
Chapman University
Chapman University Digital Commons

Engineering Faculty Articles and Research Fowler School of Engineering

2008

Functorial Coalgebraic Logic: The Case of Many-
Sorted Varieties
Alexander Kurz
Chapman University, akurz@chapman.edu

Daniela Petrişan
University of Leicester

Follow this and additional works at: https://digitalcommons.chapman.edu/engineering_articles

Part of the Algebra Commons, Logic and Foundations Commons, Other Computer Engineering
Commons, Other Computer Sciences Commons, and the Other Mathematics Commons

This Article is brought to you for free and open access by the Fowler School of Engineering at Chapman University Digital Commons. It has been
accepted for inclusion in Engineering Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For
more information, please contact laughtin@chapman.edu.

Recommended Citation
A. Kurz and D. Petrişan, “Functorial Coalgebraic Logic: The Case of Many-sorted Varieties,” Electronic Notes in Theoretical
Computer Science, vol. 203, no. 5, pp. 175–194, Jun. 2008. DOI: 10.1016/j.entcs.2008.05.025

https://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/fowler_engineering?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

Functorial Coalgebraic Logic: The Case of Many-Sorted Varieties

Comments
This article was originally published in Electronic Notes in Theoretical Computer Science, volume 203, issue 5, in
2008. DOI: 10.1016/j.entcs.2008.05.025

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
License.

Copyright
Elsevier

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/engineering_articles/23

https://doi.org/10.1016/j.entcs.2008.05.025
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://digitalcommons.chapman.edu/engineering_articles/23?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages

Functorial Coalgebraic Logic:
The Case of Many-sorted Varieties

Alexander Kurz
Department of Computer Science

University of Leicester, UK

Daniela Petrişan

Department of Computer Science
University of Leicester, UK

Abstract

Following earlier work, a modal logic for T -coalgebras is a functor L on a suitable variety. Syntax and proof
system of the logic are given by presentations of the functor. This paper makes two contributions. First,
a previous result characterizing those functors that have presentations is generalized from endofunctors
on one-sorted varieties to functors between many-sorted varieties. This yields an equational logic for the
presheaf semantics of higher-order abstract syntax. As another application, we show how the move to
functors between many-sorted varieties allows to modularly combine syntax and proof systems of different
logics. Second, we show how to associate to any set-functor T a complete (finitary) logic L consisting of
modal operators and Boolean connectives.

Keywords: Coalgebra, Modal Logic, Stone Duality, Coalgebraic Logic, Sifted Colimits, Variety, Universal
Algebra, Presentation by Operations and Equations

1 Introduction

Beginning with [6,17], it has been argued that logics for T -coalgebras (where T is
an endofunctor on Set) are suitably described by endofunctors L on the category of
Boolean algebras. Syntactically, L specifies an extension of Boolean propositional
logic by modal operators and axioms. Semantically, L gives a logical description of
the ‘transition type’ T of the coalgebras.

[17] showed that the modal logics for coalgebras usually considered [22,26,15] give
rise to such functors L. 1 To describe the class of functors arising in such a way,
[8] introduced the notion of a functor having a finitary presentation by operations
and equations. This notion was investigated more systematically in [20] where it is

1 Although quite different from the above, Moss’s coalgebraic logic [21] also fits into our framework.

Electronic Notes in Theoretical Computer Science 203 (2008) 175–194

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.05.025
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

shown that a functor L on a (finitary) variety A has a presentation by operations
and equations if and only if L preserves sifted colimits. Although not as well known
as filtered colimits, sifted colimits are the right concept when working with varieties
(as opposed to locally finitely presentable categories): Each variety A is the free
cocompletion by sifted colimits of the dual of the Lawvere theory of A. The reason
is that algebras for a Lawvere theory are set-valued product-preserving functors and
sifted colimits are precisely those colimits that commute in Set with finite products.

This paper continues this line of research. We start by generalizing the results of
[20] on functors on varieties from the one-sorted to the many sorted case (Section 3).
This generalization in itself is not difficult, but it has interesting applications. The
first, maybe somewhat unexpected, is that it provides an equational logic for the
binding algebras used in the work of [11] (Section 4). The second application shows
how to modularly compose presentations of different functors (Section 5). Even
if one was only interested in one-sorted coalgebras, only the move to many-sorted
logics gives the desired modularity. Finally, whereas [20] shows how to prove strong
completeness results by generalizing the Jónsson-Tarski representation theorem for
Boolean algebras with operators, we show here how to prove completeness results
for categories of coalgebras that do not satisfy the restrictions needed for the strong
completeness result of [20]. In particular, we show that an arbitrary set-functor has
a complete finitary logic (Section 6).

Acknowledgments We would like to thank Rick Thomas for pointing out a very
useful reference [5].

2 Some preliminaries

For an endofunctor L on a category A, we consider the category of L-algebras,
denoted by Alg(L), whose objects are defined as pairs (A, α) such that α : LA → A

is a morphism in A. A morphism of L−algebras f : (A, α) → (A′, α′) is a morphism
f : A → A′ of A such that f ◦α = α′ ◦Lf . Dually, for an endofunctor T : A → A we
consider the category of T−coalgebras, denoted by Coalg(T), whose objects are pairs
(A, γ), such that γ : A → TA. A morphism of T−coalgebras f : (A, γ) → (A′, γ′) is
an arrow f : A → A′ of A such that Tf ◦ γ = γ′ ◦ f .

Let S be a set (of sorts). A signature Σ is a set of operation symbols together
with an arity map a : Σ → S∗ × S which assigns to each element σ ∈ Σ a pair
(s1, . . . , sn; s) consisting of a finite word in the alphabet S indicating the sort of
the arguments of σ and an element of S indicating the sort of the result of σ. To
each signature we can associate an endofunctor on SetS , which will be denoted for
simplicity with the same symbol Σ:

(ΣX)s = (
∐

k∈ωS
f

Σk,s × Xk)s

Here, by ωS
f we denote the set of functions from S to ω which have finite support

