f) ⊣ [f, 2] holds by the definition of L on morphisms. Hence (L(f))⋄ ⊣ [f, 2]⋄ holds.

Since adjoints are determined uniquely up to isomorphisms, this shows that (L(f))⋄ = [f, 2]⋄ (we use that
isomorphisms are identities in Rel(Pre)).

Thus, taking right adjoints everywhere in the above square we obtain the square from the claim of the
lemma.

Computational Proof. By definition

∋A · [f, 2]⋄(a, V) =
∨

W

∋A (a,W) ∧ [A , 2](V · f,W)

= ∋A (a, V · f)

= (V · f)(a)

where the second step is due to the Yoneda Lemma. Analogously:

(fop)⋄ · ∋B(a, V) =
∨

b

B
op(fopa, b) ∧ ∋B(b, V)

= ∋B(fa, V)

= V (fa)

Corollary 7.2. For every locally monotone functor T that satisfies the Beck-Chevalley Condition and for
every monotone map f : A −→ B, we have

T [A , 2] ✕
T∋A // TA op

T [B, 2] ✕
T∋B

//

❯T [f,2]⋄
OO

TBop

❯ T (fop)⋄
OO

Coming back to δ : LP −→ PT op. It suffices, due to F ⊣ U , to give

τ : T ∂UP −→ UPT op

Observe that, for every preorder X , we have

UPT op(X) = [T op
X , 2] = L((T op

X)op)

By Proposition 2.7, to define τX it suffices to give a relation from T ∂UPX to (T opX)op , and we obtain

it from Theorem 5.3 by applying T ∂ to the relation ∋X . That τX so defined is natural, follows from
Corollary 7.2. This follows [KKuV] with the exception that here now we need to use T ∂.

Example 7.3. Recall the functor Pc
ω of Example 6.4 and consider a coalgebra c : X −→ Pc

ωX . On the
logical side we allow ourselves to write ∇α for any finite subset α of U(L). Of course, we then have to be
careful that the semantics of α agrees with the semantics of the convex closure of α. Interestingly, this is
done automatically by the machinery set up in the previous section, since Pc

ω = QPωI and all these functors
are self-dual. By Example 6.6, the semantics of ∇α is given by

x ∇α ⇔ ∀y ∈ c(x)∃ϕ ∈ α.y ϕ and ∀ϕ ∈ α∃y ∈ c(x).y ϕ.

26

8 Conclusions

We hope to have illustrated in the previous two sections that, after getting used to handle the (−)⋄, (−)⋄

and (−)op , the techniques developed here work surprisingly smoothly and will be useful in many future
developments. For example, an observation crucial for both [KKuV, KuL] is that composing the singleton
map X −→ PX , x 7→ {x}, with the relation ∋X : PX ✕ //X is idX . Referring back to (7.19), we find
here the same relationship

∋A ◦ (yA op)⋄ = (yA op)⋄ ◦ (yA op)⋄ = idA op

The question whether the completeness proof of [KKuV] and the relationship between ∇ and predicate
liftings of [KuL] can be carried over to our setting are a direction of future research.

Another direction is the generalisation to categories which are enriched over more general structures than
2, such as commutative quantales. Simulation, relation lifting and final coalgebras in this setting have been
studied in [Wo].

References

[ABSV] J. Adámek, R. El Bashir, M. Sobral and J. Velebil, On functors that are lax epimorphisms, Theory
Appl. Categ. 8.20 (2001), 509–521.

[BK] A. Balan and A. Kurz, Finitary Functors: from Set to Preord and Poset, To appear in CALCO
(2011)

[Bal] A. Baltag, A logic for coalgebraic simulation, Electron. Notes Theor. Comput. Sci. 33 (2000),
41–60.

[Ba] M. Barr, Relational algebras, in: Reports of the Midwest Category Seminar IV , Lecture Notes in
Mathematics 137, Springer 1970, 39–55.

[BV] R. El Bashir and J. Velebil, Reflective and coreflective subcategories of presheaves, Theory Appl.
Categ. 10.16 (2002), 410–423.

