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Abstract

This paper examines a game-theoretic model of attack and defense of multiple networks of

targets in which there exist intra-network strategic complementarities among targets. The

defender’s objective is to successfully defend all of the networks and the attacker’s objective is

to successfully attack at least one network of targets. Although there are multiple equilibria,

we characterize correlation structures in the allocations of forces across targets that arise

in all equilibria. For example, in all equilibria the attacker utilizes a stochastic ‘guerrilla

warfare’ strategy in which a single random network is attacked.

Keywords: Allocation Game, Asymmetric Conflict, Attack and Defense, Colonel Blotto

Game, Weakest-Link



1 Introduction

In the literature on game-theoretic models of attack and defense there has been a grow-

ing interest in the attack and defense of networks of targets. One focus of the work on the

strategic role of network structure in this context is the role that strategic complementarities

among targets play in creating structural asymmetries between the attack and defense of a

network. For example in complex infrastructure networks — such as communication sys-

tems, electrical power grids, water and sewage systems, oil pipeline systems, transportation

systems, and cyber security systems — there often exist particular targets or combinations

of targets which if destroyed would be sufficient to either (a) disable the entire network or

(b) create a terrorist “spectacular.”

The focus of this article is on strategic behavior in the attack and defense of a supra-

network of targets made up of an arbitrary combination of two simple types of sub-networks.

These two types capture the two extreme endpoints of an exposure-redundancy spectrum

of network types. The maximal exposure network, which we label a weakest-link network,

is successfully defended if and only if the defender successfully defends all targets within

the network.1 The maximal redundancy network, which we label a best-shot network, is

successfully defended if and only if the defender successfully defends at least one target within

the network. At each target the conflict is modeled as a deterministic contest in which the

player who allocates the higher level of force wins the target with probability one. Given

that the loss of a single network may be sufficient to either disable the entire supra-network

or create a terrorist “spectacular,” we focus on the case in which the defender’s objective

is to successfully defend all of the networks and the attacker’s objective is to successfully

1See Hirshleifer (1983) who coins the terms best-shot and weakest-link in the context of the voluntary
provision of public goods. Such best-shot and weakest-link complementarities arise in a number of environ-
ments. See for example the literature on group contests, e.g. Baik (2008), Baik et al. (2001), Barbieri et al.
(2014), Chowdhury et al. (2013, 2016), Katz et al. (1990), Kolmar and Rommeswinkel (2013), Lee (2012),
and Topolyan (2014).
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attack at least one network of targets. That is, the supra-network is assumed to be weakest

link.

We examine properties arising in the set of Nash equilibria of a simultaneous move game

of attack and defense of the supra-network of targets. In this game the attacker’s objective

is to maximize the probability of winning at least one sub-network times his payoff for the

successful attack of at least one sub-network, vA, net of the expenditure on forces, which are

allocated at a constant unit cost. Conversely, the defender’s objective is to maximize the

probability of preserving the entire supra-network times his payoff for successfully defending

all sub-networks in the supra-network, vD, net of his expenditure on forces, also allocated

at constant unit cost. A distinctive feature of this environment is that a mixed strategy is a

joint distribution function in which the randomization in the force allocation to each target

is represented as a separate dimension. A pair of equilibrium joint distribution functions

specifies not only each player’s randomization in force expenditures to each target, but also

the correlation structure of the force expenditures within and across the networks of targets.

For all parameter configurations, we construct a Nash equilibrium pair of distribution func-

tions and completely characterize the unique set of Nash equilibrium univariate marginal

distributions and the unique equilibrium payoff of each player. Furthermore, we show that

in any equilibrium the attacker launches an attack on at most one network within the supra-

network and the resulting force allocation depends on the type of network attacked. In the

event of an attack on a weakest-link network, the attacker optimally allocates a positive force

level to only a single target within the network. When a best-shot network is attacked, the

attacker optimally attacks every target in that network with a strictly positive force level.

Our results on endogenous force correlation structures in games of attack and defense

are closely related to the literature on the classic Colonel Blotto game.2 Originating with

2Recent work on Blotto-type games includes extensions such as: asymmetric players (Roberson 2006,
Hart 2008, Weinstein 2012, Dziubiński 2013, Macdonell and Mastronardi 2015), non-constant-sum variations
(Kvasov 2007, Hortala-Vallve and Llorente-Saguer 2010, 2012, Roberson and Kvasov 2012), alternative
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Borel (1921), the Colonel Blotto game is a two-player game in which each player allocates his

fixed level of forces across a finite number of battlefields, within each battlefield the higher

allocation wins, and each player maximizes the expected number of battlefield wins. As in

our game of attack and defense, a mixed strategy is a joint distribution function. However, in

the Colonel Blotto game it is the budget constraint that creates a linkage between the force

allocations to the individual battlefields. Allocating force to a specific battlefield reduces the

level of forces that can be allocated to other battlefields. Conversely, the linkages in our game

of attack and defense arise because of the definition of success for each of the players.3 Each

player receives a “prize” if they win a critical number of battlefields. There are a number

of related games that display similar objective-based linkages. For example, Szentes and

Rosenthal (2003a) and Ewerhart (2017a) examine the so-called “chopstick auction” in which

three identical objects are separately, but simultaneously, auctioned and each of two players

wins a fixed prize of known and common value if and only if he wins at least two of the

three objects. The player placing the highest bid on a given object wins the object. Szentes

and Rosenthal (2003a) examine both winner-pay and all-pay versions of this auction. In the

winner-pay version, a bid that does not win an object is refunded. In the all-pay version,

all bids are forfeited. Ewerhart (2017a) constructs a new ‘fractal’ type of equilibrium for

the chopsticks auction. Szentes and Rosenthal (2003b) examine a related n-player game in

which each player’s objective is to secure a super-majority of auction wins. The model we

examine here differs in that the critical number of battlefields is asymmetric across players.4

Our model features an environment in which random noise plays little role in determining

definitions of success (Golman and Page 2009, Tang, Shoham, and Lin 2010, Rinott, Scarsini, and Yu 2012),
and political economy applications (Laslier 2002, Laslier and Picard 2002, Roberson 2008, Thomas 2017).

3In a related attack and defense game, Bernhardt and Polborn (2010) examine a cost-based asymmetry
between attack and defense. In that case, the “committed” attacker experiences no opportunity costs from
allocating forces and continues attacking targets until either he runs out of targets or is defeated.

4See Kovenock and Roberson (2012) for a survey of cost- and objective-based linkages in multidimensional
resource allocation games. See also Arce, Kovenock and Roberson (2012) which examines a related game
with multiple attack technologies.
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the outcomes at the targets — at each target the player with the largest resource expen-

diture for the target wins the target with certainty.5 Closely related is the literature on

simultaneous-move multidimensional resource allocation games in which the conflict at each

target features a softer form of competition that emphasizes the role of random noise in

determining the outcomes at the targets.6 For example, under the Tullock contest success

function (henceforth, CSF) the probability that a player wins a target is equal to the ratio

of the player’s resource expenditure at the target to the sum of all of the players’ expen-

ditures at the target. The case of the attack and defense of a single weakest-link network

of targets with the outcome at each target determined by the Tullock CSF is examined by

Clark and Konrad (2007) who find that under this softer form of competition the attacker

optimally chooses a complete coverage strategy in which each and every target is attacked

with certainty.

In contrast to Clark and Konrad (2007), we find that when the factors influencing target

outcomes are explicitly captured in the model, with unmodeled factors or “noise” playing

little or no role, attackers utilize a stochastic guerrilla warfare strategy in all equilibria,

which for the special case that the supra-network consists of a single weakest-link network

involves a single random target being attacked but with positive probability each target

is chosen as the one to be attacked.7 Interestingly, this single attack feature also arises in

5This corresponds to the limiting case of the general ratio-form contest success function am/(am + dm)
where m is set to ∞ and a and d are the two players’ allocations of force. The parameter m ∈ R+ is
inversely related to the level of noise in the conflict: low values imply a large amount of noise and high
values correspond to low or no noise. Because (for a single contest with linear costs) pure-strategy equilibria
fail to exist for all m greater than 2 and all equilibria in one-shot contests are payoff and revenue equivalent
to the m = ∞ case whenever m > 2 (Ewerhart 2017b), the case of m = ∞ is viewed as an important
theoretical benchmark that is relevant for all m > 2.

6See for example Snyder (1989) and Klumpp and Polborn (2006) which examine related games featuring
the symmetric majoritarian objective in the context of politicians engaged in a campaign resource allocation
game.