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194176

(i.e. which vanish everywhere except for a finite set) and by Xk the set of presheaf
morphisms SetS(k,X). In detail, if k ∈ ωS

f has support {s1, ..., sn} then Σk,s is
a set of operations of arity (s1...sn; s) and Xk is isomorphic in Set with the finite
product X

k(s1)
s1 × · · · × X

k(sn)
sn . Conversely to each endofunctor on SetS given as

above corresponds a signature
∐

k∈ωS
f

Σk,s. Throughout this paper we will make no

notational difference between the signature and the corresponding functor, and it
will be clear from the context when we refer to the set of operation symbols or
to a SetS endofunctor. The algebras for a signature Σ are precisely the algebras
for the corresponding endofunctor, and form the category denoted by Alg(Σ). The
terms over an S-sorted set of variables X are defined in the standard manner and
and form a set denoted by TermΣ(X), and in fact this is the underlying set of the
free Σ-algebra generated by X. An equation consists of a pair (τ1, τ2) of terms of
the same sort, usually denoted τ1 = τ2. A Σ-algebra A satisfies this equation if
and only if, for any interpretation of the variables of X, we obtain equality in A.
A class A of Σ-algebras is called a variety or an equational class if there exists
a set of equations E such that an algebra lies in A if and only if it satisfies all
the equations of E. Such an equational class will be denoted by Alg(Σ, E). The
forgetful functor U : A → SetS has a left adjoint F and Alg(Σ, E) is monadic over
SetS , i.e it is isomorphic with the Eilenberg-Moore category (SetS)T for the monad
T corresponding to the adjoint pair F � U . Also notice that UF is a finitary,
that is, UF preserves filtered colimits. In [3], varieties are described independently
of signatures and equations, via finite product sketches, and it is proved that any
variety is a locally finitely presentable category. Recall that a category is locally
finitely presentable provided that it is cocomplete and it has a set K of finitely
presentable objects such that any object is a filtered colimit of objects of K. We
will say that a category is lfp if it is locally finitely presentable.

Endofunctors may appear via composition of functors between different varieties.
Therefore, it is useful to consider a slight generalization of the notion of signature.
If S1 and S2 are sets of sorts we will consider operations with arguments of sorts
in S1 and returning a result of a sort in S2, encompassed in the signature functor
Σ : SetS1 → SetS2 :

ΣX = (
∐

k∈ω
S1
f

Σk,s × Xk)s∈S2 (1)

An important example of a (finitary) variety of algebras is the functor category SetC

for any small category C. The sorts are the objects of C, the operations symbols are
the morphisms of C (all of them with arity 1), and the equations are given by the
composition of morphisms in C.

A sifted category D is a small category such that colimits over D commute in Set
with finite products. A sifted colimit in a category C is a colimit over D. The most
important examples of sifted colimits are filtered colimits and reflexive coequalizers.

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 177

An object in a category is called strongly finitely presentable if its hom-functor
preserves sifted colimits. It is shown in [4] that any object in a variety is a sifted
colimit of strongly finitely presentable algebras, which in a variety are the retracts
of finitely generated free algebras. An important observation is that sifted colimit
preserving functors on varieties are determined by their action on free algebras.
Another useful observation is that for an S-sorted variety A the forgetful functor
U : A → SetS and its left adjoint F are sifted colimit preserving functors. In fact
F preserves all colimits.

3 Presenting algebras and functors

The purpose of this section is an algebraic investigation of logics for coalgebras.
The general idea is as follows. Just as coalgebras are given wrt a functor T on,
say, Set, so are logics for coalgebras given by a functor L on, say, Boolean algebras.
The following example shows how logics for coalgebras given in a more conventional
style give rise to a functor on the category BA of Boolean algebras.

Example 3.1 Let T = P be the covariant powerset functor. The modal logic K
associated to P-coalgebras (=Kripke frames) can be described by the functor L

which maps a Boolean algebra A to the Boolean algebra LA freely generated by
{�a | a ∈ A} modulo the relations �� = � and �(a ∧ b) = �a ∧ �b. We see that
the modal operators appear as generators and the modal axioms as relations. Of
course, from a logical point of view, we want the generators to be operations and
the relations to be universally quantified equations. In other words, we need that
the description of LA in terms of generators and relations is uniform in A. This is
exactly captured by Definition 3.3 below.

It is not difficult to see that the category Alg(L) of algebras for the functor L

is isomorphic to the category of Boolean algebras with operators, which constitute
the standard algebraic semantics of K in modal logic. In particular, the initial
L-algebra is the Lindenbaum-Tarski algebra of the modal logic K.

To simply replace a concrete modal logic by the corresponding functor is a powerful
abstraction that makes a number of category theoretic methods available to modal
logic. This section makes sure that the move from logics to functors is not an over-
generalisation: Every suitable functor L will come from a modal logic in exactly the
same way as in the example above. The reader who wants to know more about the
relationship between T -coalgebras and L-algebras before reading this section might
want to skip ahead to Section 6.

Definition 3.2 Let A be a many-sorted algebra in a variety A. We say that (G, E)
is a presentation for A if G is an S-sorted set of generators and E = (Es)s∈S , Es ⊂
(UFG)s × (UFG)s is an S sorted set of equations such that A is the coequalizer of
the following diagram:

FE FG A
π�
1 ��

π�
2

��
qA �� (2)

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194178

The maps π�
1, π

�
2 are induced, via the adjunction, by the projections π1, π2 of E on

UFG.

Next we want to define a presentation for a functor L : A1 → A2 between many-
sorted varieties. For i ∈ {1, 2}, denote by Si the set of sorts for Ai respectively,
by Ui : Ai → SetS

i
the corresponding forgetful functor, and by Fi its left adjoint.

We will do this in the same fashion as in [20] and [8], keeping in mind that we
need to extend (2) uniformly: this means that the generators and equations for
each LA will depend functorialy on A. Suppose A is a many-sorted algebra in
A1. The generators ΣU1A for the algebra LA will be given by a signature functor
Σ : SetS1 → SetS2 as in (1). The equations that we will consider are of rank 1,
meaning that in the terms involved every variable is under the scope of precisely
one operation symbol in Σ, and are given by an S2-sorted set E. For each sort
s ∈ S2 and each S1-sorted set of variables V with the property that

⋃
t∈S1

Vt is finite,

we consider a set EV,s of equations over the set V of terms of sort s, which is defined
as a subset of (U2F2ΣU1F1V)2s. Now take EV = (EV,s)s∈S2 and E =

⋃
V ∈ω

S1
f

EV .

Definition 3.3 Let S1, S2 be sets of sorts, A1 be an S1-sorted variety and A2 be
an S2-sorted variety. A presentation for a functor L : A1 → A2 is a pair 〈Σ, E〉
defined as above. A functor L : A1 → A2 is presented by 〈Σ, E〉, if

(i) for every algebra A ∈ A1 the algebra LA is the joint coequalizer:

F2EV F2ΣU1F1V F2ΣU1A LA
π�
1 ��

π�
2

��
F2ΣU1v�

�� qA �� (3)

taken after all finite sets of S1-sorted variables V and all valuations v : V → U1A.
Here v� denotes the adjoint transpose of a valuation v.

