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ABSTRACT 

 

Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset 

for enhanced biological response.  3-Peptides with an additional methylene group in their 

backbone are proteolytically stable and fold into stable 14-helical structures in solution.  Here we 

show that oligomeric 3-hexapeptides synthesized from L-aspartic acid monomers (3-peptides 1, 

5a and 6) or homologated 3-amino acids (3-peptide 2), fold into similar stable 14-helical 

secondary structures in solution, except that the former form right-handed 14-helix and the later 

form left-handed 14-helix.  3-Peptides from L-Asp monomers contain an additional amide bond 

in the side chains that provides opportunities for more hydrogen bonding.  However based on the 

NMR solution structures, we found that 3-peptide from L-Asp monomers (1) and from 

homologated amino acids (2) form similar structures with no additional side chain interactions.  

These results suggest that the 3-peptides derived from L-Asp are promising peptide-mimetics that 

can be readily synthesized using L-Asp monomers as well as the right-handed 14-helical 

conformation of these 3-peptides (such as 1 and 6) may prove beneficial in the design of mimics 

for right-handed -helix of -peptides. 
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INTRODUCTION 

Peptidomimetic molecules play a key role in improving the biological response of -

peptides by stabilizing their secondary structure and increasing stability toward proteolysis.1-3  For 

instance, peptide performance has been improved through partial or total replacement of α-amino 

acids with β-amino acids to give /-peptide or -peptides, respectively.4-13  β3-amino acids 

obtained from homologation of -amino acids (3-homo-amino acids)14 or from L-Asp monomers 

(3-amido-amino acids, Scheme 1)15,16 are used for the synthesis of β3-peptides.  β3-amino acids 

obtained from L-Asp monomers contain an additional amide group in the side chain and therefore 

are called 3-amido-amino acids.   

β3-Peptides prepared from 3-homo-amino acids form a characteristic 14-helix secondary 

structure in solution.  Several strategies have been developed to stabilize the 14-helical secondary 

structure of 3-peptides, especially in aqueous environments.  Some of these strategies include salt 

bridge or lactam formation between complementary charged i/i+3 side chains, as well as 

introduction of cyclic residues.17-21  Formation of stable secondary structure in membrane 

mimicking solvents such as 2,2,2-trifluoroethanol (TFE) is also important as several peptides act 

on membrane-bound protein receptors.  We previously found that a β3-hexapeptide (1) synthesized 

from L-Asp monomers formed a stable right handed 14-helix in TFE,22 and replacement of three 

-amino acids with β3-amido amino acids in a -decapeptide led to the discovery of  hydrid 

peptides that were proteolytically stable and displayed better binding to breast cancer cells 

compared to the native -peptide.8  Based on these findings and the ease of synthesis,15 we set out 

to explore the folding behavior, in particular 14-helix formation, in 3-peptides derived from L-Asp 

monomers. 
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RESULTS AND DISCUSSION 

Design and synthesis of 3-peptide 1 analogues.  Seven new analogues of 3-peptide 1 (Figure 

1, 3-6) were designed to study the folding behavior of 3-peptides derived from L-Asp monomers 

in TFE and aqueous conditions.  3-Peptide 1 is a hexapeptide that forms two turns of the 14-helix 

in TFE, and is unstructured in aqueous conditions.22  3-Peptide 1 analogues (3-peptides 3-6) were 

designed to study the minimum length required for 14-helical structure and the effect of salt-bridge 

forming side chains in stabilizing the 14-helical conformation.  A 3-hexapeptide 2 constructed 

from 3-homo-amino acids, with the same side chains as 3-peptide 1, was included in the study 

for comparison. 