[CKW] A. Carboni, G. M. Kelly and R. J. Wood, A 2-categorical approach to change of base and geometric
morphisms I, Cahiers de Top. et Géom. Diff. XXXII.1 (1991), 47–95.

[Gu] R. Guitart, Relations et carrés exacts, Ann. Sci. Math. Québec IV.2 (1980), 103–125.

[He] C. Hermida, A categorical outlook on relational modalities and simulations, preprint,
http://maggie.cs.queensu.ca/chermida/papers/sat-sim-IandC.pdf.

[HeJ] C. Hermida and B. Jacobs, Structural induction and coinduction in the fibrational setting, In-
form. and Comput. 145 (1998), 107–152.

[HuJ] J. Hughes and B. Jacobs, Simulations in coalgebra. Theor. Comput. Sci. 327 (2004), 71–108.

[KaKuV] K. Kapulkin, A. Kurz, J. Velebil, Expressivity of Coalgebraic Logic over Posets, in: CMCS 2010
Short contributions, CWI Technical report SEN-1004, pp. 16–17 (2010)

[Ke] G. M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Notes Series
64, Cambridge Univ. Press, 1982.

[Kl] B. Klin, An Abstract Coalgebraic Approach to Process Equivalence for Well-Behaved Operational
Semantics. University of Aarhus, 2004.

[KKuV] C. Kupke, A. Kurz and Y. Venema, Completeness of the finitary Moss logic, in: Advances in
Modal Logic 2008, College Publications, 193–217

27

http://maggie.cs.queensu.ca/chermida/papers/sat-sim-IandC.pdf

[KuL] A. Kurz and R. Leal, Equational coalgebraic logic, Electron. Notes Theor. Comput. Sci. 249
(2009), 333–356.

[L] P. Levy, Similarity quotients as final coalgebras, in: FoSSaCS 2011, Lecture Notes in Computer
Science 6604, Springer 2011.

[M1] F. Marmolejo, Doctrines whose structure forms a fully faithful adjoint string, Theor. Appl. Categ.
3:2 (1997), 24–44.

[M2] F. Marmolejo, Distributive laws for pseudomonads, Theor. Appl. Categ. 5:5 (1999), 91–147.

[MRW] F. Marmolejo, R. Rosebrugh and R. J. Wood, Duality for CCD lattices, Theor. Appl. Categ. 22:1
(2009), 1–23.

[Mo] L. Moss, Coalgebraic logic, Ann. Pure Appl. Logic 96 (1999), 277–317

[R] J. Rutten, Relators and Metric Bisimulations (Extended Abstract), Electr. Notes Theor. Comput.
Sci. 11 (1998), 252–258.

[S1] R. Street, The formal theory of monads, J. Pure Appl. Algebra 2 (1972), 149–168.

[S2] R. Street, Fibrations and Yoneda’s lemma in a 2-category, in: Category Seminar, Sydney 1974 ,
Lecture Notes in Mathematics 420, Springer 1974, 104–133.

[S3] R. Street, Elementary cosmoi I, in: Category Seminar, Sydney 1974 , Lecture Notes in Mathe-
matics 420, Springer 1974, 134–180.

[S4] R. Street, Fibrations in bicategories, Cahiers de Top. et Géom. Diff. XXI.2 (1980), 111–159.

[V] Y. Venema, Automata and fixed point logic: a coalgebraic perspective, Inform. and Comput.
204.4 (2006), 637–678.

[Wo] J. Worrell, Coinduction for recursive data types: partial orders, metric spaces and Ω-categories.
Electron. Notes Theor. Comput. Sci. 33 (2000), 337–356.

28

	Chapman University
	Chapman University Digital Commons
	2011

	Relation Liftings on Preorders and Posets
	Marta Bílková
	Alexander Kurz
	Daniela Petrişan
	Jiří Velebil
	Recommended Citation

	Relation Liftings on Preorders and Posets
	Comments
	Copyright

	1 Introduction
	2 Monotone relations
	3 Exact squares
	4 The universal property of (-):Pre--3muRel(Pre)
	5 The extension theorem
	6 Examples
	7 An Application: Moss's Coalgebraic Logic over Posets
	8 Conclusions