7Kovenock, Roberson, Sheremeta (2010) experimentally examine behavior in a specification of the game
of attack and defense of a single weakest-link network of targets where the conflict at each target is modeled
by the Tullock CSF and the specification given in this paper with the auction CSF. Consistent with the
theoretical prediction under the auction CSF, attackers utilize a stochastic guerrilla warfare strategy — in
which a single random target is attacked — more than 80% of the time. Under the lottery CSF, attackers
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Chowdhury and Topolyan (2016a) who examine a group-contest version of Clark and Konrad

(2007) in which the force allocations of a group of attackers are aggregated according to the

maximum effort, or best-shot, of the group and the force allocations of a group of defenders

are aggregated according to the minimum effort, or weakest-link, of the group and successful

attack or defense is a public good across the group of attackers and defenders respectively.8

In that context, Chowdhury and Topolyan (2016a) find that free-riding effects among the

group of attackers give rise to a single attacker allocating a strictly positive level of force in

equilibrium.

Also related is the literature on sequential-move models of the attack and defense of

a network of targets, in which the defender is an exogenously imposed leader — implying

that the attacker’s force allocations can be made contingent on the defender’s allocation.

Dziubiński and Goyal (2013, 2017) examine a three-stage game in which the defender first

designs the network and then chooses which nodes to perfectly defend, where there is a con-

stant per node cost of defense. Then, the attacker observes the network and its defense and

chooses a subset of the undefended nodes to destroy, where there is a constant per node cost

to attack. Dziubiński and Goyal (2013) shows that the equilibrium network design depends

critically on the cost to attack and defend nodes, where for a range of parameters equilib-

rium features a star network with the center node being defended. Dziubiński and Goyal

(2017) identify a class of networks that minimize conflict (as measured by total expenditures

on attack and defense) and examine decentralized defense of the nodes. Hoyer and Jaegher

(2016) examine a related two-stage game that differs in that the first stage network formation

entails link formation costs, there is no (second-stage) defense, and the equilibrium network

utilize the stochastic guerrilla warfare strategy almost 45% of the time, and the theoretical prediction of the
attacker covering all of the targets is observed less than 30% of the time.

8See also Chowdhury and Topolyan (2016b) who examine a group all-pay auction with a weakest-link
group versus a best-shot group. Note, however, that in group contests, each player makes a one-dimensional
effort decision, and, thus, the group coordination issues arising in that setting fundamentally differ from the
case of a single player making a multi-dimensional force allocation decision, which, in the case of a mixed
strategy, may utilize a nontrivial correlation pattern among stochastic battlefield allocations.
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design depends critically on the cost to form links and to attack nodes, where, for a range

of parameters, a star network arises in equilibrium.

Acemoglu et al. (2016) and Goyal and Vigier (2014) examine sequential-move models

that allow for attacks to be contagious, such as with a computer virus. The attacker observes

defensive efforts and then either randomizes over where to attack (Acemoglu et al. 2016)

or allocates resources across targets and the outcome at each target is determined by the

Tullock CSF (Goyal and Vigier 2014). In Acemoglu et al. (2016) a group of individuals

form the node set in a network with random links and each individual in the network makes

an investment in security – that lowers the probability that an attack on a given node is

successful. Decentralization is shown to result in over investment in defense in this setting.

Conversely, in Goyal and Vigier (2014), there is a network designer who first designs the

network and then allocates resources across the network. In equilibrium, the network is,

for a range of parameters, a star network and all defensive resources are allocated to the

center node. Lastly, in sequential-move reliability-theoretic models such as Bier et al. (2007),

and Powell (2007a, b), defensive resources increase the stochastic reliability of a target in

the event of an attack, the defender’s payoff is additive with respect to the values of the

surviving targets, and it is exogenously specified that the attacker uses a guerrilla warfare

strategy consisting of an attack on a single target. In the case that the defender has private

information concerning the vulnerability of the individual targets, as in Powell (2007b), this

sequential-move structure gives rise to an interesting signaling problem in that the defender

would like to protect the most vulnerable targets but does not want to signal to the attacker

which targets are the most vulnerable.

In contrast, our simultaneous-move model is motivated by applications such as informa-

tion or transportation network defense or border defense, where attackers must either take

actions before being certain of the allocation of defensive resources or where strategies like

random monitoring or deployment may be employed by defenders and, thus, defensive re-
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sources can either be concealed or randomly allocated with sufficient speed that it is difficult

to argue that attacker allocations can be made contingent on defensive allocations. Further-

more, by endogenizing the attacker’s entry and force expenditure decisions, our approach

sheds light not only on the conditions under which the assumption of one attack is likely

to hold, but also related issues such as how the defender’s actions can decrease the number

and/or intensity of attacks.

Section 2 presents the model of attack and defense with networks of targets. Section 3

characterizes a Nash equilibrium and explores properties of the equilibrium distributions of

force. Section 4 concludes.

2 The Model

Players

The model is formally described as follows. Two players, an attacker, A, and a defender, D,

simultaneously allocate their forces across a finite number, n ≥ 2, of heterogeneous targets.

The players’ payoffs depend on the composition of each of the networks of targets in the

supra-network. We examine a supra-network consisting of any arbitrary combination of two

types of simple networks.

The targets are partitioned into a finite number k ≥ 1 of disjoint networks, where network

j ∈ {1, . . . , k} consists of a finite number nj ≥ 1 of targets with
∑k

j=1 nj = n. Let Nj denote

the set of targets in network j. Let W denote the set of weakest-link networks and B denote

the set of best-shot networks.

In a best-shot network the network is successfully defended if the defender allocates at

least as high a level of force to at least one target within the network. Conversely, an

attack on a best-shot network is successful if the attacker allocates a higher level of force to

each target in the network. Let xiA (xiD) denote the level of force allocated by the attacker

7



(defender) to target i. Define

ιBj =















1 if ∀ i ∈ Nj | x
i
A > xiD

0 otherwise

.

Observe that for each target, the player that allocates the higher level of force wins that

target, but in order to win the network the attacker must win all of the targets. In a best-

shot network, a tie arises when player A allocates a level of force to each target in the network

that is at least as great as player D’s allocation, and there exists at least one target in the

network to which the players allocate the same level of force. In this case, the defender wins

the network.

In the second type of network, which we label a weakest-link network, the network is

successfully defended if the defender allocates at least as high a level of force to all targets

within the network. Conversely, an attack on a weakest-link network is successful if the

attacker allocates a higher level of force to any target in the network. Define

ιWj =















1 if ∃ i ∈ Nj | x
i
A > xiD

0 otherwise

.

Again, in the case of a tie, the defender is assumed to win the network.9

The players are risk neutral and have asymmetric objectives. The attacker’s objective is

to successfully attack at least one network, and the attacker’s payoff for the successful attack

9Note that a for a given supra-network, our classification of weakest-link and best-shot networks is equiv-
alent to alternative classifications such as: (1) combining all weakest-link networks into a single weakest-link
network, because the attacker wins if any target in the set of weakest-link networks is lost or (2) replacing
each weakest-link network with a collection of singleton target best-shot networks, one best-shot network for
each target in the weakest-link network.
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of at least one network is vA > 0. The attacker’s payoff function is given by

πA (xA,xD) = vAmax
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

−
n
∑

i=1

xiA

The defender’s objective is to preserve the entire supra-network, and the defender’s payoff

for successfully defending the supra-network is vD > 0. The defender’s payoff function is

given by

πD (xA,xD) = vD

(

1−max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

))

−
n
∑

i=1

xiD.

The force allocated to each target must be nonnegative.

It is important to note that our formulation utilizes an auction contest success func-

tion.10 It is well known that, because behavior is invariant with respect to positive affine

transformations of utility, all-pay auctions in which players have different constant unit costs

of resources may be transformed into behaviorally equivalent all-pay auctions with identical

unit costs of resources, but suitably modified valuations. This result extends directly to the

environment examined here, and thus, our focus on asymmetric valuations also covers the

case in which the players have different constant unit costs of resources.

Also observe that in the formulation described above the supra-network is a weakest-link

supra-network. That is if the defender loses a single network then the entire supra-network is

inoperable. By interchanging the identities of player A and player D, our results on weakest-

link supra-networks apply directly to the case of best-shot supra-networks (where a best-shot

supra-network is a supra-network which is successfully defended if the defender successfully

defends at least one network).

Figure 1 provides a representative supra-network consisting of 5 networks (A, B, C, D,

and E). Networks A, C, and E are weakest-link (series) networks with two targets each.

Networks B and D are best-shot (parallel) networks with five targets each. In order to

10See Baye, Kovenock, and de Vries (1996).
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preserve the entire supra-network player D’s objective is to preserve a path across the entire

network. If a single target in networks A, C, or E is destroyed then the supra-network is

inoperable. Conversely, in networks B and D all of the targets must be destroyed in order

to render the supra-network inoperable.

[Insert Figure 1 here]

Strategies

It is clear that there is no pure strategy equilibrium for this class of games. A mixed

strategy, which we term a distribution of force, for player i is an n-variate distribution

function Pi : R
n
+ → [0, 1]. The n-tuple of player i’s allocation of force across the n targets is

a random n-tuple drawn from the n-variate distribution function Pi.