(ii) for all morphisms f : A → B the diagram commutes:

F2ΣU1A LA

F2ΣU1B LB

F2ΣU1f

��

qA ��

Lf

��qB ��

(4)

The importance of this notion, emphasized in [8], resides in the fact that endo-
functors having finitary presentations give rise to modal logics, where the modal
operators are the operation symbols of Σ and the axioms are the equations of E.

If A = Alg(ΣA, EA) is an S-sorted variety and the endofunctor L : A → A has
a finitary presentation 〈ΣL, EL〉, we can obtain an equational calculus for Alg(L),
regarding the equations EA and EL as equations containing terms in TermΣA+ΣL

.
First remark, that formally, for an arbitrary set of variables V , EL,V is a subset of the
S−sorted set (UFΣLUFV)2. But for each set X, UFX is a quotient of TermΣAX

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 179

modulo the equations. Thus, if we choose a representative for each equivalence class
in UFΣLUFV , we can obtain a set of equations in TermΣAΣLTermΣA . Using the
natural map from TermΣAΣLTermΣA to TermΣA+ΣL

V , we obtain a set of equations
on terms TermΣA+ΣL

V . By abuse of notation we will denote this set with EL as
well.

Theorem 3.4 Let A = Alg(ΣA, EA) be an S-sorted variety and let L : A → A be
a functor presented by operations ΣL and equations EL. Then Alg(L) ∼= Alg(ΣA +
ΣL, EA + EL).

Proof. We define a functor H : Alg(L) → Alg(ΣA + ΣL, EA + EL). Suppose
α : LA → A is an L-algebra. Then the underlying set of HA is defined to be
UA. HA inherits the algebraic structure of A: the interpretation of the operation
symbols of ΣA is the same as in the algebra A and it satisfies the equations EA. As
far as the operation symbols of ΣL are concerned, their interpretation is given by
the composition:

FΣLUA LA A
qA �� α �� (5)

Explicitly, the interpretation of an operation symbol σ of arity (s1 . . . sn; s) is the
morphism σA : As1 × · · · × Asn → As defined by

σA(x1, . . . , xn) = α(qA((σ, x1, . . . , xn)))

Now it is clear that the equations EL are satisfied in HA, because qA is a coequalizer
as in (3). If f is a morphism of L−algebras, we define Hf = f and we only
have to check that f(σ(a1, . . . , ak)) = σ(f(a1), . . . , f(ak)) for all σ ∈ ΣL. But
this follows from the fact the definition of the interpretation of the operations, the
commutativity of diagram (4) and the fact that f is an L-algebra morphism.

Conversely, we define a functor J : Alg(ΣA + ΣL, EA + EL) → Alg(L). Suppose A

is an algebra in Alg(ΣA + ΣL, EA + EL). The map ρA : ΣLUA → UA defined by:

(σ(s1...sn;s), xi1 , . . . , xin) �→ σ(s1...sn;s)(xi1 , . . . , xin)

induces a map ρ�
A : FΣLUA → A. The fact that equations EL are satisfied implies

that ρ�
A ◦ FΣLUv� ◦ π�

1 = ρ�
A ◦ FΣLUv� ◦ π�

2 as depicted in (6). But LA is a
coequalizer in Alg(ΣA, EA), therefore there exists a morphism αA : LA → A such
that αA ◦ qA = ρ�

A. We define JA to be the L- algebra αA. For any morphism
f : A → B in Alg(ΣA + ΣL, EA + EL) we define Jf = U0f , where U0 : Alg(ΣA +
ΣL, EA + EL) → Alg(ΣA, EA) is the forgetful functor. This is well defined and
we can check this easily by proving that the rightmost square of diagram (6) is
commutative:

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194180

FEL FΣLUFV

FΣLUA

FΣLUB

LA

LB

A

B

π�
1 ��

π�
2

��

ρ�
A

��

ρ�
B

��

FΣUv�
1

�����������

FΣUv�
2

����������� FΣUf

��

Lf

��

f

��

qA ��

qB ��

αA �������

αB �������

(6)

Now it is straightforward to check that J ◦ H and H ◦ J are the identities. �

The characterization of endofunctors having finitary presentation was given in [20]
for monadic categories over Set and it can be easily extended if we replace Set with
the presheaf category SetS . The result holds even if we work with functors between
different varieties.

Theorem 3.5 Let S1, S2 be sets of sorts, A1 be an S1-sorted variety and A2 be
an S2-sorted variety. For a functor L : A1 → A2 the following conditions are
equivalent:

(i) L has a finitary presentation by operations and equations;
(ii) L preserves sifted colimits.

Proof. (i) ⇒ (ii). Assume L has a finitary presentation 〈Σ, E〉. Let D be a sifted
category and ai : Ai → A be a sifted colimit in A1. Let di : LAi → B be an
arbitrary cocone. As we have seen in the preliminaries, the corresponding forgetful
functors and their left adjoints U1, U2, F1, F2 preserve sifted colimits. Σ shares the
same property because sifted colimits are computed point-wise and commute with
finite products. Therefore we obtain that F2ΣU1ai : F2ΣU1Ai → F2ΣU1A is a
colimiting cocone in A2, hence there exists a map d : F2ΣU1A → B such that
d ◦ F2ΣU1ai = di ◦ qAi for all i in D.

Choose an arbitrary S1-sorted set of variables V = (Vs)s∈S1 such that
⋃

s∈S1

Vs is finite

and a morphism v : V → U1A. Then V is strongly finitely presented in the category
SetS1 , and U1ai : U1Ai → U1A is a sifted colimit, so there exists vi : V → U1Ai such
that v = U1ai ◦ vi. From the fact that qAi is a joint coequalizer, it follows that d

makes the bottom line of diagram (7) commutative.

F2EV F2ΣU1F1V F2ΣU1A B

F2ΣU1Ai

π1 ��
π2

��
F2ΣU1v �� d ��

F2ΣU1vi

������������������

F2ΣU1ai

��

di◦qAi

		�����������������

(7)

Using that LA is a joint coequalizer we obtain b : LA → B such that b ◦ qA = d.
Now it is immediate to check that diagram (8) is commutative, and this shows that

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 181

the cocone Lai : LAi → LA is universal.