The smallest sequences, 3-peptides 3a and 3b, were four-residues long to incorporate one 

turn of the 14-helix.  3-Peptides 4 and 5 were 5-mer and 6-mer, respectively, and each of these 

contained an amino and a carboxylate side chain at positions i and i+3 for potential salt bridge 

formation in the 14-helical conformation.  For all the sequences, the side chains with amine groups 

were either a mimic of Lysine (a analogues) or Ornithine (b analogues).  Different lengths of the 

side chain amine were used to study the effect of side chain length in the formation of ion-pair 

interaction, as side chain lengths can affect the salt-bridge stability in helical conformations in 

aqueous environments.  Finally, 3-hexapeptide 6 with two amino side chains and two carboxylate 

side chains at positions i and i+3 relative to each other was designed to maximize intramolecular 

salt-bridge interaction and folding.  In all peptides, at least one side of the helix is covered by 

aliphatic side chains to allow for intramolecular hydrophobic interactions. 

3-Peptides 3-6 were synthesized on the Rink amide MBHA resin essentially following the 

same procedure as reported for 3-peptide 1, whereas3-peptide 2 was synthesized by coupling 
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commercially available Fmoc-3-homo-amino acids to the Rink amide resin.  3-Peptides 3-6 were 

synthesized using orthogonally protected Fmoc-L-Asp monomers or pre-synthesized Fmoc-3-

amido-amino acids.   

The general structure of Fmoc-3-amido-amino acids is shown in Scheme 1.  Monomeric 

Fmoc-3-amido-amino acids, such as Fmoc-β3amV-OH and Fmoc-β3amL-OH (Figure S1, 

supporting information), were prepared using either solid phase or solution phase synthesis as 

shown in Scheme 1.  Fmoc-β3amK(Boc)-OH and Fmoc-β3amE(tBu)-OH were prepared using solid 

phase synthesis method only and were obtained in 50-52% yields.  The solution phase method gave 

much higher yields (80%) compared to the solid phase method (50-64%). All 3-amino acids were 

characterized by NMR and mass spectrometry, and the purity was assessed by analytical HPLC 

(Figure S1). 

Shorter sequences, 3 and 4, were synthesized by coupling orthogonally protected Fmoc-L-

Asp where the side chain was introduced during the SPPS, while the synthesis of hexapeptides 5 

and 6, utilized pre-synthesized monomeric Fmoc-3-amido-amino acids.  The completed peptide 

sequences were cleaved from the resin followed by purification using RP-HPLC prior to 

characterization by NMR spectroscopy, mass spectrometry and analytical HPLC (Tables S1-S9 

and Figure S2).  All peptides were obtained in good yields (>50%).   

Protected 3-amino acids building blocks (from L-Asp) were prepared to determine if the 

overall yield of long 3-peptides can be increased.  Peptides 5 and 6 were obtained in relatively 

high yields (81-90%) due to the use of 3-amido amino acid monomers (or protected 3-amino 

acids building blocks) instead of orthogonally protected L-Asp.   
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Circular dichroism spectroscopy of β3-peptides in TFE and aqueous conditions.  The solution 

conformation of 3-peptides was evaluated in TFE and water using CD spectroscopy.  The CD 

spectra provide an initial estimate of solution conformation in a relatively short time based on the 

intensity of a negative minimum at 214 nm.  A minimum at 214 nm for 3-peptides is considered 

as a signature for 14-helical conformation and the intensity of the peak is correlated with the 14-

helical content. 

 First we compared the 14-helical folding of the five hexapeptides in TFE, a helix-

stabilizing solvent.23,24.  As shown in Figure 2a, the mean residue ellipticity (MRE) values at 214 

nm were significantly different for the five 3-peptides.  Surprisingly, 1 shows the largest minima 

at 214 nm (θ = -20 x 103) suggesting highest helical structure followed by 3-peptide 6 with the 

next largest minimum (θ = -16 x 103).  The intensity of peaks for hexamers 5a and 5b was on the 

lower side with 5a (lysine side chain) showing better 14-helicity compared to 5b (ornithine side 

chain) suggesting that the length of the side chain forming salt-bridge does have an effect on 

folding, and the salt bridge between Lys and Glu is more stable than that between Orn and Glu.  