Model of Attack and Defense with Networks of Targets

The model of attack and defense with networks of targets, which we label

ADN
{

{Nj}j∈B , {Nj}j∈W , vA, vD

}

,

is the one-shot game in which players compete by simultaneously announcing distributions

of force, each target is won by the player that provides the higher allocation of force for that

target, ties are resolved as described above, and players’ payoffs, πA and πD, are specified

above.
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3 Optimal Distributions of Force

It is useful to introduce a simple summary statistic that captures both the asymmetry in the

players’ valuations and the structural asymmetries arising in the supra-network.

Definition 1. Let α = vD/(vA[
∑

j∈W nj +
∑

j∈B
1
nj
]) denote the normalized relative strength

of the defender.

Several properties of this summary statistic should be noted. First, the normalized

relative strength of the defender is increasing in the relative valuation of the defender to

the attacker (vD/vA), and is decreasing in the level of exposure arising in the supra-network

(
∑

j∈W nj +
∑

j∈B
1
nj
). In particular, the defender’s exposure is increasing in the number

of weakest-link targets (
∑

j∈W nj), and is decreasing in the number of targets within each

best-shot network (
∑

j∈B
1
nj
).

For all parameter ranges, Theorem 1 establishes the uniqueness of: (i) the players’ equilib-

rium expected payoffs and (ii) the players’ sets of univariate marginal distributions. Theorem

1 also provides a pair of equilibrium distributions of force for all parameter ranges. Case (1)

of Theorem 1 examines the parameter configurations for which the defender has a normal-

ized relative strength advantage, i.e. α ≥ 1. Case (2) of Theorem 1 addresses the parameter

configurations for which the defender has a normalized relative strength disadvantage, i.e.

α < 1. It is important to note that the stated equilibrium distributions of force (n-variate

distributions) are not unique. However, in Propositions 1-3 we characterize properties of

optimal attack and defense that hold in all equilibria.

Theorem 1. For any feasible parameter configuration of the game ADN{{Nj}j∈B, {Nj}j∈W ,

vA, vD} there exists a unique set of Nash equilibrium univariate marginal distributions and a

unique equilibrium payoff for each player. One such equilibrium is for each player to allocate

his forces according to the following n-variate distribution functions:

11



(1) If α ≥ 1, then for player A and x ∈
∏

j∈W [0, vA]
nj ×

∏

j∈B[0,
vA
nj
]nj

PA (x) = 1−
1

α
+

∑

j∈W

∑

i∈Nj
xi +

∑

j∈B mini∈Nj{x
i}

vD

Similarly for player D and x ∈
∏

j∈W [0, vA]
nj ×

∏

j∈B[0,
vA
nj
]nj

PD (x) = min





{

mini∈Nj {x
i}

vA

}

j∈W

,

{
∑

i∈Nj
xi

vA

}

j∈B





The expected payoff for player A is 0, and the expected payoff for player D is vD(1−
1
α
).

(2) If α < 1, then for player A and x ∈
∏

j∈W [0, αvA]
nj ×

∏

j∈B[0,
αvA
nj

]nj

PA (x) =

∑

j∈W

∑

i∈Nj
xi +

∑

j∈B mini∈Nj{x
i}

vD

Similarly for player D and x ∈
∏

j∈W [0, αvA]
nj ×

∏

j∈B[0,
αvA
nj

]nj

PD (x) = 1− α +min

(

{

min {xi}i∈Nj
vA

}

j∈W

,

{

∑

i∈Nj
xi

vA

}

j∈B

)

The expected payoff for player D is 0, and the expected payoff for player A is vA(1−α).

Proof. The proof of the uniqueness of the players’ equilibrium expected payoffs and sets of

univariate marginal distributions is given in the Appendix. We now establish that the pair

of n-variate distribution functions given in case (1) constitute an equilibrium for α ≥ 1. The

proof of case (2) is analogous. The Appendix (see Lemma 5) establishes that in any n-tuple

drawn from any equilibrium n-variate distribution PA player A allocates a strictly positive

level of force to at most one network of targets. If the network which receives the strictly

positive level of force is a weakest-link network, then exactly one target in that network

receives a strictly positive level of force. Although not a necessary condition for equilibrium,
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the PA described in Theorem 1 also displays the property that when the network which

receives the strictly positive level of force is a best-shot network the force allocated to each

target in that network is an almost surely increasing function of the force allocated to any of

the other targets in that network. The Appendix (see Lemma 5) also establishes that in any

n-tuple drawn from any equilibrium n-variate distribution PD player D allocates a strictly

positive level of force to at most one target in each best-shot network of targets.

We will now show that for each player each point in the support of their equilibrium

n-variate distribution function, PA or PD, given in case (1) of Theorem 1 results in the same

expected payoff, and then show that there are no profitable deviations from this support.

We begin with the case in which player A attacks a single target in a single weakest-

link network. The probability that player A wins target i in network j ∈ W is given by

the univariate marginal distribution PD(x
i
A, {{vA}i′∈Nj′ |xi

′

A
=0}j′∈W , {{

vA
nj′

}i′∈Nj′}j′∈B), which

we denote as P i
D(x

i
A). Given that player D is using the equilibrium strategy PD described

above, the payoff to player A for any allocation of force xA ∈ R
n
+ which allocates a strictly

positive level of force to a single target i in a weakest-link network j ∈ W is

πA (xA, PD) = vAP
i
D(x

i
A)− xiA.

Simplifying,

πA (xA, PD) = vA

(

xiA
vA

)

− xiA = 0.

Thus the expected payoff to player A from allocating a strictly positive level of force to only

one target in any weakest-link network is 0 regardless of which target is attacked.

Next, we examine the case in which player A attacks a single best-shot network. The

probability that player A wins every target in network j ∈ B is given by the nj-variate

marginal distribution PD({x
i
A}i∈Nj , {{vA}i′∈Nj′}j′∈W , {{

vA
nj′

}i′∈Nj′}j′∈B|j′ 6=j), which we denote

as P
Nj
D ({xiA}i∈Nj). Given that player D is using the equilibrium strategy PD described above,

13



the payoff to player A for any allocation of force xA ∈ R
n
+ which allocates a strictly positive

level of force only to the targets in a best-shot network j ∈ B, and allocates zero forces to

every other network is

πA (xA, PD) = vAP
Nj
D

(

{xiA}i∈Nj
)

−
∑

i∈Nj

xiA.

Simplifying,

πA (xA, PD) = vA

(
∑

i∈Nj
xiA

vA

)

−
∑

i∈Nj

xiA = 0.

Thus, the expected payoff to player A from allocating a strictly positive level of force to only

one best-shot network is 0 regardless of which best-shot network is attacked.

For player A, possible deviations from the support include allocating a strictly positive

level of force to: (a) two or more targets in the same weakest-link network, (b) two or more

targets in different weakest-link networks, (c) two or more best-shot networks, and (d) any

combination of both weakest-link and best-shot networks.

Beginning with (a), the probability that player A wins both targets i and i′ in network j ∈

W is given by the bivariate marginal distribution PD(x
i
A, x

i′

A, {{vA}i′′∈Nj′ |i′′ 6=i,i′}j′∈W , {{
vA
nj′

}i′′∈Nj′}j′∈B),

which we denote as P i,i′

D (xiA, x
i′

A). The payoff to player A for any allocation of force xA ∈ R
n
+

which allocates a strictly positive level of force to two targets i, i′ in a weakest-link network

j ∈ W is

πA (xA, PD) = vAP
i
D

(

xiA
)

+ vAP
i′

D

(

xi
′

A

)

− vAP
i,i′

D

(

xiA, x
i′

A

)

− xiA − xi
′

A.

Simplifying,

πA (xA, PD) = vA

(

xiA
vA

+
xi

′

A

vA
−

min
{

xiA, x
i′

A

}

vA

)

− xiA − xi
′

A < 0.
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The case of player A allocating a strictly positive level of force to more than two targets

in a weakest-link network follows directly. Clearly, in any optimal strategy player A never

allocates a strictly positive level of force to more than one target within a weakest-link

network.

The proof for type (b) deviations follows along similar lines. Thus, in any optimal strategy

player A never allocates a strictly positive level of force to more than one target within a

weakest-link network of targets or in different weakest-link networks.

For type (c) deviations, the probability that player A wins all of the targets in both best-

shot networks j, j′ ∈ B is given by the (nj + nj′)-variate marginal distribution

PD({x
i
A}i∈Nj∪Nj′ , {{vA}i′′∈Nj′′}j′′∈W , {{

vA
nj′′

}i′′∈Nj′′}j′′∈B|j′′ 6=j,j′), which we denote as

P
Nj ,Nj′

D

(

{xiA}i∈Nj∪Nj′

)

. The payoff to player A for any allocation of force xA ∈ R
n
+ which

allocates a strictly positive level of force to exactly two best-shot networks j, j′ ∈ B is

πA (xA, PD) =

vAP
Nj
D

(

{xiA}i∈Nj
)

+ vAP
Nj′

D

(

{xiA}i∈Nj′

)

− vAP
Nj,Nj′

D

(

{xiA}i∈Nj∪Nj′

)

−
∑

i∈Nj∪Nj′

xiA.