F2ΣU1Ai

F2ΣU1A LA

LAi

B

qAi ��

qA ��

F2ΣU1Ai

��
Lai

��

d

������������������������
b

���������������
di

��	
		

		
		

		
		

		
		

		
		

	

(8)

(ii) ⇒ (i) Being a sifted colimit preserving functor, L is determined by its values
on finitely generated free algebras. Given k ∈ ωS1

f with support {s1, . . . , sn} and
given s ∈ S2 we can view the elements of the set (U2LF1k)s as operations symbols
which take k(si) arguments of sort si for all 1 ≤ i ≤ n and return a result of sort s.
More explicitly we can consider for all algebras A the map rA given component-wise
by:

∐

k∈ωS
f

(U2LF1k)s × U1A
k rA,s−−−−−−→ (U2LA)s (9)

(σ, x) �→ (U2LεA ◦ U2LF1x)s(σ)

where εA : F1U1A → A is the counit of the adjunction. In the definition of the map
rA,s we have interpreted x as a morphism in SetS(k, U1A). Now the operations that
we will consider are encompassed in the functor Σ : SetS1 → SetS2 defined by

ΣX = (
∐

k∈ω
S1
f

(U2LF1k)s × Xk)s∈S2 (10)

Note that r is a natural transformation from ΣU1 to U2L.

For an arbitrary S1-sorted set of variables V , the equations are induced by the
map rF1V : ΣU1F1V → U2LF1V as in (9), more precisely EV is defined to be the
kernel pair of the map Ur�

F1V : U2F2ΣU1F1V → U2LF1V . We will prove that L is
presented by 〈Σ, E〉. For all k ∈ ωS1

f the following diagram is a split coequalizer
because Ek is a kernel pair.

Ek U2F2ΣU1F1k U2LF1k
π1 ��
π2

��

t

U2r�
F1k ��

s

�� (11)

One can check that it follows that

U2F2Ek U2F2ΣU1F1k U2LF1k
U2π�

1 ��

U2π�
2

��

U2F2t ◦ ηU2F2ΣU1F1k

��
U2r�

F1k ��

s

�� (12)

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194182

is again a split coequalizer. U2 is a monadic functor, hence it creates split coequal-
izers, and we obtain that

F2Ek F2ΣU1F1k LF1k
π�
1 ��

π�
2

��
r�
F1k �� (13)

is a coequalizer. Now it is straightforward to show that

F2EV F2ΣU1F1V F2ΣU1F1k LF1k
π�
1 ��

π�
2

��
F2ΣU1v�

��
r�
F1k �� (14)

is a joint coequalizer. This proves that L coincides on finitely generated algebras
with the functor presented by the finitary presentation 〈Σ, E〉, and therefore it is
presented by 〈Σ, E〉. �

4 Equational logic for higher-order abstract syntax

Syntax with variable binders cannot be captured as an initial algebra in the usual
way. But Fiore, Plotkin and Turi [11] (see also Hofmann [13] and Gabbay and
Pitts [12]) showed that this is possible if one moves from algebras for a functor on
Set to algebras for a functor on a suitable presheaf category. In particular, they
showed that λ-terms up to α-equivalence form an initial algebra for a functor. These
functors generalize the notion of a signature, but a notion of equational theory for
these algebras is missing in [11] (but see the more recent work [10]).

This section starts from the observation that a category of presheaves is a many-
sorted variety. From Theorem 3.5 we know that a large class of functors on presheaf
categories have a presentation. To illustrate an application of Theorem 3.4 we give
an algebraic structure of the presheaf of λ-terms up to α-equivalence. Canonical
representatives for λ-terms up to α-equivalence can be obtained in different ways,
for example, using the method of De Bruijn levels or the method of De Bruijn
indices. Using the method of De Bruijn levels, normal forms up to α-equivalence
are obtained by specifying well-formedness rules for λ-terms within a context:

1 ≤ i ≤ n

x1, . . . , xn � xi
,

x1, . . . , xn, xn+1 � t

x1, . . . , xn � λxn+1.t
,

x1, . . . , xn � t1 x1, . . . , xn � t2
x1, . . . , xn � t1t2

(15)

The appropriate notion to encompass contexts and the operations allowed on them
is the full subcategory F of Set with objects n = {1, . . . , n} and 0 = ∅. The
equivalence classes of λ-terms over a countable set of variables V = {x1, x2, . . . }
form a presheaf in SetF, which we will denote by ΛVα. Explicitly ΛVα(n) is defined
as the set of equivalence classes of λ-terms with the free variables contained in the
set {x1, . . . , xn}. For any morphism ρ : n → m, ΛVα(ρ) acts on an equivalence class
of a term by substituting the free variables xi with xρ(i). More generally we can
work with an arbitrary presheaf of variables V and again we can see that the λ-terms
over V form a presheaf in SetF. Contexts, which correspond to natural numbers,

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 183

stratify λ-terms up to α-equivalence, and we can capture this by regarding them as
the set of sorts. As we have seen in Section 2, A = SetF is a many-sorted unary
variety, the sorts being the set of objects of F, which is isomorphic to the set of
non-negative integers N. For this many-sorted variety we denote by U : A → SetN

the forgetful functor and by F : SetN → A its left adjoint.

We endow F with the coproduct structure:

n n + 1

1

i ��
new
�� (16)

where i is the inclusion and new(1) = n + 1. The type constructor for context
extension can be defined as a functor δ : A → A given by δ(A)(ρ) = A(ρ + id1) for
all A ∈ A and for all morphisms ρ in F . Let L : A → A be the functor given by

LX = δX + X × X (17)

If V is a presheaf (of variables), then an immediate consequence of Theorem 2.1
of [11] states that ΛVα is the the free L-algebra over V . We obtain the algebraic
structure of ΛVα by giving an equational presentation for Alg(L), arising from a
finitary presentation of the functor L and an equational presentation of the variety
A.

In order to obtain the equational presentation for A we consider the signature:

ΣA = {σ(i)
n | 1 < n, 1 ≤ i < n} ∪ {wn | n ≥ 0} ∪ {cn | n > 0} (18)

with the intended interpretation being the following: σ
(i)
n can be interpreted as the

transposition (i, i + 1) of the set n, cn as a contraction cn : n + 1 → n defined by
cn(i) = i for i ≤ n and cn(n + 1) = n, and wn as the inclusion of n into n + 1.