This trend is similar to what was observed by Luc Brunsveld and coworkers in a systematic study 

of side-chain to side-chain interacting 3-peptides.  The authors found that in general longer side 

chain lengths (β3-homoLys vs. β3-homoOrn and β3-homoGlu vs. β3-homoAsp) displayed slightly 

better salt bridge stabilization and 14-helix formation.20  In a previous survey on the preferred 

partner for intra--helical salt bridges in proteins of known structure, it was found to that Glutamate 

not aspartate was the preferred partner suggesting that longer side chain lengths lead to better ion-

pair interaction and folded structure.25   
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 3-Peptide 2 also displays a minimum at 214 nm suggesting 14-helix conformation.  The 

MRE values of 3-peptide 2 and other hexamers may not be directly comparable as these have very 

different side chains.  Moreover, it is interesting to note that even though the absolute configuration 

at 3 carbon in 3-peptides derived from homo-amino acids and L-Asp is opposite, both 3-peptides 

(for instance 1 and 2) have the same sign in the minimum at 214 nm attributed to 14-helix in the 

CD spectra.  Most likely this is due to the major contribution from side chain amides in 3-peptides 

prepared from L-Asp monomers.  These peptides can be viewed as -peptides with substituted L-

asparagine residues.  Interestingly, Mathews et al26 observed that the CD spectrum of a fully 

protected 3-hexapeptide, (Boc-[-Asp(OBn)-3-HGlu(Obn)-3-HSer(OBn)]2-OTCE, made from 

L-Asp, homo-Glu, and homo-Ser residues showed an intense maximum at 198 nm, and two 

shoulders (maxima) at 207 and 216 nm suggesting opposite handed helical structure compared to 

3-hexapeptides 1, 5 and 6. 

 Next we compared the 14-helix stability of the two hexamers, (3-peptide 5a and 6) that 

engage in intramolecular salt-bridge interaction, with deceasing TFE concentration (Figures 2b 

and 2c).  For both the peptides, a decrease in the minimum at 214 nm was observed with increase 

in water concentration suggesting a loss of helical conformation.  3-Peptide 5a always maintained 

14-helical conformation (20-100% TFE), except in 100% water.  A minimum at 214 nm was 

observed even in 20% TFE (θ = -5 x 103) and the peak was lost only in water.  3-Peptide 6 

displayed similar behavior to that of 5a in TFE/water mixtures (Figure 2c).  The CD spectra of 3-

peptide 6 in 100% and 50% TFE show characteristic minima at 214 nm with MRE values -16 x 

103 and -12 x 103, respectively.  There is about 25% reduction in the helical content in 50% 

TFE/water compared to 100% TFE.  The spectra show very small peaks in PBC buffer (pH 7.4, 1 
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mM) and only a small shoulder in water suggesting a dramatic decrease in the helical content.  The 

CD spectrum for 6 was performed in PBS buffer at pH 7.4 to ensure that all amine side chains are 

protonated and the carboxylate are deprotonated to enhance salt bridge interactions.  However, the 

peptide was definitely less folded in aqueous conditions despite the presence of two ion-pair 

interactions.  The loss of secondary structure in water could be due to the placement of the charged 

amino acids opposite to the macrodipole.  Macrodipole present in 3-peptides stabilizes secondary 

structures19,27,28 and can be maintained by placing basic amino acids such as Lysine and Ornithine 

near the N-terminus and acidic residues such as Aspartic and Glutamic acid near the C-

terminus.19,20 Nevertheless, 3-peptide 6 forms a stable 14-helix in TFE.  The CD spectra of 3-

peptide 6 at two different concentrations, 200 M and 1 mM, showed similar minima at 214 nm 

and were found to be independent of concentration suggesting that no changes in aggregation state 

occur in this concentration range.  Finally, the CD spectra of 4-mer and 5-mer 3-peptides (3 and 

4) suggested less folded structures compared to the hexamers (Figure S3), and did not show a clear 

signature of 14-helical content.  For such short oligomers, NMR spectroscopy would be required 

for further evaluation of the folded conformation. 

