Functorial Coalgebraic Logic: The Case of ManySorted Varieties

Alexander Kurz
Chapman University, akurz@chapman.edu
Daniela Petrişan
University of Leicester

Follow this and additional works at: https://digitalcommons.chapman.edu/engineering_articles
Part of the Algebra Commons, Logic and Foundations Commons, Other Computer Engineering Commons, Other Computer Sciences Commons, and the Other Mathematics Commons

Recommended Citation

A. Kurz and D. Petrişan, "Functorial Coalgebraic Logic: The Case of Many-sorted Varieties," Electronic Notes in Theoretical Computer Science, vol. 203, no. 5, pp. 175-194, Jun. 2008. DOI: 10.1016/j.entcs.2008.05.025

Functorial Coalgebraic Logic: The Case of Many-Sorted Varieties

Comments

This article was originally published in Electronic Notes in Theoretical Computer Science, volume 203, issue 5, in 2008. DOI: 10.1016/j.entcs.2008.05.025

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright

Elsevier

Functorial Coalgebraic Logic: The Case of Many-sorted Varieties

Alexander Kurz
Department of Computer Science
University of Leicester, UK

Daniela Petrişan
Department of Computer Science
University of Leicester, UK

Abstract

Following earlier work, a modal logic for T-coalgebras is a functor L on a suitable variety. Syntax and proof system of the logic are given by presentations of the functor. This paper makes two contributions. First, a previous result characterizing those functors that have presentations is generalized from endofunctors on one-sorted varieties to functors between many-sorted varieties. This yields an equational logic for the presheaf semantics of higher-order abstract syntax. As another application, we show how the move to functors between many-sorted varieties allows to modularly combine syntax and proof systems of different logics. Second, we show how to associate to any set-functor T a complete (finitary) logic L consisting of modal operators and Boolean connectives.

Keywords: Coalgebra, Modal Logic, Stone Duality, Coalgebraic Logic, Sifted Colimits, Variety, Universal Algebra, Presentation by Operations and Equations

1 Introduction

Beginning with $[6,17]$, it has been argued that logics for T-coalgebras (where T is an endofunctor on Set) are suitably described by endofunctors L on the category of Boolean algebras. Syntactically, L specifies an extension of Boolean propositional logic by modal operators and axioms. Semantically, L gives a logical description of the 'transition type' T of the coalgebras.
[17] showed that the modal logics for coalgebras usually considered [22,26,15] give rise to such functors $L .{ }^{1}$ To describe the class of functors arising in such a way, [8] introduced the notion of a functor having a finitary presentation by operations and equations. This notion was investigated more systematically in [20] where it is

[^0]shown that a functor L on a (finitary) variety \mathcal{A} has a presentation by operations and equations if and only if L preserves sifted colimits. Although not as well known as filtered colimits, sifted colimits are the right concept when working with varieties (as opposed to locally finitely presentable categories): Each variety \mathcal{A} is the free cocompletion by sifted colimits of the dual of the Lawvere theory of \mathcal{A}. The reason is that algebras for a Lawvere theory are set-valued product-preserving functors and sifted colimits are precisely those colimits that commute in Set with finite products.

This paper continues this line of research. We start by generalizing the results of [20] on functors on varieties from the one-sorted to the many sorted case (Section 3). This generalization in itself is not difficult, but it has interesting applications. The first, maybe somewhat unexpected, is that it provides an equational logic for the binding algebras used in the work of [11] (Section 4). The second application shows how to modularly compose presentations of different functors (Section 5). Even if one was only interested in one-sorted coalgebras, only the move to many-sorted logics gives the desired modularity. Finally, whereas [20] shows how to prove strong completeness results by generalizing the Jónsson-Tarski representation theorem for Boolean algebras with operators, we show here how to prove completeness results for categories of coalgebras that do not satisfy the restrictions needed for the strong completeness result of [20]. In particular, we show that an arbitrary set-functor has a complete finitary logic (Section 6).

Acknowledgments We would like to thank Rick Thomas for pointing out a very useful reference [5].

2 Some preliminaries

For an endofunctor L on a category \mathcal{A}, we consider the category of L-algebras, denoted by $\operatorname{Alg}(L)$, whose objects are defined as pairs (A, α) such that $\alpha: L A \rightarrow A$ is a morphism in \mathcal{A}. A morphism of L-algebras $f:(A, \alpha) \rightarrow\left(A^{\prime}, \alpha^{\prime}\right)$ is a morphism $f: A \rightarrow A^{\prime}$ of \mathcal{A} such that $f \circ \alpha=\alpha^{\prime} \circ L f$. Dually, for an endofunctor $T: \mathcal{A} \rightarrow \mathcal{A}$ we consider the category of T-coalgebras, denoted by Coalg (T), whose objects are pairs (A, γ), such that $\gamma: A \rightarrow T A$. A morphism of T-coalgebras $f:(A, \gamma) \rightarrow\left(A^{\prime}, \gamma^{\prime}\right)$ is an arrow $f: A \rightarrow A^{\prime}$ of \mathcal{A} such that $T f \circ \gamma=\gamma^{\prime} \circ f$.

Let S be a set (of sorts). A signature Σ is a set of operation symbols together with an arity map $a: \Sigma \rightarrow S^{*} \times S$ which assigns to each element $\sigma \in \Sigma$ a pair $\left(s_{1}, \ldots, s_{n} ; s\right)$ consisting of a finite word in the alphabet S indicating the sort of the arguments of σ and an element of S indicating the sort of the result of σ. To each signature we can associate an endofunctor on Set^{S}, which will be denoted for simplicity with the same symbol Σ :

$$
(\Sigma X)_{s}=\left(\coprod_{k \in \omega_{f}^{S}} \Sigma_{k, s} \times X^{k}\right)_{s}
$$

Here, by ω_{f}^{S} we denote the set of functions from S to ω which have finite support
(i.e. which vanish everywhere except for a finite set) and by X^{k} the set of presheaf morphisms $\operatorname{Set}^{S}(k, X)$. In detail, if $k \in \omega_{f}^{S}$ has support $\left\{s_{1}, \ldots, s_{n}\right\}$ then $\Sigma_{k, s}$ is a set of operations of arity $\left(s_{1} \ldots s_{n} ; s\right)$ and X^{k} is isomorphic in Set with the finite product $X_{s_{1}}^{k\left(s_{1}\right)} \times \cdots \times X_{s_{n}}^{k\left(s_{n}\right)}$. Conversely to each endofunctor on Set^{S} given as above corresponds a signature $\coprod_{k \in \omega_{f}^{S}} \Sigma_{k, s}$. Throughout this paper we will make no notational difference between the signature and the corresponding functor, and it will be clear from the context when we refer to the set of operation symbols or to a Set^{S} endofunctor. The algebras for a signature Σ are precisely the algebras for the corresponding endofunctor, and form the category denoted by $\operatorname{Alg}(\Sigma)$. The terms over an S-sorted set of variables X are defined in the standard manner and and form a set denoted by $\operatorname{Term}_{\Sigma}(X)$, and in fact this is the underlying set of the free Σ-algebra generated by X. An equation consists of a pair $\left(\tau_{1}, \tau_{2}\right)$ of terms of the same sort, usually denoted $\tau_{1}=\tau_{2}$. A Σ-algebra A satisfies this equation if and only if, for any interpretation of the variables of X, we obtain equality in A. A class \mathcal{A} of Σ-algebras is called a variety or an equational class if there exists a set of equations E such that an algebra lies in \mathcal{A} if and only if it satisfies all the equations of E. Such an equational class will be denoted by $\operatorname{Alg}(\Sigma, E)$. The forgetful functor $U: \mathcal{A} \rightarrow \mathrm{Set}^{S}$ has a left adjoint F and $\operatorname{Alg}(\Sigma, E)$ is monadic over Set ${ }^{S}$, i.e it is isomorphic with the Eilenberg-Moore category $\left(\mathrm{Set}^{S}\right)^{T}$ for the monad T corresponding to the adjoint pair $F \dashv U$. Also notice that $U F$ is a finitary, that is, $U F$ preserves filtered colimits. In [3], varieties are described independently of signatures and equations, via finite product sketches, and it is proved that any variety is a locally finitely presentable category. Recall that a category is locally finitely presentable provided that it is cocomplete and it has a set K of finitely presentable objects such that any object is a filtered colimit of objects of K. We will say that a category is $l f p$ if it is locally finitely presentable.

Endofunctors may appear via composition of functors between different varieties. Therefore, it is useful to consider a slight generalization of the notion of signature. If S_{1} and S_{2} are sets of sorts we will consider operations with arguments of sorts in S_{1} and returning a result of a sort in S_{2}, encompassed in the signature functor $\Sigma: \operatorname{Set}^{S_{1}} \rightarrow$ Set $^{S_{2}}$:

$$
\begin{equation*}
\Sigma X=\left(\coprod_{k \in \omega_{f}^{S_{1}}} \Sigma_{k, s} \times X^{k}\right)_{s \in S_{2}} \tag{1}
\end{equation*}
$$

An important example of a (finitary) variety of algebras is the functor category Set $^{\mathcal{C}}$ for any small category \mathcal{C}. The sorts are the objects of \mathcal{C}, the operations symbols are the morphisms of \mathcal{C} (all of them with arity 1), and the equations are given by the composition of morphisms in \mathcal{C}.