Firstly, we consider the equations coming from the presentation of the symmetric
group, see for example [24]:

(σ(i)
n)2(x) = idn(x) 1 ≤ i < n

σ
(i)
n σ

(j)
n (x) = σ

(j)
n σ

(i)
n (x) j �= i ± 1; 1 ≤ i, j < n (E1)

(σ(i)
n σ

(i+1)
n)3(x) = idn(x) 1 ≤ i < n − 1

where x is a variable of sort n. Each permutation of the set n can be written as
a composition of transpositions σ

(i)
n and we choose for each permutation such a

representation. In the next equations the permutations that will appear should be
regarded as abbreviations of their representation in terms of σ

(i)
n .

Secondly, we consider the equations coming from the presentation of the monoid of
functions from n to n. [5] gives a presentation of this monoid for n ≥ 4 in terms of
generators of the symmetric group and an additional generator:

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194184

A =

⎛
⎝ 1 2 3 . . . n

1 1 3 . . . n

⎞
⎠

Apart from the equations giving the presentation of the symmetric group, Aizenštat
uses the following seven equations:

Aσ(1)
n = σ(3)

n Aσ(3)
n = (3, 4, . . . , n)A(3, 4, . . . , n) = [(1, n)A]2 = A

[σ(2)
n A]2 = Aσ(2)

n A = [Aσ(2)
n]2

[σ(2)
n (1, n)A]2 = [Aσ(2)

n (1, n)]2

If we replace A in the equations above by (1, n − 1)(2, n)wn−1cn−1(1, n − 1)(2, n)
and each permutation by its representation in terms of σ

(i)
n we will obtain the

equations which we will label by (E2). For each function from n to n we can choose
a canonical representation in terms of σ

(i)
n and wn−1cn−1, and one can prove that

any other representation can be reduced to this canonical one using (E1) and (E2).

Thirdly, we use the next set of equations:

cnσ
(n)
n+1(y) = cn(y) (E3)

cnwn(x) = idn(x) (E4)

σ
(i)
n+1wn(x) = wnσ

(i)
n (x) 1 ≤ i < n (E5)

σ
(n+1)
n+2 wn+1wn(x) = wn+1wn(x) (E6)

σ
(i)
n cn(y) = cnσ

(i)
n+1(y) i < n − 1 (E7)

cnσ
(n−1)
n+1 σ

(n)
n+1wn(x) = σ

(n−1)
n wn−1cn−1(x) (E8)

c1c2σ
(1)
3 = c1c2 (E9)

where x is a variable of sort n and y is a variable of sort n + 1.

We can see that the equation of (E2) corresponding to Aσ
(1)
n = A can be obtained

from (E3), so we can remove it.

For each positive integers n, k such that n > k, we call a k-partition of n a k-uple
p = (i1, . . . , ik) such that i1 + · · ·+ ik = n and 1 ≤ i1 ≤ · · · ≤ ik. For any k-partition
p of n we denote by Cp

n,k : n → k the morphism which maps the first i1 elements of
n to 1, the next i2 elements to 2 and so on, the last ik elements to k. If n ≥ 4, if we
compose Cp

n,k with the inclusion of k in n we obtain a function from n to n, which

has a canonical representation in terms of σ
(i)
n and wn−1cn−1, abbreviated by Np

n,k.
Note that Cp

n,k = ck . . . cn−1N
p
n,k.

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 185

Proposition 4.1 Let EA denote the set of equations of the form (E1)−(E9). Then
A is isomorphic to Alg(ΣA, EA).

Proof (Sketch) An exhaustive presentation of A can be obtained if we take an
operation symbol for each morphism in F and if we consider all the equations induced
by the composition of morphisms. Any morphisms of F can be generated using only
morphisms of the form σ

(i)
n , cn, wn. In fact each morphism f : n → m determines a

k-partition of n denoted by pf , where k is the cardinal of the image of f . If n ≥ 4
then there exist permutations πn and πm, such that:

f = πmwm−1 . . . wkck . . . cn−1N
pf

n,kπn

If n ≤ 3 then there exists permutations πn and πm, such that:

f = πmwm−1 . . . wkck . . . cn−1πn

To make the notation easier we can just make the convention to denote N
pf

n,k = idn

for n ≤ 3. We prove that any other representation of f in terms of the generators
can be reduced to this canonical form using the equations (E1)− (E9). We will use
implicitly the equations (E1) when we manipulate the permutations. Let us consider
another representation of f . The first step is to prove that we can transform it into
a representation of the form π′

mwm−1 . . . wkg where g is written only in terms of
transpositions and contractions and π′

m is a permutation. This can be done using
equations (E3) − (E8). Next we show that there exists a permutation τ such that
we have the following equalities in F:

π′
mwm−1 . . . wkτ = πmwm−1 . . . wk

τ−1g = ck . . . cn−1N
pf

n,kπn

Therefore it is enough to show that we can derive the above two relations from the
equations (E1)− (E9). The first can be obtained using (E5), (E6). In order to prove
the second, if n ≥ 4, we can use (E4) and obtain:

τ−1gπ−1
n = ck . . . cn−1wn−1 . . . wkτ

−1gπ−1
n

Now wn−1 . . . wkτ
−1gπ−1

n can be reduced, via equations (E5), (E8), to an expression
in terms of σ

(i)
n and wn−1cn−1. From Aizenštat’s result it follows that we can further

reduce this expression to N
pf

n,k using (E1) and (E2). If n ≤ 3 then we can just use
(E7) or (E9). �

A presentation for L can be obtained considering for each n ∈ N the operation
symbols lamn, appn which semantically correspond to λ-abstraction and application.
The respective signature functor ΣL : SetN → SetN is given by

(ΣLX)m = {lamm+1} × Xm+1 + {appm} × Xm × Xm (19)

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194186

For any presheaf V ∈ A let ρV : ΣUV → ULV be the map defined by

(lamn+1, t) �→ t ∀t ∈ V (n + 1) = (δV)(n)

(appn, t1, t2) �→ (t1, t2) ∀t1, t2 ∈ V (n)

The equations EL should correspond to the kernel pair of the adjoint transpose
ρ�

V : FΣUV → LV . We will consider the set of equations of the following form:

σ
(i)
n (lamn+1, t) = (lamn+1, σ

(i)
n+1t) [t]

wn(lamn+1, t) = (lamn+2, σ
(n+1)
n+2 wn+1t) [t]

cn(lamn+2, t
′) = (lamn+1, σ

(n)
n+1cn+1σ

(n)
n+2σ

(n+1)
n+2 t′) [t′]

σ
(i)
n (appn, t1, t2) = (appn, σ

(i)
n t1, σ

(i)
n t2) [t1, t2]

wn(appn, t1, t2) = (appn, wnt1, wnt2) [t1, t2]

cn(appn, t1, t2) = (appn, cnt1, cnt2) [t1, t2]

(20)

where t is a variable of sort n+1, t′ is a variable of sort n+2 and t1, t2 are variables
of sort n and n is an arbitrary positive integer.