Simplifying,

πA (xA, PD) = −vAmin

{
∑

i∈Nj
xiA

vA
,

∑

i∈Nj′
xiA

vA

}

The case of player A allocating a strictly positive level of force to more than two best-shot

networks follows directly. Clearly, in any optimal strategy player A never allocates a strictly

positive level of force to more than one best-shot network.

The case of type (d), follows along similar lines. Thus, the expected payoff from each

point in the support of the n-variate distribution PA results in the same expected payoff, 0,

and there exist no allocations of force which have a higher expected payoff.

The case for player D follows along similar lines.
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Although the equilibrium distributions of force stated in Theorem 1 are not unique,11 it is

useful to provide some intuition regarding the existence of this particular equilibrium before

moving on to the characterization of properties of optimal attack and defense that hold in all

equilibria (Propositions 1-3). The supports of the equilibrium distributions of force stated

in Theorem 1 are given in Figure 2 for two different parameter configurations. Panels (i)

and (ii) of Figure 2 provide the supports for the attacker and defender, respectively, in the

case that there is one weakest-link network with two targets (i = 1, 2). Panels (iii) and (iv)

of Figure 2 provide the supports for the attacker and defender, respectively, in the case that

there is one best-shot network with two targets (i = 1, 2) and one weakest-link network with

one target (i = 3).

[Insert Figure 2]

Across all of the Panels (i)-(iv), if α = 1 then each player randomizes continuously over

their respective shaded line segments. In the event that the defender has a normalized

relative strength advantage (α > 1), the defender’s strategy stays the same, but the attacker

now places a mass point of size 1− (1/α) at the origin and randomizes continuously over the

respective line segments with the remaining probability. Conversely, if the defender has a

normalized relative strength disadvantage (α < 1) then it is the defender who places a mass

point (of size 1− α) at the origin.

Beginning with Panels (i) and (ii), recall that if the attacker successfully attacks a single

target in a weakest-link network the entire network is disabled. As shown in Panel (i) the

11For example, in the case (1) parameter range of Theorem 1 another equilibrium strategy for player D is
to use the distribution of force

PD (x) = min





{
∏

i∈Nj
xi

vA

}

j∈W

,

{
∑

i∈Nj
xi

vA

}

j∈B



 .
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attacker launches an attack on at most one target. To successfully defend a weakest-link

network, the defender must win every target within the network. As shown in Panel (ii) the

defender’s allocation of force to target i is an almost surely strictly increasing function of

the force allocated to target −i. Note that if the attacker launches an attack on at most

one target, then the probability that any single attack is successful depends only on the

univariate marginal distributions of the defender’s (n-variate joint) distribution of force. In

addition, the defender’s expected force expenditure depends only on his set of univariate

marginal distributions, and, for a given set of univariate marginal distributions, is invariant

to the correlation structure.12 Finally, note that given the defender’s choice of correlation

structure [Panel (ii)], the attacker’s probability of at least one successful attack depends only

on the maximum of his force allocations across the two targets. That is, given the defender’s

distribution of force, if the set of points such that xiA > x−iA > 0 for some i ∈ {1, 2} has

positive probability, then the attacker can strictly increase his expected payoff by reducing

x−iA to x−iA = 0 for all such points. In such a deviation, the probability of at least one successful

attack is unaffected, but the attacker’s expected force expenditure decreases. Thus, at each

point in the support of an optimal distribution of force the attacker launches at most one

attack.

Panels (iii) and (iv) examine a simple supra-network with one best-shot network and one

weakest-link network. In Panel (iii), note that the attacker launches an attack on at most

one network. In the event that the best-shot network is attacked, the attacker’s allocation

of force to target i in the best-shot network is an almost surely strictly increasing function

of the force allocated to target −i in the network. In Panel (iv), note that the defender

allocates a strictly positive level of force to at most one of the targets i ∈ {1, 2} in the

best-shot network, and that the level of force allocated to the sole target in the weakest-link

12More formally, for a given set of univariate marginal distribution functions, the expected force expendi-
ture is invariant to the mapping into a joint distribution function, i.e. the n-copula. For further details see
Nelsen (2006).
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network is an almost surely increasing function of the level of force allocated to the best-shot

network. Given these correlation structures, the intuition for why the attacker launches an

attack on at most one network in the supra-network follows along the lines given above for

the weakest-link network in which at most one target was attacked.

We now characterize the qualitative features arising in all equilibrium distributions of

force. Proposition 1 examines the number of networks that are simultaneously attacked as

well as the number of targets within each network that are simultaneously attacked and

defended. Propositions 2 and 3 examine the likelihood that the attacker optimally chooses

to launch an attack on any given network, and the likelihood that the attacker launches no

attack or the defender leaves the supra-network undefended.

Proposition 1. In any equilibrium {PA, PD}:

1. Player A allocates a strictly positive level of force to at most one network.

2. If player A allocates a strictly positive level of force to a weakest-link network, then

one target in that network receives a strictly positive level of force

3. In each best-shot network player D allocates a strictly positive level of force to at most

one target in the network.

The formal proof of Proposition 1 is given in the appendix (see Lemma 5). The intuition

for Proposition 1 follows from the fact that the likelihood that player D successfully defends

all of the networks (and therefore player D’s expected payoff) is weakly decreasing in the

number of networks that player A chooses to simultaneously attack. However, player D has

the ability to vary the correlation structure of his force allocations while leaving invariant: (i)

his network specific multivariate marginal distributions of force, (ii) his univariate marginal

distributions of force, and (iii) his expected expenditure. Furthermore, there exist correlation

structures for which the likelihood that player D successfully defends all of the networks
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depends only on player A’s force allocation to the one network which receives the highest

level of force from player A. Given that player D is using such a correlation structure, player

A optimally attacks at most one network at a time.

Proposition 2. If α ≥ 1, then in any equilibrium {PA, PD}:

1. The probability that any weakest-link network j is attacked (i.e., the probability that

the attacker allocates a strictly positive level of force to weakest-link network j) is

(njvA/vD), which is increasing in the number of targets in network j and the attacker’s

valuation of success and decreasing in the defender’s valuation of successfully defending

the entire supra-network.

2. The probability that any best-shot network j is attacked is (vA)/(njvD), which is in-

creasing in the attacker’s valuation of success and is decreasing in both the defender’s

valuation and the number of targets in network j.

3. The attacker optimally attacks no network in the supra-network with probability 1 −

(1/α).

In the Appendix, we provide the univariate marginal distributions that arise in any

equilibrium joint distribution of the attacker. Moreover, we show that if α > 1, then in any

equilibrium the attacker places a mass point at the origin. Proposition 2 follows directly. The

probability that a network j is attacked is equal to one minus the attacker’s mass point at

zero in the nj-variate marginal distribution for network j, P
Nj
A ({xi}i∈Nj). The likelihood that

the attacker optimally chooses to launch no attack is increasing in the defender’s valuation

of success and decreasing in the attacker’s valuation of success.

For α ≥ 1, the attacker’s valuation is low enough relative to the defender’s valuation that

the optimal strategy includes not launching an attack with positive probability. For α < 1,

the attacker optimally launches an attack with certainty. In this case the probability that any
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given network of targets is attacked depends only on the number of targets in the network

and the type of network. The proof of Proposition 3 also follows from the characterization

of the properties of equilibrium joint distributions given in the Appendix.

Proposition 3. If α < 1, then in any equilibrium {PA, PD}:

1. The probability that any weakest-link network j is attacked (i.e., the probability that

the attacker allocates a strictly positive level of force to weakest-link network j) is

nj/([
∑

j′∈W nj′ +
∑

j′∈B
1
nj′

]), which is increasing in the number of targets in network

j.

2. The probability that any best-shot network j is attacked is 1/(nj[
∑

j′∈W nj′+
∑

j′∈B
1
nj′

]),

which is decreasing in the number of targets in network j.

3. The defender optimally leaves the entire supra-network undefended with probability

1− α.

If α ≥ 1, the defender optimally chooses, with certainty, to allocate a strictly positive

level of defensive force. However, if α < 1, the defender optimally chooses to leave the entire

supra-network undefended with positive probability. Furthermore, the likelihood that the

defender chooses to leave the entire supra-network undefended is increasing in the attacker’s

valuation of success and decreasing in the defender’s valuation of successfully defending the

entire supra-network.