A sifted category \mathcal{D} is a small category such that colimits over \mathcal{D} commute in Set with finite products. A sifted colimit in a category \mathcal{C} is a colimit over \mathcal{D}. The most important examples of sifted colimits are filtered colimits and reflexive coequalizers.

An object in a category is called strongly finitely presentable if its hom-functor preserves sifted colimits. It is shown in [4] that any object in a variety is a sifted colimit of strongly finitely presentable algebras, which in a variety are the retracts of finitely generated free algebras. An important observation is that sifted colimit preserving functors on varieties are determined by their action on free algebras. Another useful observation is that for an S-sorted variety \mathcal{A} the forgetful functor $U: \mathcal{A} \rightarrow \operatorname{Set}^{S}$ and its left adjoint F are sifted colimit preserving functors. In fact F preserves all colimits.

3 Presenting algebras and functors

The purpose of this section is an algebraic investigation of logics for coalgebras. The general idea is as follows. Just as coalgebras are given wrt a functor T on, say, Set, so are logics for coalgebras given by a functor L on, say, Boolean algebras. The following example shows how logics for coalgebras given in a more conventional style give rise to a functor on the category BA of Boolean algebras.

Example 3.1 Let $T=\mathcal{P}$ be the covariant powerset functor. The modal logic \mathbf{K} associated to \mathcal{P}-coalgebras ($=$ Kripke frames) can be described by the functor L which maps a Boolean algebra A to the Boolean algebra $L A$ freely generated by $\{\square a \mid a \in A\}$ modulo the relations $\square \top=\top$ and $\square(a \wedge b)=\square a \wedge \square b$. We see that the modal operators appear as generators and the modal axioms as relations. Of course, from a logical point of view, we want the generators to be operations and the relations to be universally quantified equations. In other words, we need that the description of $L A$ in terms of generators and relations is uniform in A. This is exactly captured by Definition 3.3 below.

It is not difficult to see that the category $\operatorname{Alg}(L)$ of algebras for the functor L is isomorphic to the category of Boolean algebras with operators, which constitute the standard algebraic semantics of \mathbf{K} in modal logic. In particular, the initial L-algebra is the Lindenbaum-Tarski algebra of the modal logic \mathbf{K}.

To simply replace a concrete modal logic by the corresponding functor is a powerful abstraction that makes a number of category theoretic methods available to modal logic. This section makes sure that the move from logics to functors is not an overgeneralisation: Every suitable functor L will come from a modal logic in exactly the same way as in the example above. The reader who wants to know more about the relationship between T-coalgebras and L-algebras before reading this section might want to skip ahead to Section 6.

Definition 3.2 Let A be a many-sorted algebra in a variety \mathcal{A}. We say that (G, E) is a presentation for A if G is an S-sorted set of generators and $E=\left(E_{s}\right)_{s \in S}, E_{s} \subset$ $(U F G)_{s} \times(U F G)_{s}$ is an S sorted set of equations such that A is the coequalizer of the following diagram:

$$
\begin{equation*}
F E \stackrel{\pi_{1}^{\sharp}}{\stackrel{\pi_{1}^{\sharp}}{\longrightarrow}} F G \stackrel{q_{A}}{\longrightarrow} A \tag{2}
\end{equation*}
$$

The maps $\pi_{1}^{\sharp}, \pi_{2}^{\sharp}$ are induced, via the adjunction, by the projections π_{1}, π_{2} of E on $U F G$.

Next we want to define a presentation for a functor $L: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ between manysorted varieties. For $i \in\{1,2\}$, denote by S_{i} the set of sorts for \mathcal{A}_{i} respectively, by $U_{i}: \mathcal{A}_{i} \rightarrow \operatorname{Set}^{S^{i}}$ the corresponding forgetful functor, and by F_{i} its left adjoint. We will do this in the same fashion as in [20] and [8], keeping in mind that we need to extend (2) uniformly: this means that the generators and equations for each $L A$ will depend functorialy on A. Suppose A is a many-sorted algebra in \mathcal{A}_{1}. The generators $\Sigma U_{1} A$ for the algebra $L A$ will be given by a signature functor $\Sigma: \operatorname{Set}^{S_{1}} \rightarrow \operatorname{Set}^{S_{2}}$ as in (1). The equations that we will consider are of rank 1, meaning that in the terms involved every variable is under the scope of precisely one operation symbol in Σ, and are given by an S_{2}-sorted set E. For each sort $s \in S_{2}$ and each S_{1}-sorted set of variables V with the property that $\bigcup_{t \in S_{1}} V_{t}$ is finite, we consider a set $E_{V, s}$ of equations over the set V of terms of sort s, which is defined as a subset of $\left(U_{2} F_{2} \Sigma U_{1} F_{1} V\right)_{s}^{2}$. Now take $E_{V}=\left(E_{V, s}\right)_{s \in S_{2}}$ and $E=\bigcup_{V \in \omega_{f}^{S_{1}}} E_{V}$.

Definition 3.3 Let S_{1}, S_{2} be sets of sorts, \mathcal{A}_{1} be an S_{1}-sorted variety and \mathcal{A}_{2} be an S_{2}-sorted variety. A presentation for a functor $L: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ is a pair $\langle\Sigma, E\rangle$ defined as above. A functor $L: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ is presented by $\langle\Sigma, E\rangle$, if
(i) for every algebra $A \in \mathcal{A}_{1}$ the algebra $L A$ is the joint coequalizer:

$$
\begin{equation*}
F_{2} E_{V} \xlongequal[\pi_{2}^{\sharp}]{\stackrel{\pi_{1}^{\sharp}}{\longrightarrow} F_{2} \Sigma U_{1} F_{1} V \xrightarrow{F_{2} \Sigma U_{1} v^{\sharp}} F_{2} \Sigma U_{1} A \xrightarrow{q_{A}} L A, ~ L A, ~} \tag{3}
\end{equation*}
$$

taken after all finite sets of S_{1}-sorted variables V and all valuations $v: V \rightarrow U_{1} A$. Here v^{\sharp} denotes the adjoint transpose of a valuation v.
(ii) for all morphisms $f: A \rightarrow B$ the diagram commutes:

The importance of this notion, emphasized in [8], resides in the fact that endofunctors having finitary presentations give rise to modal logics, where the modal operators are the operation symbols of Σ and the axioms are the equations of E.

If $\mathcal{A}=\operatorname{Alg}\left(\Sigma_{\mathcal{A}}, E_{\mathcal{A}}\right)$ is an S-sorted variety and the endofunctor $L: \mathcal{A} \rightarrow \mathcal{A}$ has a finitary presentation $\left\langle\Sigma_{L}, E_{L}\right\rangle$, we can obtain an equational calculus for $\operatorname{Alg}(L)$, regarding the equations $E_{\mathcal{A}}$ and E_{L} as equations containing terms in $\operatorname{Term}_{\Sigma_{\mathcal{A}}+\Sigma_{L}}$. First remark, that formally, for an arbitrary set of variables $V, E_{L, V}$ is a subset of the S-sorted set $\left(U F \Sigma_{L} U F V\right)^{2}$. But for each set $X, U F X$ is a quotient of Term $\Sigma_{\mathcal{A}} X$
modulo the equations. Thus, if we choose a representative for each equivalence class in $U F \Sigma_{L} U F V$, we can obtain a set of equations in $\operatorname{Term}_{\Sigma_{\mathcal{A}}} \Sigma_{L} \operatorname{Term}_{\Sigma_{\mathcal{A}}}$. Using the natural map from $\operatorname{Term}_{\Sigma_{\mathcal{A}}} \Sigma_{L} \operatorname{Term}_{\Sigma_{\mathcal{A}}}$ to $\operatorname{Term}_{\Sigma_{\mathcal{A}}+\Sigma_{L}} V$, we obtain a set of equations on terms $\operatorname{Term}_{\Sigma_{\mathcal{A}}+\Sigma_{L}} V$. By abuse of notation we will denote this set with E_{L} as well.

Theorem 3.4 Let $\mathcal{A}=\operatorname{Alg}\left(\Sigma_{\mathcal{A}}, E_{\mathcal{A}}\right)$ be an S-sorted variety and let $L: \mathcal{A} \rightarrow \mathcal{A}$ be a functor presented by operations Σ_{L} and equations E_{L}. Then $\operatorname{Alg}(L) \cong \operatorname{Alg}\left(\Sigma_{\mathcal{A}}+\right.$ $\left.\Sigma_{L}, E_{\mathcal{A}}+E_{L}\right)$.