Proposition 4.2 L is presented by 〈ΣL, EL〉.
Proof. Suppose A ∈ A. We have to check that LA is a coequalizer as in dia-
gram (3). Observe that ρ�

A(f(lamn+1, t)) = δ(A)(f)(t) = A(f + id1)(t). Then the
equations (20) are satisfied by LA because we have:

σ
(i)
n+1 = σ(i)

n + id1

σ
(n+1)
n+2 wn+1 = wn + id1

σ
(n)
n+1cn+1σ

(n)
n+2σ

(n+1)
n+2 = cn + id1

Conversely, suppose that (f(lamn+1, t), f ′(lamn′+1, t
′)) is in the kernel pair of ρ�

A.
We have to show that f(lamn+1, t) and f ′(lamn′+1, t

′) can be identified in FΣUA

by different valuations of the equations. The proof follows from the fact that A(f +
id1)(t) = A(f ′ + id1)(t′) and that for any morphisms ρ, ρ′ which can be composed
in F, we have that ρ ◦ ρ′ + id1 = (ρ + id1) ◦ (ρ′ + id1). Hence f(lamn+1, t) and
(lamm+1, A(f + id1)(t)), can be identified in FΣUA for any morphism f : n → m.�

Remark 4.3 The presentation of L depends on the operations ΣA used to describe
A = SetF but is independent of the equations EA.

Representing different implementations of λ-terms If V is the presheaf
defined by V (ρ) = ρ for all morphisms ρ in F, the free L-algebra over V gives an
implementation of λ−terms by the De Bruijn levels method. In [11] it is suggested
that different implementations of λ-terms can be obtained by equipping F with

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 187

different coproduct structures. But this implies working with a different functor
than L. Instead, we can use another approach, namely to consider the free L-
algebra over different presheaves of variables. For example, if W is the presheaf of
variables defined explicitly by

W (n) = n W (cn)(1) = 1 W (cn)(i) = i − 1; i > 1

W (wn)(i) = i + 1

W (σ(i)
n) = σ(n−i)

n

we obtain the presheaf ΛWα of λ−terms implemented by the De Bruijn indices
method.

5 Modular coalgebraic logic

In this section we are interested in logics for (T2 ◦ T1)-coalgebras. We assume that
we have logics for the Ti described by functors Li with presentations 〈Σi, Ei〉. We
know that L = L2 ◦ L1 gives a logic for coalgebras for the functor T = T2 ◦ T1.
We also know that properties like expressiveness and completeness extend from
the components Li to the composition L. Here we are interested to show how to
combine the syntax and the proof systems of the two logics. In our framework, this
amounts to showing how to obtain a presentation for the functor L = L2 ◦ L1 from
presentations 〈Σ2, E2〉 and 〈Σ1, E1〉.
We know that such a presentation exists, because sifted-colimits preserving functors
are closed under composition. But this in itself does not give us a recipe to compute
a presentation 〈Σ, E〉 from the presentations 〈Σi, Ei〉 in a simple modular way. For
example, in the case that Li : BA → BA, even if the Σi contain only one unary
operation symbol �i, one may need an infinite set of operation symbols of arbitrary
(finite) arities to present L = L2 ◦ L1 : BA → BA. The reason is that operation
symbols for L are of the form �2φ where φ can be any Boolean combination of
terms of the kind �1ψ, or, more formally, in the notation of Section 3, operation
symbols for L are terms in G1UFG2UFV .

The solution is to replace L by a two-sorted functor L̄ : BAS → BAS where we
write S = {s, i}. The intuition here is that a coalgebra X → T2 ◦ T1(X) goes
first to an intermediate state in T1(X) and then to a (proper) state in T2(T1(X)).
This point of view introduces a 2-sorted semantics: (proper) states, of sort s, and
intermediate states, of sort i. We could make this explicit using a two sorted functor
T̄ : SetS → SetS , but we do not need to do this here. On the other hand, on the dual
side, to construct the logics, introducing a new sort for intermediate states allows
us to compose presentations in a modular way. This has been used (implicitly) in
our work on π-calculus [7] and goes back in coalgebraic logic to Rößiger [25] (see
also Jacobs [14] and Ĉırstea and Pattinson [9]). But the technique of reflecting
the structure of the type constructors in the syntax of the logic appears already in
Abramsky’s use of a ‘meta-language’ in [1]. In our framework, the details can be

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194188

formulated as follows. First, it is convenient to introduce the notion of a two-sorted
composition.

Below we consider the more general case L1 : As → Ai and L2 : Ai → As, which
allows us to also treat in a modular way binary functors such as product and co-
product.

Definition 5.1 [two-sorted composition of functors] Given two functors L1 : As →
Ai and L2 : Ai → As between any two categories, the two-sorted composition
of L1 with L2 is the functor L̄ : Ai × As → Ai × As mapping A = (Ai, As) to
(L̄A)s = L2(Ai) and (L̄A)i = L1As.

This composition is symmetric: Swapping L1 and L2 just means that the indices
i and s change role. It is therefore tempting to suppress the distinction between 1
and i and between 2 and s in our notation. We do not do this because we want to
use the notation (−)1 to refer to the functor L1 and the notation (−)i to refer to a
projection onto sort i.

The next proposition ensures that we can extract the initial L2 ◦ L1-algebra from
the initial algebra of the two-sorted composition. (We continue to write again L2L1

instead of L2 ◦ L1).

Proposition 5.2 Consider categories Ai,As which are lfp and two finitary functors
L1 : As → Ai and L2 : Ai → As. Let L̄ be the two-sorted composition of L1 with
L2. Then the s-component of the initial L̄-algebra is the initial L2L1-algebra.

Proof. Ai × As is lfp and L̄ is finitary. Therefore, the initial L̄-algebra is the
colimit of the initial algebra chain L̄n0 where 0 denotes the initial object and n

runs through finite ordinals. As colimits are calculated sort-wise, it is enough to
show that the projected sequence (L̄n0)s has the same colimit as the initial sequence
of L2L1, which is easy to see as the latter sequence is a subsequence of the former.�

As the relation between logics and coalgebras is provided by the initial algebras, the
proposition tells us that we do not loose anything if we present L̄ instead of L2L1.
It is obvious how to do this.