To summarize, the following conditions hold in all equilibria. If α > 1 the attacker

optimally chooses not to launch an attack with positive probability. Regardless of the value

of α, the attacker optimally launches an attack on at most one network. In the event that

a weakest-link network is attacked, only one target within the network is attacked. The

likelihood that any individual network is attacked depends on the number of targets within

the network. In each weakest-link network the likelihood of attack is increasing in the number
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of targets. In each best-shot network the likelihood of attack is decreasing in the number of

targets. If α < 1, the defender optimally leaves the entire supra-network undefended with

positive probability. Lastly, regardless of the value of α, when the defender chooses to defend

the supra-network, within each best-shot network, the defender randomly chooses at most

one target to defend.

4 Conclusion

This paper examines a game-theoretic model of attack and defense of a supra-network,

made up of a combination of weakest-link and best-shot networks of targets. The model

features asymmetric objectives: the defender wishes to successfully defend all networks and

the attacker’s objective is to successfully attack at least one network. Although the model

allows for general correlation structures for force expenditures within and across the networks

of targets, for any such configuration of networks, we derive the unique equilibrium expected

payoffs of the attacker and defender and demonstrate that there exists a unique equilibrium

univariate marginal distribution of forces to each target. An equilibrium pair of strategies

for the attacker and defender, each of which is a joint distribution governing the allocation

of forces to all targets, is also constructed, although these are generally non-unique.

Our approach leads to a wealth of interesting extensions and applications. Because the

game examined here is a set of complete information all-pay auctions linked by payoff com-

plementarities, almost any extension of the standard one-dimensional strategic allocation

problem represented by the standard all-pay auction with complete information has a corre-

sponding extension in this game. Examples include, incomplete information, about values or

unit costs of forces, affine handicapping of players within target contests, and nonlinear costs

of forces.13 In addition, as in other models of strategic multidimensional resource allocation,

13Examples of these extensions for the one-dimensional strategic allocation problem include Amann and
Leininger (1996), Krishna and Morgan (1997), Moldovanu and Sela (2001, 2006), Gale and Stegeman (1994),
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such as Colonel Blotto games, interesting extensions arise by introducing more heterogeneity

across targets, such as allowing for differential target values for attacker and defender within

the weakest-link and best-shot structure, or other linkages across targets, such as budget

constraints or “infrastructure technologies” that allow lumpy force expenditure across sets

of multiple targets or networks. Furthermore, because our model succeeds in pinning down

unique equilibrium payoffs for arbitrary network configurations and player valuations, it

readily serves as a component model for multistage models of network investment, where

uniqueness of subgame equilibrium payoffs avoids a multiplicity of equilibria supported by

finite horizon trigger strategies. Hence, theories of strategic network investment and systems

redundancies may be simply addressed in the framework, in which each best shot network j

employed may be viewed as a network with nj − 1 redundant components.
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Appendix

This appendix characterizes the supports of the equilibrium joint distributions, the unique

equilibrium payoffs, and the unique sets of equilibrium univariate marginal distributions.

Before proceeding, observe the following notational conventions which will be used through-

out the appendix. For points in R
n, we will use the vector notation x = (x1, x2, . . . , xn). For

ak ≤ bk for all k = 1, 2, . . . , n, let [a,b] denote the n-box B = [a1, b1]× [a2, b2]× . . .× [an, bn],

the Cartesian product of n closed intervals. The vertices of the n-box B are the points

(c1, c2, . . . , cn) where ck is equal to ak or bk. Lastly, let s̄
j
i and s

j
i denote the upper and lower

bounds, respectively, for player i’s distribution of force for target j.

Given that the defender is using the distribution of force PD, let

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

(1)

denote the probability that with a force allocation of xA the attacker wins at least one

network. Thus, the attacker’s expected payoff from any pure strategy xA is

vAPr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

−
∑

i

xiA. (2)

It will also be useful to note that the attacker’s expected payoff from any distribution of

force PA is

vAEPA

[

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
PD,xA

)]

−
∑

i

EP i
A

[

xiA
]

(3)

where EPA denotes the expectation with respect to the joint distribution of force PA and

EP i
A
denotes the expectation with respect to the univariate marginal distribution for target

i, henceforth P i
A, of the joint distribution of force PA.
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Similarly, given that the attacker is using the distribution of force PA, let

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 0
∣

∣

∣
PA,xD

)

(4)

denote the probability that with a force allocation of xD the defender wins all of the networks

in the supra-network. Thus, the defender’s expected payoff from any pure strategy xD is

vDPr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 0
∣

∣

∣
PA,xD

)

−
∑

i

xiD. (5)

Lastly, the defender’s expected payoff from any distribution of force PD is

vDEPD

[

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 0
∣

∣

∣
PA,xD

)]

−
∑

i

EP i
D

[

xiD
]

(6)

where EPD and EP i
D
denote the expectation with respect to the joint distribution of force

PD and the expectation with respect to the univariate marginal distribution for target i, P i
D,

respectively.

We begin by showing that for each target i within weakest-link (best-shot) network j,

both players’ distributions of force have the same upper bound, denoted s̄jW (s̄jB), and a

lower bound of 0 (0).

Lemma 1. In any equilibrium: (i) for each j ∈ W, s̄iA = s̄iD = s̄jW > 0 and siA = siD = 0 for

all i ∈ Nj, and (ii) for each j ∈ B, s̄iA = s̄iD = s̄jB > 0 and siA = siD = 0 for all i ∈ Nj.

Proof. We begin with the proof that siA = siD = 0 for all i. By way of contradiction, suppose

siA 6= siD. Let ŝi ≡ max{siA, s
i
D}, and let l be the identity of the player attaining ŝi (that is

ŝi = sil and ŝ
i > si−l).

If si−l > 0, when player −l allocates si−l to target i player −l loses target i with certainty

and can strictly increase his payoff by setting si−l = 0. It follows directly, that player −l does
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not randomize over the open interval (0, ŝi), and thus player −l must have a mass point at

0.

In the case that si−l = 0 (where player −l does not randomize over the open interval

(0, ŝi) and has a mass point at 0), we know that (i) both players cannot have a mass point

at sil, (ii) player −l cannot place mass at sil, and (iii) player l can strictly increase his payoff

by lowering sil to a neighborhood above 0. Thus, we conclude that siA = siD = 0 for all i.

Lastly, for the proof that for each j ∈ W, s̄iA = s̄iD = s̄jW > 0 for all i ∈ Nj, note that if

there exists a target i such that s̄iA = s̄iD = 0, then player A can strictly increase his payoff

by allocating an arbitrarily small, but strictly positive, level of force to weakest-link target i.

Similarly, for any pair i′, i′′ ∈ Nj it follows that if s̄
i′

A = s̄i
′

D < s̄i
′′

A = s̄i
′′

D then player A would

do better by moving mass from s̄i
′′

A to s̄i
′

A. The proof that for each j ∈ B, s̄iA = s̄iD = s̄jB > 0

for all i ∈ Nj follows from a similar argument.

Lemma 2. In any equilibrium {PA, PD} with the set of univariate marginal distributions

{P i
A, P

i
D}

n
i=1, for each target i neither player’s univariate marginal distribution places positive

mass on any point except possibly at zero.

Proof. If for target i, xil > 0 is such a point for player l, then player −l would either benefit

from moving mass from an ǫ-neighborhood below xil to zero or to a δ-neighborhood above

xil.

Lemma 3. In any equilibrium, each player’s expected payoff (equations (2) and (5) for the

attacker and defender respectively) is constant over the support of his joint distribution except

possibly at points of discontinuity of his expected payoff function.

Proof. Except for possibly at points of discontinuity of his expected payoff function, each

player l must make his equilibrium expected payoff at each point in the support of his

equilibrium strategy, Pl. Otherwise, player l would benefit by moving mass to the n-tuple(s)

in his support with the highest expected payoff.
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Lemma 4. In any equilibrium {PA, PD} with the set of univariate marginal distributions

{P i
A, P

i
D}

n
i=1, for each target i each player l’s univariate marginal distribution P i

l randomizes

continuously over the interval (0, s̄i].

Proof. Lemma 2 rules out mass points of P i
l in the interval (0, s̄i]. To rule out gaps, by way of

contradiction, suppose that there exists an equilibrium in which for some target i, player l’s

univariate marginal distribution for target i, P i
l , is constant over the interval [α, β) ⊂ (0, s̄i]

and strictly increasing above β in its support. For this to be an equilibrium, it must be the

case that P i
−l is also constant over the interval [α, β). Otherwise, player −l could increase

his payoff.

If P i
−l(α) = P i

−l(β), then for sufficiently small ǫ > 0 spending β + ǫ in target i cannot

be optimal for player l. Indeed, by discretely reducing his expenditure from β + ǫ to α + ǫ

player l’s payoff would strictly increase. Consequently, if P i
l is constant over [α, β) it must

also be constant over [α, s̄i], a contradiction to the definition of s̄i.

Lemma 5. In any equilibrium {PA, PD}:

(a) If xA is an n-tuple contained in the support of PA, then xA allocates a strictly positive

level of force to at most one network.