Proof. We define a functor $H: \operatorname{Alg}(L) \rightarrow \operatorname{Alg}\left(\Sigma_{\mathcal{A}}+\Sigma_{L}, E_{\mathcal{A}}+E_{L}\right)$. Suppose $\alpha: L A \rightarrow A$ is an L-algebra. Then the underlying set of $H A$ is defined to be $U A . H A$ inherits the algebraic structure of A : the interpretation of the operation symbols of $\Sigma_{\mathcal{A}}$ is the same as in the algebra A and it satisfies the equations $E_{\mathcal{A}}$. As far as the operation symbols of Σ_{L} are concerned, their interpretation is given by the composition:

$$
\begin{equation*}
F \Sigma_{L} U A \xrightarrow{q_{A}} L A \xrightarrow{\alpha} A \tag{5}
\end{equation*}
$$

Explicitly, the interpretation of an operation symbol σ of arity $\left(s_{1} \ldots s_{n} ; s\right)$ is the morphism $\sigma^{A}: A_{s_{1}} \times \cdots \times A_{s_{n}} \rightarrow A_{s}$ defined by

$$
\sigma^{A}\left(x_{1}, \ldots, x_{n}\right)=\alpha\left(q_{A}\left(\left(\sigma, x_{1}, \ldots, x_{n}\right)\right)\right)
$$

Now it is clear that the equations E_{L} are satisfied in $H A$, because q_{A} is a coequalizer as in (3). If f is a morphism of L-algebras, we define $H f=f$ and we only have to check that $f\left(\sigma\left(a_{1}, \ldots, a_{k}\right)\right)=\sigma\left(f\left(a_{1}\right), \ldots, f\left(a_{k}\right)\right)$ for all $\sigma \in \Sigma_{L}$. But this follows from the fact the definition of the interpretation of the operations, the commutativity of diagram (4) and the fact that f is an L-algebra morphism.

Conversely, we define a functor $J: \operatorname{Alg}\left(\Sigma_{\mathcal{A}}+\Sigma_{L}, E_{\mathcal{A}}+E_{L}\right) \rightarrow \operatorname{Alg}(L)$. Suppose A is an algebra in $\operatorname{Alg}\left(\Sigma_{\mathcal{A}}+\Sigma_{L}, E_{\mathcal{A}}+E_{L}\right)$. The map $\rho_{A}: \Sigma_{L} U A \rightarrow U A$ defined by:

$$
\left(\sigma_{\left(s_{1} \ldots s_{n} ; s\right)}, x_{i_{1}}, \ldots, x_{i_{n}}\right) \mapsto \sigma_{\left(s_{1} \ldots s_{n} ; s\right)}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)
$$

induces a map $\rho_{A}^{\sharp}: F \Sigma_{L} U A \rightarrow A$. The fact that equations E_{L} are satisfied implies that $\rho_{A}^{\sharp} \circ F \Sigma_{L} U v^{\sharp} \circ \pi_{1}^{\sharp}=\rho_{A}^{\sharp} \circ F \Sigma_{L} U v^{\sharp} \circ \pi_{2}^{\sharp}$ as depicted in (6). But $L A$ is a coequalizer in $\operatorname{Alg}\left(\Sigma_{\mathcal{A}}, E_{\mathcal{A}}\right)$, therefore there exists a morphism $\alpha_{A}: L A \rightarrow A$ such that $\alpha_{A} \circ q_{A}=\rho_{A}^{\sharp}$. We define $J A$ to be the L - algebra α_{A}. For any morphism $f: A \rightarrow B$ in $\operatorname{Alg}\left(\Sigma_{\mathcal{A}}+\Sigma_{L}, E_{\mathcal{A}}+E_{L}\right)$ we define $J f=U_{0} f$, where $U_{0}: \operatorname{Alg}\left(\Sigma_{\mathcal{A}}+\right.$ $\left.\Sigma_{L}, E_{\mathcal{A}}+E_{L}\right) \rightarrow \operatorname{Alg}\left(\Sigma_{\mathcal{A}}, E_{\mathcal{A}}\right)$ is the forgetful functor. This is well defined and we can check this easily by proving that the rightmost square of diagram (6) is commutative:

Now it is straightforward to check that $J \circ H$ and $H \circ J$ are the identities.

The characterization of endofunctors having finitary presentation was given in [20] for monadic categories over Set and it can be easily extended if we replace Set with the presheaf category Set^{S}. The result holds even if we work with functors between different varieties.

Theorem 3.5 Let S_{1}, S_{2} be sets of sorts, \mathcal{A}_{1} be an S_{1}-sorted variety and \mathcal{A}_{2} be an S_{2}-sorted variety. For a functor $L: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ the following conditions are equivalent:
(i) L has a finitary presentation by operations and equations;
(ii) L preserves sifted colimits.

Proof. $(i) \Rightarrow(i i)$. Assume L has a finitary presentation $\langle\Sigma, E\rangle$. Let D be a sifted category and $a_{i}: A_{i} \rightarrow A$ be a sifted colimit in \mathcal{A}_{1}. Let $d_{i}: L A_{i} \rightarrow B$ be an arbitrary cocone. As we have seen in the preliminaries, the corresponding forgetful functors and their left adjoints $U_{1}, U_{2}, F_{1}, F_{2}$ preserve sifted colimits. Σ shares the same property because sifted colimits are computed point-wise and commute with finite products. Therefore we obtain that $F_{2} \Sigma U_{1} a_{i}: F_{2} \Sigma U_{1} A_{i} \rightarrow F_{2} \Sigma U_{1} A$ is a colimiting cocone in \mathcal{A}_{2}, hence there exists a map $d: F_{2} \Sigma U_{1} A \rightarrow B$ such that $d \circ F_{2} \Sigma U_{1} a_{i}=d_{i} \circ q_{A_{i}}$ for all i in D.

Choose an arbitrary S_{1}-sorted set of variables $V=\left(V_{s}\right)_{s \in S_{1}}$ such that $\bigcup_{s \in S_{1}} V_{s}$ is finite and a morphism $v: V \rightarrow U_{1} A$. Then V is strongly finitely presented in the category Set ${ }^{S_{1}}$, and $U_{1} a_{i}: U_{1} A_{i} \rightarrow U_{1} A$ is a sifted colimit, so there exists $v_{i}: V \rightarrow U_{1} A_{i}$ such that $v=U_{1} a_{i} \circ v_{i}$. From the fact that $q_{A_{i}}$ is a joint coequalizer, it follows that d makes the bottom line of diagram (7) commutative.

Using that $L A$ is a joint coequalizer we obtain $b: L A \rightarrow B$ such that $b \circ q_{A}=d$. Now it is immediate to check that diagram (8) is commutative, and this shows that
the cocone $L a_{i}: L A_{i} \rightarrow L A$ is universal.

$(i i) \Rightarrow(i)$ Being a sifted colimit preserving functor, L is determined by its values on finitely generated free algebras. Given $k \in \omega_{f}^{S_{1}}$ with support $\left\{s_{1}, \ldots, s_{n}\right\}$ and given $s \in S_{2}$ we can view the elements of the set $\left(U_{2} L F_{1} k\right)_{s}$ as operations symbols which take $k\left(s_{i}\right)$ arguments of sort s_{i} for all $1 \leq i \leq n$ and return a result of sort s. More explicitly we can consider for all algebras A the map r_{A} given component-wise by:

$$
\begin{gather*}
\coprod_{k \in \omega_{f}^{S}}\left(U_{2} L F_{1} k\right)_{s} \times U_{1} A^{k} \xrightarrow{r_{A, s}}\left(U_{2} L A\right)_{s} \tag{9}\\
(\sigma, x) \mapsto\left(U_{2} L \epsilon_{A} \circ U_{2} L F_{1} x\right)_{s}(\sigma)
\end{gather*}
$$

where $\epsilon_{A}: F_{1} U_{1} A \rightarrow A$ is the counit of the adjunction. In the definition of the map $r_{A, s}$ we have interpreted x as a morphism in $\operatorname{Set}^{S}\left(k, U_{1} A\right)$. Now the operations that we will consider are encompassed in the functor $\Sigma: \operatorname{Set}^{S_{1}} \rightarrow \operatorname{Set}^{S_{2}}$ defined by

$$
\begin{equation*}
\Sigma X=\left(\coprod_{k \in \omega_{f}^{S_{1}}}\left(U_{2} L F_{1} k\right)_{s} \times X^{k}\right)_{s \in S_{2}} \tag{10}
\end{equation*}
$$

Note that r is a natural transformation from ΣU_{1} to $U_{2} L$.
For an arbitrary S_{1}-sorted set of variables V, the equations are induced by the map $r_{F_{1} V}: \Sigma U_{1} F_{1} V \rightarrow U_{2} L F_{1} V$ as in (9), more precisely E_{V} is defined to be the kernel pair of the map $U r_{F_{1} V}^{\sharp}: U_{2} F_{2} \Sigma U_{1} F_{1} V \rightarrow U_{2} L F_{1} V$. We will prove that L is presented by $\langle\Sigma, E\rangle$. For all $k \in \omega_{f}^{S_{1}}$ the following diagram is a split coequalizer because E_{k} is a kernel pair.