Theorem 5.3 Consider (many-sorted) varieties Ai × As and two functors L1 :
As → Ai and L2 : Ai → As with presentations 〈Σ1, E1〉 and 〈Σ2, E2〉, respectively.
Then 〈Σ̄, Ē〉 is a presentation of the two-sorted composition L̄ of L1 with L2 as
follows.

(Σ̄X)s = Σ2Xi

(Σ̄X)i = Σ1Xs

where we use that the signatures Σ1,Σ2 are given by functors SetS2 → SetS1 ,SetS1 →
SetS2 and X = (Xi, Xs) denotes and element of SetS1 × SetS2. Equations are given
by Ēs = E2, Ēi = E1.

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 189

Example 5.4 Let us illustrate this theorem using more familiar notation. To be
specific, we assume that Ai and As are both BA. We write �i ψ and �s φ to
assert that ψ, φ are formulas of sort i, s, respectively. The theorem then states
that formulas of both sorts are closed under Boolean operations and, for all n-ary
operation symbols σi in Σi, formulas are closed under

�i ψ1, . . . ,�i ψn

�s σ2(ψ1, . . . , ψn)
�s φ1, . . . ,�s φn

�i σ1(φ1, . . . , φn)

The axioms are given by equations E1, E2, sortwise. The rules of the calculus are
those of equational logic. The only rules that make the two sorts interact are the
congruence rules:

�i ψ1 = ψ′
1, . . . ,�i ψn = ψ′

2

�s σ2(ψ1, . . . , ψn) = σ2(ψ′
1, . . . , ψ

′
n)

�s φ1 = φ′
1, . . . ,�s φn = φ′

n

�i σ1(φ1, . . . , φn) = σ1(φ′
1, . . . , φ

′
n)

Here, we use �i ψ = ψ′ and �s φ = φ′ to denote derivability of equations of the
respective sorts.

Example 5.5 In the literature, one often considers inductively defined classes of
functors [25,14,9], such as, for example, the class of so-called Kripke polynomial
functors T : Set → Set built according to

T ::= Id | KC | T + T | T × T | T ◦ T | P

where Id is the identity functor, KC is the constant functor that maps all sets to a
finite set C, P is covariant powerset.

Typically, these functors are not only built from basic ingredients (such as Id , KC ,P)
and composition, but also from binary operations (such as +,×). To give an exam-
ple, the functor L+ : BA× BA → BA capturing the logic of + : Set× Set → Set has
the following presentation.

There are two unary operation symbols [κ1] and [κ2]. Equations specify that the [κi]
preserve finite joins and binary meets and that [κ1]a1∧[κ2]a2 = ⊥, [κ1]�∨[κ2]� = �,
¬[κ1]a1 = [κ2]� ∨ [κ1]¬a1, ¬[κ2]a2 = [κ1]� ∨ [κ2]¬a2.

If L is now the logic of T , then the logic of T + T is given by the presentation of

the two-sorted composition of BA
〈L,L〉−→ BA×BA

L+−→ BA according to Theorem 5.3.

6 Uniform completeness proofs

In this section we show how to associate to an arbitrary set-functor T a functor L

on BA and a semantics δ : LP → PT so that the resulting logic is complete. The
definition of L from T is the same as in [20,19], but as we do not insist on strong
completeness 2 here, we don’t need to put any assumptions on T . Instead we use

2 A logic is strongly complete if, whenever φ holds in all models satisfying a possibly infinite set of formulas
Γ, then one can also derive φ from Γ. Strong completeness is closely related to compactness. So, for example,
the procedure below will not give rise to strongly complete logics if T is the probability distribution functor
or if TX = A × X for an infinite set A.

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194190

an induction along the final sequence as first done in Pattinson [23] and adapted to
the setting of functorial logics over BA in [17].

Definition of L. First, let us recall from [20,19] the definition of L from T (see
also Klin [16]). The essential ingredients are as follows. Two contravariant functors
P and S that are adjoint on the right

A
S

��L
�� X

P
��

T
��

A0

I

�� (21)

where A is lfp with a small subcategory A0 of finitely presentable objects. We then
define L on A0, eliding the inclusion I, as

LA = PTSA

and extend L continuously from A0 to A. Note that L thus defined preserves filtered
colimits, whereas PTS need not to do so.

Example 6.1 Take A = BA and X = Set. Then P is contravariant powerset and
S takes ultrafilters. On arrows, P and S map a function to its inverse image. The
adjunction restricts to a dual equivalence between finite Boolean algebras and finite
sets. The ultrafilters of a finite Boolean algebra A are the atoms of A, that is, those
elements a ∈ A such that there are no elements strictly between bottom and a.
Thus, on finite Boolean algebras, the duality reduces to the well known fact that
every finite Boolean algebra is isomorphic to the powerset of its atoms. We will also
make use of the fact that the finitely presentable Boolean algebras coincide with
the finite ones.

Definition of δ : LP → PT . The idea that the semantics of a logic for coalgebras
should be described by a natural transformation LP → PT goes back to [17,6]. The
following definition is again from [20].

PX LPX
δX �� PTX

Ai

ci

��

LAi

Lci

��

∼= �� PTSAi

PTc�
i

�� (22)

PX is a filtered colimit ci : Ai → PX. Under the adjunction, this cocone corre-
sponds to a cone c�

i : X → SAi which is turned into a cocone under PT (recall that
P is contravariant). Now δX exists uniquely, since L preserves filtered colimits .

Intuitively, the logic L is complete if any two formulas identified in the semantics,
are already identified in the syntax. This is the content of the following lemma.

Assumption: From now on we take A = BAS′
and X = SetS

′
with the functors

P and S sort-wise as in Example 6.1.

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 191

Lemma 6.2 δX as defined above is injective.

Proof. Consider two distinct φ1, φ2 ∈ LPX. By filteredness, we find some Ai and
φ′

j ∈ Ai such that ci(φ′
j) = φj . Moreover, since in BA the finitely presentable objects

are closed under quotients, we can assume ci to be injective. The following fact is
easily proved.

Claim: Let A be finite. c : A → PX is injective iff the adjoint transpose c� : X →
SA is surjective.

Indeed, by the laws of adjunction and A being finite, we have that c is A ∼= PSA
Pc�−→

PX; now Pc� = (c�)−1 is injective iff c� is surjective, which proves the claim. Using
that T , as any functor on SetS

′
, preserves surjective maps and that P maps surjective

maps to injective BAS′
-homomorphisms, we conclude that PTc�

i is injective, hence
δX(φ1) �= δX(φ2). �

Theorem 6.3 The logic given by L as defined above is complete for T -coalgebras.