(b) If the n-tuple xA (contained in the support of PA) allocates a strictly positive level of

force to a weakest-link network, then one target in that weakest-link network receives a

strictly positive level of force.

(c) If xD is an n-tuple contained in the support of PD, then within each best-shot network

xD allocates a strictly positive level of force to at most one target in the network.

Proof. We begin with the proof of part (a). By way of contradiction suppose that there

exists an equilibrium {PA, PD} such that for a positive measure of points in the support of

PA at least two networks simultaneously receive strictly positive levels of force (henceforth,
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simultaneously attacked). There are three cases to consider. In case (i) only best-shot net-

works are simultaneously attacked. In case (ii) only weakest-link networks are simultaneously

attacked. Case (iii) includes all remaining configurations of simultaneous attacks.

Before moving on, we introduce some notation. Let xjA denote the restriction of the

vector xA to the set of targets contained in network j (i.e., {xiA}i∈Nj ). Denote the set of

points in the support of PA that simultaneously attack at least two networks as

ΩA ≡ {xA ∈ Supp{PA}
∣

∣xjA 6= 0 for at least two j ∈ B ∪W}.

For each point xA ∈ ΩA let PxA(j ∈ B ∪W|xjA 6= 0) denote the power set of the indices of

networks that player A simultaneously attacks at the point xA. Let ψ denote an arbitrary

element of this power set, let |ψ| denote the cardinality of the set ψ, and let xψA denote

the restriction of the vector xA to the set of targets contained in the networks in ψ (i.e.,

{xiA}i∈∪j∈ψNj ). For each point xA ∈ ΩA define J (xA) = {j ∈ B ∪W|xjA 6= 0} as the set of

the indices of networks that player A simultaneously attacks at the point xA.

If at the point xA ∈ ΩA player A simultaneously attacks two networks j′ and j′′, then

the probability that at xA ∈ ΩA player A wins at least one network is given by Claim 1.

Claim 1. If at xA ∈ ΩA player A simultaneously attacks two networks j′ and j′′, then the

probability that player A wins at least one network is

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

=

Pr
(

ιj′ = 1
∣

∣

∣
PD,x

j′

A

)

+ Pr
(

ιj′′ = 1
∣

∣

∣
PD,x

j′′

A

)

− Pr
(

ιj′, ιj′′ = 1
∣

∣

∣
PD,x

j′,j′′

A

)

(7)

Note that the third term in the second line of (7) corrects for the first two terms’ multiple

countings of player A winning at least one network. Next, we consider the probability that

player A wins at least one network in the special case that player A simultaneously attacks
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three networks.

Claim 2. If at xA ∈ ΩA player A simultaneously attacks three networks j′, j′′, and j′′′, then

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

=

Pr
(

ιj′ = 1
∣

∣

∣
PD,x

j′

A

)

+ Pr
(

ιj′′ = 1
∣

∣

∣
PD,x

j′′

A

)

+ Pr
(

ιj′′′ = 1
∣

∣

∣
PD,x

j′′′

A

)

− Pr
(

ιj′, ιj′′ = 1
∣

∣

∣
PD,x

j′,j′′

A

)

− Pr
(

ιj′, ιj′′′ = 1
∣

∣

∣
PD,x

j′,j′′′

A

)

− Pr
(

ιj′′ , ιj′′′ = 1
∣

∣

∣
PD,x

j′′,j′′′

A

)

+ Pr
(

ιj′′, ιj′′, ιj′′′ = 1
∣

∣

∣
PD,x

j′,j′′,j′′′

A

)

. (8)

Again, note that the third and fourth lines of (8) correct for the second line’s multiple

countings of player A winning at least one network. Given Claims 1 and 2, a straightforward

proof by induction can be used to establish that for any arbitrary point xA ∈ ΩA the

probability that player A wins at least one network is given as follows.

Claim 3. At an arbitrary point xA ∈ ΩA the probability that player A wins at least one

network is given by

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

=

∑

ψ∈P(j∈B∪W|xj
A
6=0)−∅

(−1)(|ψ|−1) Pr
(

ιj = 1 ∀ j ∈ ψ
∣

∣

∣PD,x
ψ
A

)

. (9)

Beginning with the proof by contradiction of case (i) of part (a) — in which simultaneous

attacks occur on only best-shot networks — recall that in order to win a best-shot network

player A has to allocate a strictly higher level of force to every target in the network. Thus,

it is strictly suboptimal in a best-shot network j for player A to have xjA 6= 0 with xiA = 0

for some i ∈ Nj , and, in the discussion that follows, we focus on the case in which if xjA 6= 0

then xiA > 0 for all i ∈ Nj . For any xA ∈ Supp(PA) such that xjA 6= 0 for some best-shot

network j, the probability that player A wins every target in network j, and hence wins
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network j is

Pr(ιj = 1|P
Nj
D ,xjA) = P

Nj
D (xjA), (10)

where P
Nj
D is the nj-variate marginal distribution for network j. For each xA ∈ ΩA, the

probability that at the point xA ∈ ΩA player A wins every target in each best-shot network

j ∈ ψ is

Pr
(

ιj = 1 ∀ j ∈ ψ
∣

∣

∣
PD,xA

)

= P ψ
D(x

ψ
A) (11)

where P ψ
D is the (

∑

j∈ψ nj)-variate marginal distribution over all of the networks j ∈ ψ.

In the proof that follows we will make use of a joint distribution function, P̂D, that

involves the application of the Fréchet-Hoeffding upper-bound n-copula14 to player D’s set

of (multivariate) marginal distributions for each of the k networks, {P
Nj
D }j∈B∪W , under the

strategy PD. That is, P̂D(xA) = minj∈B∪W{P
Nj
D (xjA)}. Clearly this is a valid joint dis-

tribution function;15 for each j ∈ B ∪ W the nj-variate marginal distribution P
Nj
D (xjA) is

preserved; for each i ∈ ∪j∈B∪WNj the univariate marginal distribution P i
D(x

i
A) is preserved;

and for each xA ∈ ΩA

P̂
NJ (xA)

D (x
J (xA)
A ) = min

j∈J (xA)
{P

Nj
D (xjA)} (12)

where P
NJ (xA)

D is the (
∑

j∈J (xA)
nj)-variate marginal distribution over all of the networks

j ∈ J (xA). Because the expected cost of the strategy PD — given in the second term in (6)

— depends on only the set of univariate marginal distributions {P i
D}i∈∪j∈B∪WNj , the strategy

P̂D(xA) has the same expected cost as PD(xA).

Inserting (10), (11), and (12) into (9) a straightforward proof by induction (beginning

with (7) and (8)) yields the following result.

Claim 4. If player D uses the strategy P̂D(xA), then for each xA ∈ ΩA the probability that

14See Nelsen (1999) and Schweizer and Sklar (1983) for more details.
15Note that for each j ∈ B∪W the random variable x̃j ≡ P

Nj

D (xj
A) is uniformly distributed on the interval

[0, 1]. Thus, no compatibility issue (for details see section 3.5 of Nelsen 2006) arises in applying an n-copula

to the set of multi-variate joint distributions {P
Nj

D (xj
A)}j∈B∪W .
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player A successfully attacks at least one of the best-shot networks is

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
P̂D,xA

)

= max
j∈B|xj

A
6=0

{P
Nj
D (xjA)}. (13)

Given that P̂D is the Fréchet-Hoeffding upper-bound, we know that16 for any x
J (xA)
A in

dom P
NJ (xA)

D ,

P
NJ (xA)

D (x
J (xA)
A ) ≤ P̂

NJ (xA)

D (x
J (xA)
A ). (14)

We now have the following result regarding P̂D.

Claim 5. For each xA /∈ ΩA,

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

= Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
P̂D,xA

)

.

For each xA ∈ ΩA,

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
PD,xA

)

≥ Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
P̂D,xA

)

where if P
NJ (xA)

D (x
J (xA)
A ) 6= P̂

NJ (xA)

D (x
J (xA)
A ) then this inequality is strict.

If xA /∈ ΩA, then player A attacks at most one network and the first part of the claim

follows directly. For the second part of the claim, we begin with the case that player A attacks

two networks j′ and j′′. Suppose, without loss of generality, that P
Nj′

D (xj
′

A) ≥ P
Nj′′

D (xj
′′

A ).