One can check that it follows that
is again a split coequalizer. U_{2} is a monadic functor, hence it creates split coequalizers, and we obtain that

$$
\begin{equation*}
F_{2} E_{k} \xlongequal[\pi_{2}^{\sharp}]{\pi_{1}^{\sharp}} F_{2} \Sigma U_{1} F_{1} k \xrightarrow{r_{F_{1} k}^{\sharp}} L F_{1} k \tag{13}
\end{equation*}
$$

is a coequalizer. Now it is straightforward to show that

$$
\begin{equation*}
F_{2} E_{V} \xlongequal[\pi_{2}^{\sharp}]{\pi_{1}^{\sharp}} F_{2} \Sigma U_{1} F_{1} V \xrightarrow{F_{2} \Sigma U_{1} v^{\sharp}} F_{2} \Sigma U_{1} F_{1} \stackrel{r^{\sharp} \stackrel{F_{1} k}{\longrightarrow}}{\text { and }} L F_{1} k \tag{14}
\end{equation*}
$$

is a joint coequalizer. This proves that L coincides on finitely generated algebras with the functor presented by the finitary presentation $\langle\Sigma, E\rangle$, and therefore it is presented by $\langle\Sigma, E\rangle$.

4 Equational logic for higher-order abstract syntax

Syntax with variable binders cannot be captured as an initial algebra in the usual way. But Fiore, Plotkin and Turi [11] (see also Hofmann [13] and Gabbay and Pitts [12]) showed that this is possible if one moves from algebras for a functor on Set to algebras for a functor on a suitable presheaf category. In particular, they showed that λ-terms up to α-equivalence form an initial algebra for a functor. These functors generalize the notion of a signature, but a notion of equational theory for these algebras is missing in [11] (but see the more recent work [10]).

This section starts from the observation that a category of presheaves is a manysorted variety. From Theorem 3.5 we know that a large class of functors on presheaf categories have a presentation. To illustrate an application of Theorem 3.4 we give an algebraic structure of the presheaf of λ-terms up to α-equivalence. Canonical representatives for λ-terms up to α-equivalence can be obtained in different ways, for example, using the method of De Bruijn levels or the method of De Bruijn indices. Using the method of De Bruijn levels, normal forms up to α-equivalence are obtained by specifying well-formedness rules for λ-terms within a context:

$$
\begin{equation*}
\frac{1 \leq i \leq n}{x_{1}, \ldots, x_{n} \vdash x_{i}}, \frac{x_{1}, \ldots, x_{n}, x_{n+1} \vdash t}{x_{1}, \ldots, x_{n} \vdash \lambda x_{n+1} \cdot t}, \frac{x_{1}, \ldots, x_{n} \vdash t_{1} x_{1}, \ldots, x_{n} \vdash t_{2}}{x_{1}, \ldots, x_{n} \vdash t_{1} t_{2}} \tag{15}
\end{equation*}
$$

The appropriate notion to encompass contexts and the operations allowed on them is the full subcategory \mathbb{F} of Set with objects $\underline{n}=\{1, \ldots, n\}$ and $\underline{0}=\emptyset$. The equivalence classes of λ-terms over a countable set of variables $V=\left\{x_{1}, x_{2}, \ldots\right\}$ form a presheaf in Set ${ }^{\mathbb{F}}$, which we will denote by ΛV_{α}. Explicitly $\Lambda V_{\alpha}(\underline{n})$ is defined as the set of equivalence classes of λ-terms with the free variables contained in the set $\left\{x_{1}, \ldots, x_{n}\right\}$. For any morphism $\rho: \underline{n} \rightarrow \underline{m}, \Lambda V_{\alpha}(\rho)$ acts on an equivalence class of a term by substituting the free variables x_{i} with $x_{\rho(i)}$. More generally we can work with an arbitrary presheaf of variables V and again we can see that the λ-terms over V form a presheaf in Set ${ }^{\mathbb{F}}$. Contexts, which correspond to natural numbers,
stratify λ-terms up to α-equivalence, and we can capture this by regarding them as the set of sorts. As we have seen in Section $2, \mathcal{A}=\operatorname{Set}^{{ }^{\mathbb{F}}}$ is a many-sorted unary variety, the sorts being the set of objects of \mathbb{F}, which is isomorphic to the set of non-negative integers \mathbb{N}. For this many-sorted variety we denote by $U: \mathcal{A} \rightarrow \operatorname{Set}^{\mathbb{N}}$ the forgetful functor and by $F: \operatorname{Set}^{\mathbb{N}} \rightarrow \mathcal{A}$ its left adjoint.

We endow \mathbb{F} with the coproduct structure:
where i is the inclusion and new $(1)=n+1$. The type constructor for context extension can be defined as a functor $\delta: \mathcal{A} \rightarrow \mathcal{A}$ given by $\delta(A)(\rho)=A\left(\rho+i d_{1}\right)$ for all $A \in \mathcal{A}$ and for all morphisms ρ in \mathbb{F}. Let $L: \mathcal{A} \rightarrow \mathcal{A}$ be the functor given by

$$
\begin{equation*}
L X=\delta X+X \times X \tag{17}
\end{equation*}
$$

If V is a presheaf (of variables), then an immediate consequence of Theorem 2.1 of [11] states that ΛV_{α} is the the free L-algebra over V. We obtain the algebraic structure of ΛV_{α} by giving an equational presentation for $\operatorname{Alg}(L)$, arising from a finitary presentation of the functor L and an equational presentation of the variety \mathcal{A}.

In order to obtain the equational presentation for \mathcal{A} we consider the signature:

$$
\begin{equation*}
\Sigma_{\mathcal{A}}=\left\{\sigma_{n}^{(i)} \mid 1<n, 1 \leq i<n\right\} \cup\left\{w_{n} \mid n \geq 0\right\} \cup\left\{c_{n} \mid n>0\right\} \tag{18}
\end{equation*}
$$

with the intended interpretation being the following: $\sigma_{n}^{(i)}$ can be interpreted as the transposition $(i, i+1)$ of the set \underline{n}, c_{n} as a contraction $c_{n}: \underline{n+1} \rightarrow \underline{n}$ defined by $c_{n}(i)=i$ for $i \leq n$ and $c_{n}(n+1)=n$, and w_{n} as the inclusion of \underline{n} into $\underline{n+1}$.

Firstly, we consider the equations coming from the presentation of the symmetric group, see for example [24]:

$$
\begin{array}{ll}
\left(\sigma_{n}^{(i)}\right)^{2}(x)=i d_{n}(x) & 1 \leq i<n \\
\sigma_{n}^{(i)} \sigma_{n}^{(j)}(x)=\sigma_{n}^{(j)} \sigma_{n}^{(i)}(x) & j \neq i \pm 1 ; 1 \leq i, j<n \tag{1}\\
\left(\sigma_{n}^{(i)} \sigma_{n}^{(i+1)}\right)^{3}(x)=i d_{n}(x) & 1 \leq i<n-1
\end{array}
$$

where x is a variable of sort n. Each permutation of the set \underline{n} can be written as a composition of transpositions $\sigma_{n}^{(i)}$ and we choose for each permutation such a representation. In the next equations the permutations that will appear should be regarded as abbreviations of their representation in terms of $\sigma_{n}^{(i)}$.

Secondly, we consider the equations coming from the presentation of the monoid of functions from \underline{n} to \underline{n}. [5] gives a presentation of this monoid for $n \geq 4$ in terms of generators of the symmetric group and an additional generator:

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
1 & 1 & 3 & \ldots & \\
1 & \ldots
\end{array}\right)
$$

Apart from the equations giving the presentation of the symmetric group, Aizenštat uses the following seven equations:

$$
\begin{gathered}
A \sigma_{n}^{(1)}=\sigma_{n}^{(3)} A \sigma_{n}^{(3)}=(3,4, \ldots, n) A(3,4, \ldots, n)=[(1, n) A]^{2}=A \\
{\left[\sigma_{n}^{(2)} A\right]^{2}=A \sigma_{n}^{(2)} A=\left[A \sigma_{n}^{(2)}\right]^{2}} \\
{\left[\sigma_{n}^{(2)}(1, n) A\right]^{2}=\left[A \sigma_{n}^{(2)}(1, n)\right]^{2}}
\end{gathered}
$$

If we replace A in the equations above by $(1, n-1)(2, n) w_{n-1} c_{n-1}(1, n-1)(2, n)$ and each permutation by its representation in terms of $\sigma_{n}^{(i)}$ we will obtain the equations which we will label by $\left(\mathrm{E}_{2}\right)$. For each function from \underline{n} to \underline{n} we can choose a canonical representation in terms of $\sigma_{n}^{(i)}$ and $w_{n-1} c_{n-1}$, and one can prove that any other representation can be reduced to this canonical one using $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$.