Proof. (The proof is essentially the one from [17], where the reader can find the
missing technical details.) Let L : BAS′ → BAS′

be the functor defined above. L

preserves filtered colimits and therefore, using a special property of BA and following
[20, Proposition 3.4], L preserves sifted colimits. It follows that L has a presentation,
which induces an equational logic, which in turn can be written in the usual modal-
logic style, using the correspondences between equations φ = ψ and formulas φ ↔ ψ

and between formulas φ and equations φ = �.

The semantics of an L-formula wrt a coalgebra ξ : X → TX is determined by the
arrow [[−]](X,ξ) from the initial L-algebra to the algebra LPX → PTX → PX.
Because of the naturality of δ, the semantics wrt to all coalgebras is determined
by the semantics wrt to the final coalgebra. Since we don’t assume that the final
coalgebra exists, we replace it by the corresponding final sequence Tn which is
defined as follows. We denote by = T 0 the final object in SetS

′
. p0 : T →

is given by finality and pn+1 : T (Tn) → Tn is defined to be Tpn. We think of
the Tn as approximating the final coalgebra. 3 In the same way as any coalgebra
ξ : X → TX has a unique arrow into the final coalgebra, there are canonical arrows
ξn : X → Tn to the approximants of the final coalgebra, defined inductively by
ξn+1 = T (ξn) ◦ ξ. The idea now is to interpret a formula φ ‘of depth n’ as a subset
[[φ]]n of Tn . The semantics of φ in X is then ξ−1

n ([[φ]]n). 4 To say what it means for
a formula to be of depth n we need the initial sequence of L, which we define next.

Since L is finitary the initial algebra is the colimit of the sequence Ln defined as
follows. We denote by = L0 the initial object in BAS′

. e0 : → L is given by
initiality and en+1 : Ln → L(Ln) is defined to be Len. Since L preserves sifted
colimits and hence injective maps [20, Corollary 4.10], all maps in the sequence are
injective. This means that we can consider the initial L-algebra as a union of its
approximants Ln . We call the elements of Ln formulas of depth n. The semantics

3 Indeed, if we let run the final sequence through all ordinals, we obtain the final coalgebra as a limit if it
exists, see Adamek and Koubek [2].
4 This point of view has been elaborated in [18].

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194192

of a formula of depth n is given by a BAS′
-morphism [[−]]n : Ln → PTn as follows.

P
Pp0 �� . . . PTn Ppn �� PTn+1 . . .

[[−]]0

��

e0
�� . . . Ln

[[−]]n

��

en
�� Ln+1

[[−]]n+1

��

. . .

(23)

[[−]]0 is given by initiality (and is actually the identity). [[−]]n+1 is defined to be
δT n ◦ L([[−]]n). Observe that the semantics of a formula is independent of the
particular approximant we choose (all squares in the diagram commute). Moreover,
given a coalgebra ξ : X → TX and a formula of depth n, the semantics via the initial
L-algebra and the semantics via the final sequence coincide: [[φ]](X,ξ) = ξ−1

n ([[φ]]n).
Since δ is injective and L preserves injective maps, all [[−]]n, n ∈ N, are injective.

To show completeness, suppose φ1 �= φ2 in the initial L-algebra. We find an ap-
proximant Ln , in which φ1 and φ2 are different. Any one-sided inverse i of p0 gives
rise to a T -coalgebra ξ = Tn(i) with carrier Tn . We have [[φ]](T n ,ξ) = [[φ]]n. Now
injectivity of [[−]]n shows that (Tn , ξ) provides a counter-example for φ1 = φ2. �

References

[1] S. Abramsky. Domain theory in logical form. Ann. Pure Appl. Logic, 51, 1991.

[2] J. Adámek and V. Koubek. On the greatest fixed point of a set functor. Theoret. Comput. Sci., 150,
1995.

[3] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. CUP, 1994.

[4] J. Adámek and J. Rosický. On sifted colimits and generalized varieties. Th. Appl. Categ., 8, 2001.

[5] A. Y. Aizenštat. Defining relations of finite symmetric semigroups. Math. Sb. N. S., 45, 1958.

[6] M. Bonsangue and A. Kurz. Duality for logics of transition systems. In FoSSaCS’05.

[7] M. Bonsangue and A. Kurz. Pi-calculus in logical form. In LICS’07.

[8] M. Bonsangue and A. Kurz. Presenting functors by operations and equations. In FoSSaCS’06.

[9] C. Ĉırstea and D. Pattinson. Modular construction of modal logics. In CONCUR’04.

[10] M. Fiore and C.-K. Hur. Equational systems and free constructions. In ICALP’07.

[11] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In LICS’99.

[12] M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In LICS’99.

[13] M. Hofmann. Semantical analysis of higher-order abstract syntax. In LICS’99.

[14] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform. Appl., 35,
2001.

[15] B. Klin. The least fibred lifting and the expressivity of coalgebraic modal logic. In CALCO’05.

[16] B. Klin. Coalgebraic modal logic beyond sets. In MFPS’07, 2007.

[17] C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. In CMCS’04.

[18] A. Kurz and D. Pattinson. Coalgebraic modal logic of finite rank. Math. Structures Comput. Sci., 15,
2005.

[19] A. Kurz and J. Rosický. The Goldblatt-Thomason-theorem for coalgebras. In CALCO’07.

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194 193

[20] A. Kurz and J. Rosický. Strongly complete logics for coalgebras. July 2006. Submitted.

[21] L. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96, 1999.

[22] D. Pattinson. Semantical principles in the modal logic of coalgebras. In STACS’01.

[23] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local consequence.
Theoret. Comput. Sci., 309, 2003.

[24] D. Robinson. A Course in the Theory of Groups. Springer, 1996.

[25] M. Rößiger. Coalgebras and modal logic. In CMCS’00.

[26] L. Schröder. Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In FoSSaCS’05.

A. Kurz, D. Petrişan / Electronic Notes in Theoretical Computer Science 203 (2008) 175–194194

	Chapman University
	Chapman University Digital Commons
	2008

	Functorial Coalgebraic Logic: The Case of Many-Sorted Varieties
	Alexander Kurz
	Daniela Petrişan
	Recommended Citation

	Functorial Coalgebraic Logic: The Case of Many-Sorted Varieties
	Comments
	Creative Commons License
	Copyright

	Introduction
	Some preliminaries
	Presenting algebras and functors
	Equational logic for higher-order abstract syntax
	Modular coalgebraic logic
	Uniform completeness proofs
	References