Inserting (10) into Claim 1, the second part of Claim 5 follows from Claim 4 combined with

(14). For the case that player A attacks more than two networks, there exists a j′ ∈ J (xA)

such that P
Nj′

D (xj
′

A) ≥ P
Nj
D (xjA) for all j ∈ J (xA). Because player A cannot strictly increase

his probability of winning at least one network by modifying xA so that xjA = 0 for all

j 6= j′, j′′ where j′′ ∈ J (xA) such that j′′ 6= j′ (i.e. deviate to attacking only best-shot

16This follows directly from Lemma 6.1.7 (p.80) of Schweizer and Sklar (1983).
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networks j′ and j′′) and we know that the second part of Claim 5 applies in the case that

player A only attacks two networks j′ and j′′, the second part of Claim 5 extends directly to

the case that player A attacks more than two networks.17

Returning to the proof of part (a), if for almost every xA ∈ ΩA, P
NJ (xA)

D (x
J (xA)
A ) =

P̂
NJ (xA)

D (x
J (xA)
A ), then from (2) and Claim 4 player A can strictly increase his payoff by

modifying each subset of ΩA that has positive measure by choosing, at each xA in such

subsets, a network j such that P
Nj
D (xjA) ≥ P

Nj′

D (xj
′

A) for all j
′ ∈ J (xA) and setting xj

′

A = 0

for all j′ 6= j. A contradiction to the assumption that {PA, PD} is an equilibrium. Conversely,

Claim 5 implies that if there exists a subset of xA ∈ ΩA with positive measure such that

P
NJ (xA)

D (x
J (xA)
A ) 6= P̂

NJ (xA)

D (x
J (xA)
A ), then there exists a strictly payoff increasing deviation

for player D. A contradiction to the assumption that {PA, PD} is an equilibrium. This

completes the proof of part (i) of the proof of (a).

Before moving on to cases (ii) and (iii) in the proof of part (a), note that the argument

given above can be used to establish part (b) of Lemma 5 (i.e., within each weakest-link

network player A attacks at most one target). In particular, at target i in weakest-link

network j let ιj,i = 1 if xiA > xiD and ιj,i = 0 otherwise. Letting ιj ≡ maxi∈Nj{ιj,i}, the

probability that player A wins weakest-link network j is given by Pr(ιj = 1|P
Nj
D ,xA). Then

by choosing P
Nj
D (xjA) = mini∈Nj{P

i
D(x

i
A)}, player D’s univariate marginals and hence the

expected cost remain the same, the correlation of player D’s allocation of force among the

networks is unaffected, and the correlation of player D’s allocation of force among the targets

in weakest-link network j renders all simultaneous attacks among the targets in weakest-link

network j equivalent to an attack on only ī = argmaxi∈Nj{P
i
D(x

i
A)}. Thus, in equilibrium the

attacker allocates a strictly positive level of force to at most one target in each weakest-link

17For the strict inequality, note that by assumption PD is an equilibrium strategy and xA ∈ ΩA is a point
in supPA, also an equilibrium strategy. Thus, the deviation to attacking only best-shot networks j′ and j′′

cannot be payoff increasing, i.e. at any point xA at which more than two best-shot networks are attacked the
probability that the attacker wins at least one network must be strictly greater than at the cost-decreasing
deviation from xA in which x

j
A = 0 for all j 6= j′, j′′ where j′′ ∈ J (xA) such that j′′ 6= j′.
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network. The proof for part (c) of Lemma 5 follows from a symmetric argument.

Returning to the proof of case (ii) of part (a) of Lemma 5, from part (b) of Lemma 5,

player A attacks at most one target in any weakest-link network, and the probability that

player A wins weakest-link network j with an allocation of xi
′

A > 0 and xiA = 0 ∀i ∈ Nj − i′,

is

Pr(ιj = 1|P
Nj
D ,xjA) = P i′

D(x
i′

A). (15)

If player D uses the strategy P̂D, then for each ψ ∈ P(j ∈ W|xjA 6= 0)\{∅} it follows from

(15) that the probability that player A wins every weakest-link network j ∈ ψ is

Pr(ιj = 1 ∀ j ∈ ψ|P̂D,xA) = min
i∈∪j∈ψNj |x

i
A
>0
{P i

D(x
i
A)}. (16)

Inserting (15) and (16) into (9) a straightforward proof by induction shows that for each

point xA ∈ ΩA satisfying the conditions of case (ii)

Pr
(

max
(

{

ιBj
}

j∈B
,
{

ιWj
}

j∈W

)

= 1
∣

∣

∣
P̂D,xA

)

= max
i∈∪j∈WNj |xiA>0

{P i
D(x

i
A)}. (17)

From (17) it is clear that an argument similar to that used to establish case (i) applies. This

completes the proof of case (ii). The proof of case (iii) follows along similar lines.

Lemma 6. In any equilibrium, s̄jW = s̄j
′

W ≡ s̄W , ∀ j′, j′′ ∈ W.

Proof. Following from Lemmas 1, 2 and 5, in the support of any equilibrium strategy, when

player A allocates s̄j
′

W to a single target in network j′ the force allocated to each of the

remaining targets is 0, player A wins network j′ with certainty, and player A’s expected

payoff is vA − s̄j
′

W .

From Lemma 3, player A’s expected payoff is constant across all points in the support of

PA except for points of discontinuity of the expected payoff function. Thus, from Lemma 4

∀ j′, j′′ ∈ W, vA − s̄j
′

W = vA − s̄j
′′

W , or equivalently s̄j
′

W = s̄j
′′

W ≡ s̄W .
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Lemma 7. In any equilibrium {PA, PD}, there exists a kA ≥ 0 such that for any best-shot

network j and every nj-tuple xjA ∈ [0, s̄jB]
nj , P

Nj
D (xjA) =

kA
vA

+

∑
i∈Nj

xiA

vA
.

Proof. From Lemma 5 part (c) in the support of any optimal strategy player D allocates

a strictly positive level of force to at most one target in network j, and thus the support

of player D’s nj-variate marginal distribution for network j, P
Nj
D , is located on the axes in

R
nj
+ . Combining this with Lemma 4 — each of player D’s univariate marginals randomizes

continuously over the interval (0, s̄jB] — it follows that there are no mass points in the support

of player D’s nj-variate marginal distribution for network j, P
Nj
D , except for possibly at the

origin in R
nj
+ .

Combining Lemma 5 part (a) — in the support of any equilibrium strategy player A

attacks at most one network — with Lemmas 3 and 4, it follows that for each best-shot

network j there exists a kA ≥ 0 such that for each xA in the support of PA in which

xjA ∈ (0, s̄jB]
nj

Pr
(

ιBj = 1
∣

∣

∣
P
Nj
D ,xA

)

= P
Nj
D (xjA) =

kA
vA

+

∑

i∈Nj
xiA

vA
. (18)

Moreover, from the definition of ιBj it is clear that for each xA in the support of any equi-

librium strategy PA such that xjA 6= 0, it must be that xjA ∈ (0, s̄jB]
nj . Otherwise, player A

could increase his payoff by setting xjA = 0.

The proof that follows shows that the second equality in equation (18) holds not only for

each xA in the support of PA such that xjA 6= 0, but for all nj-tuples x
j ∈ [0, s̄jB]

nj .

Consider an arbitrary point xA ∈ Supp(PA) in which xi
′

A ∈ (0, s̄jB) for i
′ ∈ Nj. Because

xA ∈ Supp(PA) and xjA 6= 0, we know that xjA ∈ (0, s̄jB]
nj , and thus, equation (18) applies.

From Lemma 4, there exists an ǫi
′

> 0 such that (xi
′

A + ǫi
′

) ∈ (0, s̄jB]. Furthermore, there

exists a point x̃A ∈ Supp(PA) such that x̃i
′

A = (xi
′

A+ ǫi
′

). Similarly, for each i ∈ Nj such that

i 6= i′ define ǫi as ǫi = x̃iA − xiA.

Because from Lemma 5 part (a) player A attacks at most one network and in both xA
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and x̃A player A attacks network j, we know that for each i /∈ Nj , x̃
i
A = xiA = 0, and we

can restrict our focus to player D’s nj-variate marginal distribution for best-shot network j,

P
Nj
D . Recall that for any xj ∈ R

nj
+ , P

Nj
D (xj) is equal to the P

Nj
D -volume of the nj-box [0,xj ].

Let ∆
x̃i
A

xi
A

P
Nj
D (xj) denote the first-order differences of the function P

Nj
D as follows:

∆
x̃iA
xi
A

P
Nj
D (xj) = P

Nj
D (x1, . . . , xi−1, x̃iA, x

i+1, . . . , xnj)− P
Nj
D (x1, . . . , xi−1, xiA, x

i+1, . . . , xnj).