Thirdly, we use the next set of equations:

$$
\begin{array}{ll}
c_{n} \sigma_{n+1}^{(n)}(y)=c_{n}(y) \\
c_{n} w_{n}(x)=i d_{n}(x) \\
\sigma_{n+1}^{(i)} w_{n}(x)=w_{n} \sigma_{n}^{(i)}(x) & 1 \leq i<n \\
\sigma_{n+2}^{(n+1)} w_{n+1} w_{n}(x)=w_{n+1} w_{n}(x) \\
\sigma_{n}^{(i)} c_{n}(y)=c_{n} \sigma_{n+1}^{(i)}(y) \\
c_{n} \sigma_{n+1}^{(n-1)} \sigma_{n+1}^{(n)} w_{n}(x)=\sigma_{n}^{(n-1)} w_{n-1} c_{n-1}(x) \\
c_{1} c_{2} \sigma_{3}^{(1)}=c_{1} c_{2} \tag{9}
\end{array} \quad i<n-1, ~\left(\mathrm{E}_{3}\right)
$$

where x is a variable of sort n and y is a variable of sort $n+1$.
We can see that the equation of $\left(\mathrm{E}_{2}\right)$ corresponding to $A \sigma_{n}^{(1)}=A$ can be obtained from $\left(\mathrm{E}_{3}\right)$, so we can remove it.

For each positive integers n, k such that $n>k$, we call a k-partition of n a k-uple $p=\left(i_{1}, \ldots, i_{k}\right)$ such that $i_{1}+\cdots+i_{k}=n$ and $1 \leq i_{1} \leq \cdots \leq i_{k}$. For any k-partition p of n we denote by $C_{n, k}^{p}: \underline{n} \rightarrow \underline{k}$ the morphism which maps the first i_{1} elements of \underline{n} to 1 , the next i_{2} elements to 2 and so on, the last i_{k} elements to k. If $n \geq 4$, if we compose $C_{n, k}^{p}$ with the inclusion of \underline{k} in \underline{n} we obtain a function from \underline{n} to \underline{n}, which has a canonical representation in terms of $\sigma_{n}^{(i)}$ and $w_{n-1} c_{n-1}$, abbreviated by $N_{n, k}^{p}$. Note that $C_{n, k}^{p}=c_{k} \ldots c_{n-1} N_{n, k}^{p}$.

Proposition 4.1 Let $E_{\mathcal{A}}$ denote the set of equations of the form $\left(E_{1}\right)-\left(E_{9}\right)$. Then \mathcal{A} is isomorphic to $\operatorname{Alg}\left(\Sigma_{\mathcal{A}}, E_{\mathcal{A}}\right)$.

Proof (Sketch) An exhaustive presentation of \mathcal{A} can be obtained if we take an operation symbol for each morphism in \mathbb{F} and if we consider all the equations induced by the composition of morphisms. Any morphisms of \mathbb{F} can be generated using only morphisms of the form $\sigma_{n}^{(i)}, c_{n}, w_{n}$. In fact each morphism $f: \underline{n} \rightarrow \underline{m}$ determines a k-partition of n denoted by p_{f}, where k is the cardinal of the image of f. If $n \geq 4$ then there exist permutations π_{n} and π_{m}, such that:

$$
f=\pi_{m} w_{m-1} \ldots w_{k} c_{k} \ldots c_{n-1} N_{n, k}^{p_{f}} \pi_{n}
$$

If $n \leq 3$ then there exists permutations π_{n} and π_{m}, such that:

$$
f=\pi_{m} w_{m-1} \ldots w_{k} c_{k} \ldots c_{n-1} \pi_{n}
$$

To make the notation easier we can just make the convention to denote $N_{n, k}^{p_{f}}=i d_{n}$ for $n \leq 3$. We prove that any other representation of f in terms of the generators can be reduced to this canonical form using the equations $\left(\mathrm{E}_{1}\right)-\left(\mathrm{E}_{9}\right)$. We will use implicitly the equations $\left(\mathrm{E}_{1}\right)$ when we manipulate the permutations. Let us consider another representation of f. The first step is to prove that we can transform it into a representation of the form $\pi_{m}^{\prime} w_{m-1} \ldots w_{k} g$ where g is written only in terms of transpositions and contractions and π_{m}^{\prime} is a permutation. This can be done using equations $\left(\mathrm{E}_{3}\right)-\left(\mathrm{E}_{8}\right)$. Next we show that there exists a permutation τ such that we have the following equalities in \mathbb{F} :

$$
\begin{gathered}
\pi_{m}^{\prime} w_{m-1} \ldots w_{k} \tau=\pi_{m} w_{m-1} \ldots w_{k} \\
\tau^{-1} g=c_{k} \ldots c_{n-1} N_{n, k}^{p_{f}} \pi_{n}
\end{gathered}
$$

Therefore it is enough to show that we can derive the above two relations from the equations $\left(\mathrm{E}_{1}\right)-\left(\mathrm{E}_{9}\right)$. The first can be obtained using $\left(\mathrm{E}_{5}\right),\left(\mathrm{E}_{6}\right)$. In order to prove the second, if $n \geq 4$, we can use $\left(\mathrm{E}_{4}\right)$ and obtain:

$$
\tau^{-1} g \pi_{n}^{-1}=c_{k} \ldots c_{n-1} w_{n-1} \ldots w_{k} \tau^{-1} g \pi_{n}^{-1}
$$

Now $w_{n-1} \ldots w_{k} \tau^{-1} g \pi_{n}^{-1}$ can be reduced, via equations $\left(\mathrm{E}_{5}\right),\left(\mathrm{E}_{8}\right)$, to an expression in terms of $\sigma_{n}^{(i)}$ and $w_{n-1} c_{n-1}$. From Aizenštat's result it follows that we can further reduce this expression to $N_{n, k}^{p_{f}}$ using $\left(\mathrm{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$. If $n \leq 3$ then we can just use $\left(\mathrm{E}_{7}\right)$ or $\left(\mathrm{E}_{9}\right)$.

A presentation for L can be obtained considering for each $n \in \mathbb{N}$ the operation symbols $l a m_{n}, a p p_{n}$ which semantically correspond to λ-abstraction and application. The respective signature functor $\Sigma_{L}: \operatorname{Set}^{\mathbb{N}} \rightarrow \operatorname{Set}^{\mathbb{N}}$ is given by

$$
\begin{equation*}
\left(\Sigma_{L} X\right)_{m}=\left\{l a m_{m+1}\right\} \times X_{m+1}+\left\{a p p_{m}\right\} \times X_{m} \times X_{m} \tag{19}
\end{equation*}
$$

For any presheaf $V \in \mathcal{A}$ let $\rho_{V}: \Sigma U V \rightarrow U L V$ be the map defined by

$$
\begin{gathered}
\left(l a m_{n+1}, t\right) \mapsto t \quad \forall t \in V(n+1)=(\delta V)(n) \\
\left(a p p_{n}, t_{1}, t_{2}\right) \mapsto\left(t_{1}, t_{2}\right) \quad \forall t_{1}, t_{2} \in V(n)
\end{gathered}
$$

The equations E_{L} should correspond to the kernel pair of the adjoint transpose $\rho_{V}^{\sharp}: F \Sigma U V \rightarrow L V$. We will consider the set of equations of the following form:

$$
\begin{align*}
& \sigma_{n}^{(i)}\left(\operatorname{lam}_{n+1}, t\right)=\left(\operatorname{lam}_{n+1}, \sigma_{n+1}^{(i)} t\right) \quad[t] \\
& w_{n}\left(\operatorname{lam}_{n+1}, t\right)=\left(\operatorname{lam}_{n+2}, \sigma_{n+2}^{(n+1)} w_{n+1} t\right) \quad[t] \\
& c_{n}\left(l a m_{n+2}, t^{\prime}\right)=\left(\operatorname{lam}_{n+1}, \sigma_{n+1}^{(n)} c_{n+1} \sigma_{n+2}^{(n)} \sigma_{n+2}^{(n+1)} t^{\prime}\right) \quad\left[t^{\prime}\right] \tag{20}\\
& \sigma_{n}^{(i)}\left(a p p_{n}, t_{1}, t_{2}\right)=\left(a p p_{n}, \sigma_{n}^{(i)} t_{1}, \sigma_{n}^{(i)} t_{2}\right) \quad\left[t_{1}, t_{2}\right] \\
& w_{n}\left(a p p_{n}, t_{1}, t_{2}\right)=\left(a p p_{n}, w_{n} t_{1}, w_{n} t_{2}\right) \quad\left[t_{1}, t_{2}\right] \\
& c_{n}\left(\text { app }_{n}, t_{1}, t_{2}\right)=\left(\text { app }_{n}, c_{n} t_{1}, c_{n} t_{2}\right) \quad\left[t_{1}, t_{2}\right]
\end{align*}
$$

where t is a variable of sort $n+1, t^{\prime}$ is a variable of sort $n+2$ and t_{1}, t_{2} are variables of sort n and n is an arbitrary positive integer.

Proposition 4.2 L is presented by $\left\langle\Sigma_{L}, E_{L}\right\rangle$.
Proof. Suppose $A \in \mathcal{A}$. We have to check that $L A$ is a coequalizer as in dia$\operatorname{gram}(3)$. Observe that $\rho_{A}^{\sharp}\left(f\left(l a m_{n+1}, t\right)\right)=\delta(A)(f)(t)=A\left(f+i d_{1}\right)(t)$. Then the equations (20) are satisfied by $L A$ because we have:

$$
\begin{gathered}
\sigma_{n+1}^{(i)}=\sigma_{n}^{(i)}+i d_{1} \\
\sigma_{n+2}^{(n+1)} w_{n+1}=w_{n}+i d_{1} \\
\sigma_{n+1}^{(n)} c_{n+1} \sigma_{n+2}^{(n)} \sigma_{n+2}^{(n+1)}=c_{n}+i d_{1}
\end{gathered}
$$

Conversely, suppose that $\left(f\left(l a m_{n+1}, t\right), f^{\prime}\left(l a m_{n^{\prime}+1}, t^{\prime}\right)\right)$ is in the kernel pair of ρ_{A}^{\sharp}. We have to show that $f\left(l a m_{n+1}, t\right)$ and $f^{\prime}\left(l a m_{n^{\prime}+1}, t^{\prime}\right)$ can be identified in $F \Sigma U A$ by different valuations of the equations. The proof follows from the fact that $A(f+$ $\left.i d_{1}\right)(t)=A\left(f^{\prime}+i d_{1}\right)\left(t^{\prime}\right)$ and that for any morphisms ρ, ρ^{\prime} which can be composed in \mathbb{F}, we have that $\rho \circ \rho^{\prime}+i d_{1}=\left(\rho+i d_{1}\right) \circ\left(\rho^{\prime}+i d_{1}\right)$. Hence $f\left(l a m_{n+1}, t\right)$ and $\left(l a m_{m+1}, A\left(f+i d_{1}\right)(t)\right)$, can be identified in $F \Sigma U A$ for any morphism $f: \underline{n} \rightarrow \underline{m} . \square$

Remark 4.3 The presentation of L depends on the operations $\Sigma_{\mathcal{A}}$ used to describe $\mathcal{A}=\operatorname{Set}{ }^{\mathbb{F}}$ but is independent of the equations $E_{\mathcal{A}}$.

Representing different implementations of λ-terms If V is the presheaf defined by $V(\rho)=\rho$ for all morphisms ρ in \mathbb{F}, the free L-algebra over V gives an implementation of λ-terms by the De Bruijn levels method. In [11] it is suggested that different implementations of λ-terms can be obtained by equipping \mathbb{F} with
different coproduct structures. But this implies working with a different functor than L. Instead, we can use another approach, namely to consider the free L algebra over different presheaves of variables. For example, if W is the presheaf of variables defined explicitly by

$$
\begin{gathered}
W(n)=n \quad W\left(c_{n}\right)(1)=1 \quad W\left(c_{n}\right)(i)=i-1 ; i>1 \\
W\left(w_{n}\right)(i)=i+1 \\
W\left(\sigma_{n}^{(i)}\right)=\sigma_{n}^{(n-i)}
\end{gathered}
$$

we obtain the presheaf ΛW_{α} of λ-terms implemented by the De Bruijn indices method.

5 Modular coalgebraic logic

In this section we are interested in logics for $\left(T_{2} \circ T_{1}\right)$-coalgebras. We assume that we have logics for the T_{i} described by functors L_{i} with presentations $\left\langle\Sigma_{i}, E_{i}\right\rangle$. We know that $L=L_{2} \circ L_{1}$ gives a logic for coalgebras for the functor $T=T_{2} \circ T_{1}$. We also know that properties like expressiveness and completeness extend from the components L_{i} to the composition L. Here we are interested to show how to combine the syntax and the proof systems of the two logics. In our framework, this amounts to showing how to obtain a presentation for the functor $L=L_{2} \circ L_{1}$ from presentations $\left\langle\Sigma_{2}, E_{2}\right\rangle$ and $\left\langle\Sigma_{1}, E_{1}\right\rangle$.

We know that such a presentation exists, because sifted-colimits preserving functors are closed under composition. But this in itself does not give us a recipe to compute a presentation $\langle\Sigma, E\rangle$ from the presentations $\left\langle\Sigma_{i}, E_{i}\right\rangle$ in a simple modular way. For example, in the case that $L_{i}: \mathrm{BA} \rightarrow \mathrm{BA}$, even if the Σ_{i} contain only one unary operation symbol \square_{i}, one may need an infinite set of operation symbols of arbitrary (finite) arities to present $L=L_{2} \circ L_{1}: \mathrm{BA} \rightarrow \mathrm{BA}$. The reason is that operation symbols for L are of the form $\square_{2} \phi$ where ϕ can be any Boolean combination of terms of the kind $\square_{1} \psi$, or, more formally, in the notation of Section 3, operation symbols for L are terms in $G_{1} U F G_{2} U F V$.

The solution is to replace L by a two-sorted functor $\bar{L}: \mathrm{BA}^{S} \rightarrow \mathrm{BA}^{S}$ where we write $S=\{\mathrm{s}, \mathrm{i}\}$. The intuition here is that a coalgebra $X \rightarrow T_{2} \circ T_{1}(X)$ goes first to an intermediate state in $T_{1}(X)$ and then to a (proper) state in $T_{2}\left(T_{1}(X)\right)$. This point of view introduces a 2-sorted semantics: (proper) states, of sort s , and intermediate states, of sort i. We could make this explicit using a two sorted functor $\bar{T}: \operatorname{Set}^{S} \rightarrow \operatorname{Set}^{S}$, but we do not need to do this here. On the other hand, on the dual side, to construct the logics, introducing a new sort for intermediate states allows us to compose presentations in a modular way. This has been used (implicitly) in our work on π-calculus [7] and goes back in coalgebraic logic to Rößiger [25] (see also Jacobs [14] and Cîrstea and Pattinson [9]). But the technique of reflecting the structure of the type constructors in the syntax of the logic appears already in Abramsky's use of a 'meta-language' in [1]. In our framework, the details can be
formulated as follows. First, it is convenient to introduce the notion of a two-sorted composition.

Below we consider the more general case $L_{1}: \mathcal{A}_{s} \rightarrow \mathcal{A}_{i}$ and $L_{2}: \mathcal{A}_{i} \rightarrow \mathcal{A}_{s}$, which allows us to also treat in a modular way binary functors such as product and coproduct.

Definition 5.1 [two-sorted composition of functors] Given two functors $L_{1}: \mathcal{A}_{s} \rightarrow$ \mathcal{A}_{i} and $L_{2}: \mathcal{A}_{i} \rightarrow \mathcal{A}_{s}$ between any two categories, the two-sorted composition of L_{1} with L_{2} is the functor $\bar{L}: \mathcal{A}_{i} \times \mathcal{A}_{s} \rightarrow \mathcal{A}_{i} \times \mathcal{A}_{s}$ mapping $A=\left(A_{\mathrm{i}}, A_{\mathrm{s}}\right)$ to $(\bar{L} A)_{\mathrm{s}}=L_{2}\left(A_{\mathrm{i}}\right)$ and $(\bar{L} A)_{\mathrm{i}}=L_{1} A_{\mathrm{s}}$.

This composition is symmetric: Swapping L_{1} and L_{2} just means that the indices i and s change role. It is therefore tempting to suppress the distinction between 1 and i and between 2 and s in our notation. We do not do this because we want to use the notation $(-)_{1}$ to refer to the functor L_{1} and the notation $(-)_{\mathrm{i}}$ to refer to a projection onto sort i .

The next proposition ensures that we can extract the initial $L_{2} \circ L_{1}$-algebra from the initial algebra of the two-sorted composition. (We continue to write again $L_{2} L_{1}$ instead of $L_{2} \circ L_{1}$).

Proposition 5.2 Consider categories $\mathcal{A}_{\mathrm{i}}, \mathcal{A}_{\mathrm{s}}$ which are lfp and two finitary functors $L_{1}: \mathcal{A}_{s} \rightarrow \mathcal{A}_{i}$ and $L_{2}: \mathcal{A}_{i} \rightarrow \mathcal{A}_{s}$. Let \bar{L} be the two-sorted composition of L_{1} with L_{2}. Then the s-component of the initial \bar{L}-algebra is the initial $L_{2} L_{1}$-algebra.

Proof. $\mathcal{A}_{i} \times \mathcal{A}_{\mathrm{s}}$ is lfp and \bar{L} is finitary. Therefore, the initial \bar{L}-algebra is the colimit of the initial algebra chain $\bar{L}^{n} 0$ where 0 denotes the initial object and n runs through finite ordinals. As colimits are calculated sort-wise, it is enough to show that the projected sequence $\left(\bar{L}^{n} 0\right)_{\mathrm{s}}$ has the same colimit as the initial sequence of $L_{2} L_{1}$, which is easy to see as the latter sequence is a subsequence of the former.