(19)

Because the support of P
Nj
D is located on the axes in R

nj
+ , the expression ∆

x̃i
A

xi
A

P
Nj
D (xjA) is the

measure of the support of P
Nj
D over the interval (xiA, x̃

i
A) on the ith axis.18 Note that the

difference in (19) involves one point in the support of PA, (x
1, . . . , xi−1, xiA, x

i+1, . . . , xnj ), and

one point, (x1, . . . , xi−1, x̃iA, x
i+1, . . . , xnj ) ∈ (0, s̄jB]

nj , that may or may not be in the support

of PA. Because the expected payoff from the nj-tuple (x1, . . . , xi−1, x̃iA, x
i+1, . . . , xnj ) must

be less than or equal to the equilibrium expected payoff and from Lemma 4 the first equality

in equation (18) holds at this point we know that

∆
x̃iA
xi
A

P
Nj
D (xjA) ≤

ǫi

vA
. (20)

Because the support of P
Nj
D is located on the axes in R

nj
+ , we also know that

P
Nj
D (x̃jA) = P

Nj
D (xjA) +

∑

i∈Nj

∆
x̃iA
xi
A

P
Nj
D (xjA). (21)

That is, the P
Nj
D -volume of the nj-box [0, x̃jA] is equal to the P

Nj
D -volume of the nj-box [0,xjA]

plus the measure of the support of P
Nj
D over the interval (xiA, x̃

i
A) on each of the i ∈ Nj axes,

where the caveat in footnote 18 applies.

18This interval is for the case that xi
A ≤ x̃i

A, or equivalently ǫi ≥ 0, for all i ∈ Nj . If xi
A > x̃i

A for one or

more i ∈ Nj , then ∆
x̃i
A

xi
A

P
Nj

D (xj
A) should be replaced with ∆

max{xi
A,x̃i

A}

min{xi
A
,x̃i

A
}
P

Nj

D (xj
A) and the relevant interval is

(min{xi
A, x̃

i
A},max{xi

A, x̃
i
A}).

40



Because both xA and x̃A are contained in the support of PA and xA, x̃A ∈ (0, s̄jB]
nj it

follows from equation (18), Lemma 1, and Lemma 2 that

P
Nj
D (x̃jA)− P

Nj
D (xjA) =

∑

i∈Nj

ǫi

vA
(22)

Combining equations (21) and (22) it follows that for each i ∈ Nj equation (20) holds with

equality. That is the measure of the support of P
Nj
D over the interval (xiA, x̃

i
A) on the ith

axis is equal to ǫi/vA.

Given that the points xA and x̃A were arbitrarily chosen from the support of PA and

that there are no mass points in the support of player D’s nj-variate marginal distribution

for network j, P
Nj
D , except for possibly at the origin, it follows directly that the measure of

the support of P
Nj
D over any interval [a, b] ⊂ (0, s̄jB] on the ith axis is equal to (b − a)/vA.

Furthermore, player D must place a mass point of size kA/vA at the point xj = 0, and from

(18), Lemma 1, and Lemma 2, kA = vA − nj s̄
j
B ≥ 0. This concludes the proof of Lemma

7.

Lemma 8. In any equilibrium, s̄W = nj s̄
j
B, ∀ j ∈ B.

Proof. From the combination of Lemma 3, Lemma 4, Lemma 5 parts (a) and (b) and Lemma

6, for an attack of xiA ∈ (0, s̄W ] on any weakest-link target i player A’s expected payoff is

vA − s̄W . Conversely, from Lemma 7 it follows that within any best-shot network j player

A’s expected payoff is constant not only for those points in the support of PA which attack

network j, but for all nj-tuples x
j
A ∈ (0, s̄jB]

nj . If we consider the nj-tuple consisting of s̄jB

for each of the nj elements, then we see that player A’s expected payoff from any attack on

a best-shot network j is vA − nj s̄
j
B.

From Lemma 3, player A’s expected payoff is constant across all points in the support

of PA, except possibly at points of discontinuity of the expected payoff function. Thus, ∀

j ∈ B, vA − s̄W = vA − nj s̄
j
B or equivalently s̄W = nj s̄

j
B.
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Lemma 9. In any equilibrium, s̄W = min{vA, vD/[
∑

j∈W nj +
∑

j∈B(1/nj)]}.

Proof. If player D allocates: (i) s̄W to each target in each weakest-link network, (ii) s̄jB to

exactly one target in each best-shot network j, and (iii) 0 to each of the remaining targets

in the best-shot networks, then from Lemmas 4, 6, and 8 player D wins all networks with

certainty and has an expected payoff of vD−
∑

j∈W nj s̄W +
∑

j∈B(s̄W/nj). Similarly, if player

A allocates s̄W to a single weakest-link target, then from Lemmas 4 and 6, player A wins the

weakest-link network containing that target with certainty, and player A’s expected payoff

is vA − s̄W .

If vD− s̄W [
∑

j∈W nj+
∑

j∈B(1/nj)] > 0, then in any equilibrium {PA, PD} player D must

necessarily have a strictly positive expected payoff. As a result, for each xD ∈ Supp{PD},

except for possibly at points of discontinuity of his expected payoff function, player D must

simultaneously win all of the networks with a probability that is bounded away from zero.

This, combined with part (a) of Lemma 5, Lemma 7, and the fact that in equilibrium at

most one player abstains from allocating strictly positive forces to a network with positive

probability, implies that in each best-shot network j player D’s mixed strategy does not

place an atom on the nj-tuple xjD = 0. Recalling from the proof of Lemma 7 that in each

best-shot network j player D places an atom of size (vA−nj s̄
j
B)/vA on the nj-tuple x

j
D = 0,

it follows from Lemma 8 that vA − s̄W = 0.

Next, note that if vA−s̄W > 0, then in any equilibrium {PA, PD} player Amust necessarily

have a strictly positive expected payoff, and a similar argument establishes that in each best-

shot network j player D’s mixed strategy does place an atom on the nj-tuple xjD = 0. But,

if with strictly positive probability, player D abstains from allocating a strictly positive level

of force to best-shot network j, then player D’s expected payoff is necessarily 0 and vD −

s̄W [
∑

j∈W nj +
∑

j∈B(1/nj)] ≤ 0. To conclude the proof, since player D would never choose

to set s̄W such that vD− s̄W [
∑

j∈W nj+
∑

j∈B(1/nj)] < 0, player A has no incentive to choose

a strategy with such a s̄W . It follows that, s̄W = min{vA, vD/[
∑

j∈W nj +
∑

j∈B(1/nj)]}.
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Lemma 10. There exists a unique set of equilibrium univariate marginal distributions

{P i
A, P

i
D}

n
i=1.

Proof. This proof is for the uniqueness of player D’s set of univariate marginal distributions.

The proof for player A is analogous. For each best-shot network j ∈ B, Lemmas 7 and

8 show that for any xj

A ∈ [0, s̄jB]
nj , P

Nj
D (xjA) = vA−s̄W

vA
+

∑
i∈Nj

xiA

vA
, where from Lemma 9

s̄W = min{vA, vD/[
∑

j∈W nj +
∑

j∈B(1/nj)]} and from Lemma 8 s̄jB = s̄W
nj
. Thus, in each

best-shot network j player D’s unique univariate marginal distributions follow from player

D’s unique nj-variate marginal distribution for network j.

From Lemma 5 parts (a) and (b), player A attacks at most one target in one weakest-

link network. From Lemmas 2, 3, and 4 it follows that for each target i in each weakest-link

network j ∈ W,

vAP
i
D

(

xiA
)

− xiA = vA − s̄W

for xiA ∈ (0, s̄W ]. Thus, player D’s univariate marginal distributions are uniquely determined

in each weakest-link network.

Next, note that because success for player D involves simultaneously defending all net-

works from attack and that for each network at most one player abstains from allocating a

positive level of force to the network, it follows that if with positive probability player D

abstains from allocating strictly positive forces to any network then with positive probability

player D optimally abstains from allocating strictly positive forces to all networks. Other-

wise, player D could increase his expected payoff at such points by allocating zero forces

to all networks. Combining this fact with Lemma 10, the next two lemmas follow directly.

Recall that α = vD/(vA[
∑

j∈W nj +
∑

j∈B
1
nj
]).

Lemma 11. If α ≥ 1, then in any equilibrium: (i) player A places mass 1 − (1/α) at the

origin, (ii) player A’s expected payoff is 0, (iii) player D does not place positive mass at the

origin, and (iv) player D’s expected payoff is vD − (vD/α).
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Lemma 12. If α < 1, then in any equilibrium: (i) player D places mass 1−α at the origin,

(ii) player D’s expected payoff is 0, (iii) player A does not place positive mass at the origin,

and (iv) player A’s expected payoff is vA − vAα.
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D

D
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Figure 1: Example Supra-Network with Five Networks (A, B, C, D, and E)
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One weakest-link network with two targets (i = 1, 2)

x1

x2

ṽA

ṽA

b b

b

(a) Attacker

x1

x2

ṽA

ṽA

b

b

(b) Defender

One best-shot network with two targets (i = 1, 2) and one weakest-link network with one
target (i = 3)

x1

x2

x3

ṽA
2

ṽA
2

ṽA

b

b

b

(c) Attacker

x1

x2

x3

ṽA
2

ṽA
2

ṽA

b

b

b

(d) Defender

Figure 2: Supports of the equilibrium joint distributions stated in Theorem 1 (ṽA =
min{αvA, vA}).
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