As the relation between logics and coalgebras is provided by the initial algebras, the proposition tells us that we do not loose anything if we present \bar{L} instead of $L_{2} L_{1}$. It is obvious how to do this.

Theorem 5.3 Consider (many-sorted) varieties $\mathcal{A}_{\mathrm{i}} \times \mathcal{A}_{\mathrm{s}}$ and two functors L_{1} : $\mathcal{A}_{s} \rightarrow \mathcal{A}_{i}$ and $L_{2}: \mathcal{A}_{i} \rightarrow \mathcal{A}_{s}$ with presentations $\left\langle\Sigma_{1}, E_{1}\right\rangle$ and $\left\langle\Sigma_{2}, E_{2}\right\rangle$, respectively. Then $\langle\bar{\Sigma}, \bar{E}\rangle$ is a presentation of the two-sorted composition \bar{L} of L_{1} with L_{2} as follows.

$$
\begin{aligned}
(\bar{\Sigma} X)_{\mathrm{s}} & =\Sigma_{2} X_{\mathrm{i}} \\
(\bar{\Sigma} X)_{\mathrm{i}} & =\Sigma_{1} X_{\mathrm{s}}
\end{aligned}
$$

where we use that the signatures Σ_{1}, Σ_{2} are given by functors $\operatorname{Set}^{S_{2}} \rightarrow \operatorname{Set}^{S_{1}}, \operatorname{Set}^{S_{1}} \rightarrow$ $\mathrm{Set}^{S_{2}}$ and $X=\left(X_{\mathrm{i}}, X_{\mathrm{s}}\right)$ denotes and element of $\mathrm{Set}^{S_{1}} \times \mathrm{Set}^{S_{2}}$. Equations are given by $\bar{E}_{\mathrm{s}}=E_{2}, \bar{E}_{\mathrm{i}}=E_{1}$.

Example 5.4 Let us illustrate this theorem using more familiar notation. To be specific, we assume that \mathcal{A}_{i} and \mathcal{A}_{s} are both BA. We write $\vdash_{i} \psi$ and $\vdash_{s} \phi$ to assert that ψ, ϕ are formulas of sort i, s, respectively. The theorem then states that formulas of both sorts are closed under Boolean operations and, for all n-ary operation symbols σ_{i} in Σ_{i}, formulas are closed under

$$
\frac{\vdash_{\mathrm{i}} \psi_{1}, \ldots, \vdash_{\mathrm{i}} \psi_{n}}{\vdash_{\mathrm{s}} \sigma_{2}\left(\psi_{1}, \ldots, \psi_{n}\right)} \quad \frac{\vdash_{\mathrm{s}} \phi_{1}, \ldots, \vdash_{\mathrm{s}} \phi_{n}}{\vdash_{\mathrm{i}} \sigma_{1}\left(\phi_{1}, \ldots, \phi_{n}\right)}
$$

The axioms are given by equations E_{1}, E_{2}, sortwise. The rules of the calculus are those of equational logic. The only rules that make the two sorts interact are the congruence rules:

$$
\frac{\vdash_{\mathrm{i}} \psi_{1}=\psi_{1}^{\prime}, \ldots, \vdash_{\mathrm{i}} \psi_{n}=\psi_{2}^{\prime}}{\vdash_{\mathrm{s}} \sigma_{2}\left(\psi_{1}, \ldots, \psi_{n}\right)=\sigma_{2}\left(\psi_{1}^{\prime}, \ldots, \psi_{n}^{\prime}\right)} \quad \frac{\vdash_{\mathrm{s}} \phi_{1}=\phi_{1}^{\prime}, \ldots, \vdash_{\mathrm{s}} \phi_{n}=\phi_{n}^{\prime}}{\vdash_{\mathrm{i}} \sigma_{1}\left(\phi_{1}, \ldots, \phi_{n}\right)=\sigma_{1}\left(\phi_{1}^{\prime}, \ldots, \phi_{n}^{\prime}\right)}
$$

Here, we use $\vdash_{i} \psi=\psi^{\prime}$ and $\vdash_{\mathrm{s}} \phi=\phi^{\prime}$ to denote derivability of equations of the respective sorts.

Example 5.5 In the literature, one often considers inductively defined classes of functors $[25,14,9]$, such as, for example, the class of so-called Kripke polynomial functors T : Set \rightarrow Set built according to

$$
T::=I d\left|K_{C}\right| T+T|T \times T| T \circ T \mid \mathcal{P}
$$

where $I d$ is the identity functor, K_{C} is the constant functor that maps all sets to a finite set C, \mathcal{P} is covariant powerset.

Typically, these functors are not only built from basic ingredients (such as $I d, K_{C}, \mathcal{P}$) and composition, but also from binary operations (such as,$+ \times$). To give an example, the functor $L_{+}: \mathrm{BA} \times \mathrm{BA} \rightarrow \mathrm{BA}$ capturing the logic of $+:$ Set \times Set \rightarrow Set has the following presentation.

There are two unary operation symbols $\left[\kappa_{1}\right]$ and $\left[\kappa_{2}\right]$. Equations specify that the $\left[\kappa_{i}\right]$ preserve finite joins and binary meets and that $\left[\kappa_{1}\right] a_{1} \wedge\left[\kappa_{2}\right] a_{2}=\perp,\left[\kappa_{1}\right] T \vee\left[\kappa_{2}\right] \top=\top$, $\neg\left[\kappa_{1}\right] a_{1}=\left[\kappa_{2}\right] \top \vee\left[\kappa_{1}\right] \neg a_{1}, \neg\left[\kappa_{2}\right] a_{2}=\left[\kappa_{1}\right] \top \vee\left[\kappa_{2}\right] \neg a_{2}$.
If L is now the logic of T, then the logic of $T+T$ is given by the presentation of the two-sorted composition of $\mathrm{BA} \xrightarrow{\langle L, L\rangle} \mathrm{BA} \times \mathrm{BA} \xrightarrow{L_{+}} \mathrm{BA}$ according to Theorem 5.3.

6 Uniform completeness proofs

In this section we show how to associate to an arbitrary set-functor T a functor L on BA and a semantics $\delta: L P \rightarrow P T$ so that the resulting logic is complete. The definition of L from T is the same as in [20,19], but as we do not insist on strong completeness ${ }^{2}$ here, we don't need to put any assumptions on T. Instead we use

[^1]an induction along the final sequence as first done in Pattinson [23] and adapted to the setting of functorial logics over BA in [17].

Definition of \boldsymbol{L}. First, let us recall from $[20,19]$ the definition of L from T (see also Klin [16]). The essential ingredients are as follows. Two contravariant functors P and S that are adjoint on the right

where \mathcal{A} is lfp with a small subcategory \mathcal{A}_{0} of finitely presentable objects. We then define L on \mathcal{A}_{0}, eliding the inclusion I, as

$$
L A=P T S A
$$

and extend L continuously from \mathcal{A}_{0} to \mathcal{A}. Note that L thus defined preserves filtered colimits, whereas PTS need not to do so.

Example 6.1 Take $\mathcal{A}=\mathrm{BA}$ and $\mathcal{X}=$ Set. Then P is contravariant powerset and S takes ultrafilters. On arrows, P and S map a function to its inverse image. The adjunction restricts to a dual equivalence between finite Boolean algebras and finite sets. The ultrafilters of a finite Boolean algebra A are the atoms of A, that is, those elements $a \in A$ such that there are no elements strictly between bottom and a. Thus, on finite Boolean algebras, the duality reduces to the well known fact that every finite Boolean algebra is isomorphic to the powerset of its atoms. We will also make use of the fact that the finitely presentable Boolean algebras coincide with the finite ones.

Definition of $\boldsymbol{\delta}: \boldsymbol{L P} \rightarrow \boldsymbol{P T}$. The idea that the semantics of a logic for coalgebras should be described by a natural transformation $L P \rightarrow P T$ goes back to [17,6]. The following definition is again from [20].

$P X$ is a filtered colimit $c_{i}: A_{i} \rightarrow P X$. Under the adjunction, this cocone corresponds to a cone $c_{i}^{\sharp}: X \rightarrow S A_{i}$ which is turned into a cocone under $P T$ (recall that P is contravariant). Now δ_{X} exists uniquely, since L preserves filtered colimits .

Intuitively, the logic L is complete if any two formulas identified in the semantics, are already identified in the syntax. This is the content of the following lemma.

Assumption: From now on we take $\mathcal{A}=\mathrm{BA}^{S^{\prime}}$ and $\mathcal{X}=\operatorname{Set}^{S^{\prime \prime}}$ with the functors P and S sort-wise as in Example 6.1.

Lemma 6.2 δ_{X} as defined above is injective.
Proof. Consider two distinct $\phi_{1}, \phi_{2} \in L P X$. By filteredness, we find some A_{i} and $\phi_{j}^{\prime} \in A_{i}$ such that $c_{i}\left(\phi_{j}^{\prime}\right)=\phi_{j}$. Moreover, since in BA the finitely presentable objects are closed under quotients, we can assume c_{i} to be injective. The following fact is easily proved.

Claim: Let A be finite. $c: A \rightarrow P X$ is injective iff the adjoint transpose $c^{\sharp}: X \rightarrow$ $S A$ is surjective.
Indeed, by the laws of adjunction and A being finite, we have that c is $A \cong P S A \xrightarrow{P c^{\sharp}}$ $P X$; now $P c^{\sharp}=\left(c^{\sharp}\right)^{-1}$ is injective iff c^{\sharp} is surjective, which proves the claim. Using that T, as any functor on $\mathrm{Set}^{S^{\prime}}$, preserves surjective maps and that P maps surjective maps to injective $\mathrm{BA}^{S^{\prime}}$-homomorphisms, we conclude that $P T c_{i}^{\sharp}$ is injective, hence $\delta_{X}\left(\phi_{1}\right) \neq \delta_{X}\left(\phi_{2}\right)$.

Theorem 6.3 The logic given by L as defined above is complete for T-coalgebras.
Proof. (The proof is essentially the one from [17], where the reader can find the missing technical details.) Let $L: \mathrm{BA}^{S^{\prime}} \rightarrow \mathrm{BA}^{S^{\prime}}$ be the functor defined above. L preserves filtered colimits and therefore, using a special property of BA and following [20, Proposition 3.4], L preserves sifted colimits. It follows that L has a presentation, which induces an equational logic, which in turn can be written in the usual modallogic style, using the correspondences between equations $\phi=\psi$ and formulas $\phi \leftrightarrow \psi$ and between formulas ϕ and equations $\phi=T$.
The semantics of an L-formula wrt a coalgebra $\xi: X \rightarrow T X$ is determined by the arrow $\llbracket-\rrbracket_{(X, \xi)}$ from the initial L-algebra to the algebra $L P X \rightarrow P T X \rightarrow P X$. Because of the naturality of δ, the semantics wrt to all coalgebras is determined by the semantics wrt to the final coalgebra. Since we don't assume that the final coalgebra exists, we replace it by the corresponding final sequence $T^{n} \mathbb{1}$ which is defined as follows. We denote by $\mathbb{1}=T^{0} \mathbb{1}$ the final object in Set ${ }^{S^{\prime}} . p_{0}: T \mathbb{1} \rightarrow \mathbb{1}$ is given by finality and $p_{n+1}: T\left(T^{n} \mathbb{1}\right) \rightarrow T^{n} \mathbb{1}$ is defined to be $T p_{n}$. We think of the $T^{n} \mathbb{1}$ as approximating the final coalgebra. ${ }^{3}$ In the same way as any coalgebra $\xi: X \rightarrow T X$ has a unique arrow into the final coalgebra, there are canonical arrows $\xi_{n}: X \rightarrow T^{n} \mathbb{1}$ to the approximants of the final coalgebra, defined inductively by $\xi_{n+1}=T\left(\xi_{n}\right) \circ \xi$. The idea now is to interpret a formula ϕ 'of depth n ' as a subset $\llbracket \phi \rrbracket_{n}$ of $T^{n} \mathbb{1}$. The semantics of ϕ in X is then $\xi_{n}^{-1}\left(\llbracket \phi \rrbracket_{n}\right) .^{4}$ To say what it means for a formula to be of depth n we need the initial sequence of L, which we define next.
Since L is finitary the initial algebra is the colimit of the sequence $L^{n} \mathcal{Z}$ defined as follows. We denote by $\mathcal{Z}=L^{0} \mathcal{L}$ the initial object in $\mathrm{BA}^{S^{\prime}} . e_{0}: \mathcal{Z} \rightarrow L \mathcal{Z}$ is given by initiality and $e_{n+1}: L^{n} \mathcal{Z} \rightarrow L\left(L^{n} \mathcal{Q}\right)$ is defined to be $L e_{n}$. Since L preserves sifted colimits and hence injective maps [20, Corollary 4.10], all maps in the sequence are injective. This means that we can consider the initial L-algebra as a union of its approximants $L^{n} \mathcal{Z}$. We call the elements of $L^{n} \mathscr{Z}$ formulas of depth n. The semantics

[^2]of a formula of depth n is given by a $\mathrm{BA}^{S^{\prime}}$-morphism $\llbracket-\rrbracket_{n}: L^{n} \mathcal{D} \rightarrow P T^{n} \mathbb{1}$ as follows.

$\llbracket-\rrbracket_{0}$ is given by initiality (and is actually the identity). $\llbracket-\rrbracket_{n+1}$ is defined to be $\delta_{T^{n} \mathbb{\mathbb { 1 }}} \circ L\left(\llbracket-\rrbracket_{n}\right)$. Observe that the semantics of a formula is independent of the particular approximant we choose (all squares in the diagram commute). Moreover, given a coalgebra $\xi: X \rightarrow T X$ and a formula of depth n, the semantics via the initial L-algebra and the semantics via the final sequence coincide: $\llbracket \phi \rrbracket_{(X, \xi)}=\xi_{n}^{-1}\left(\llbracket \phi \rrbracket_{n}\right)$. Since δ is injective and L preserves injective maps, all $\llbracket-\rrbracket_{n}, n \in \mathbb{N}$, are injective.
To show completeness, suppose $\phi_{1} \neq \phi_{2}$ in the initial L-algebra. We find an approximant $L^{n} \mathcal{Z}$, in which ϕ_{1} and ϕ_{2} are different. Any one-sided inverse i of p_{0} gives rise to a T-coalgebra $\xi=T^{n}(i)$ with carrier $T^{n} \mathbb{1}$. We have $\llbracket \phi \rrbracket_{\left(T^{n} \mathbb{1}, \xi\right)}=\llbracket \phi \rrbracket_{n}$. Now injectivity of $\llbracket-\rrbracket_{n}$ shows that $\left(T^{n} \mathbb{1}, \xi\right)$ provides a counter-example for $\phi_{1}=\phi_{2}$.

References

[1] S. Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic, 51, 1991.
[2] J. Adámek and V. Koubek. On the greatest fixed point of a set functor. Theoret. Comput. Sci., 150, 1995.
[3] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. CUP, 1994.
[4] J. Adámek and J. Rosický. On sifted colimits and generalized varieties. Th. Appl. Categ., 8, 2001.
[5] A. Y. Aizenštat. Defining relations of finite symmetric semigroups. Math. Sb. N. S., 45, 1958.
[6] M. Bonsangue and A. Kurz. Duality for logics of transition systems. In FoSSaCS'05.
[7] M. Bonsangue and A. Kurz. Pi-calculus in logical form. In LICS'07.
[8] M. Bonsangue and A. Kurz. Presenting functors by operations and equations. In FoSSaCS'06.
[9] C. Cîrstea and D. Pattinson. Modular construction of modal logics. In CONCUR'04.
[10] M. Fiore and C.-K. Hur. Equational systems and free constructions. In ICALP'07.
[11] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In LICS'99.
[12] M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In LICS'99.
[13] M. Hofmann. Semantical analysis of higher-order abstract syntax. In LICS'99.
[14] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform. Appl., 35, 2001.
[15] B. Klin. The least fibred lifting and the expressivity of coalgebraic modal logic. In CALCO'05.
[16] B. Klin. Coalgebraic modal logic beyond sets. In MFPS'07, 2007.
[17] C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. In $C M C S^{\prime} 04$.
[18] A. Kurz and D. Pattinson. Coalgebraic modal logic of finite rank. Math. Structures Comput. Sci., 15, 2005.
[19] A. Kurz and J. Rosický. The Goldblatt-Thomason-theorem for coalgebras. In CALCO'07.
[20] A. Kurz and J. Rosický. Strongly complete logics for coalgebras. July 2006. Submitted.
[21] L. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96, 1999.
[22] D. Pattinson. Semantical principles in the modal logic of coalgebras. In STACS'01.
[23] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci., 309, 2003.
[24] D. Robinson. A Course in the Theory of Groups. Springer, 1996.
[25] M. Rößiger. Coalgebras and modal logic. In $C M C S^{\prime} 00$.
[26] L. Schröder. Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In FoSSaCS'05.

[^0]: 1 Although quite different from the above, Moss's coalgebraic logic [21] also fits into our framework.

[^1]: 2 A logic is strongly complete if, whenever ϕ holds in all models satisfying a possibly infinite set of formulas Γ, then one can also derive ϕ from Γ. Strong completeness is closely related to compactness. So, for example, the procedure below will not give rise to strongly complete logics if T is the probability distribution functor or if $T X=A \times X$ for an infinite set A.

[^2]: ${ }^{3}$ Indeed, if we let run the final sequence through all ordinals, we obtain the final coalgebra as a limit if it exists, see Adamek and Koubek [2].
 ${ }^{4}$ This point of view has been elaborated in [18].