 

NMR solution structure studies of β3-peptides.  To probe the secondary structure of 3-peptides 

1 (previously studied), and 2-6 (Figure 1) in solution, a detailed NMR spectroscopic investigation 

was carried out.  1D NMR of all the eight peptides (2-6) in TFE-d2 (CF3CD2OH) was examined, 

and the presence of a regular secondary structure was indicated by a large dispersion of the 

chemical shifts.  The well dispersed chemical shifts in the amide region allowed assignment of all 

the backbone and side chain protons (see supporting information, Tables S2-S9).  A two-
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dimensional (2D) NOESY experiment was performed for all the peptides, which allowed 

observation of NOEs between protons from residues that are not sequentially adjacent.  

Characteristic 14-helical peaks were observed mainly for 3-peptides 1, 2 and 6.  The NOESY 

spectrum of 3-hexapeptide 2 showed multiple (five out of six possible) long range Hi Hi+3 

(Figure S4a).  Whereas for 3-peptide 6, all possible (six) long range Hi Hi+3 NOEs were 

observed (Figure S4b) suggesting helical conformation in these peptides.  Interestingly, the 

characteristic H1 H4 peaks were also observed for the smallest 4-mer 3-peptide 3a suggesting 

helical conformation (Figure S4b).  These peaks are a hallmark of 14-helical secondary structure. 

The extent of helical folding in different -peptides can be compared using NOE data.  At 

least four NOE patterns involving backbone and side chain protons that are suggestive of a 14-

helix can be compared.  These NOE patterns are NHi Hi+3, NHi Hi+2, Hi Hi+3, and the 

sidechain CH2-i  sidechain NHi+3 (or Hi HSi+3).  As shown in Figure 3, direct comparison of 

these NOEs showed that 3-peptides 1, 2, and 6 have comparable helical conformation in solution 

(TFE).  Despite the presence of two pairs of oppositely charged side chains in 3-peptide 6, the 

NOEs between the side chain protons of the Glu1-Lys4 and Glu2-Lys5 pairs were relatively weak, 

suggesting that adoption of a stable conformation is not driven by formation of salt-bridges.  The 

backbone NOEs, such as for H11 H4 and H12 H4, were much stronger.  Peptide 5a, with 

a single pair of oppositely charged side chains, seems to be the least structured out of the four 

hexapeptides as it showed only two of the Hi Hi+3 NOEs. 

These peptides behaved differently in aqueous conditions.  2D NOESY and TOCSY spectra 

were recorded for 3-peptide 6 in 25 mM phosphate buffer at pH 6.1 and 6.6.  There was little 

chemical shift dispersion, therefore hall mark long-range NOEs for 14-helices could not be 
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identified.  This lack of dispersion suggests that the peptide is not (stably) folded.  All the backbone 

amides, H and H peaks were overlapped.  The -Leu and -Lys side chain shifts were exactly 

overlapped.  The -Glu side chain protons had slightly different shifts.  This may be due to the fact 

that one of the -Glus is the N-terminal residue.  These observations agreed with the CD data as 

the characteristic minima for 14-helix was not observed for the peptides in aqueous conditions.  

The NMR data suggests that the peptides were not aggregated in water as line widths were 

comparable to those observed in the spectra recorded in TFE. 

The three-dimensional structures of 1 (done previously), 2 and 6 were obtained using the 

NOE data and the program CYANA. 29 The input data and structure calculation statistics of 

peptides 2 and 6 are summarized in Tables S10 and S11.  The pdb coordinates of the 20 structures 

obtained from CYANA program were averaged to obtain the final peptide structures in TFE 

(Figure 4).  3-hexapeptides 1 and 6 form a right-handed 14-helical structure with a radius of 2.6 

Å and 4.69 Å rise/turn.  In contrast, the 3-hexapeptide 2 made up of homo-amino acids, forms a 

left-handed 14-helix (Figures 5 and S5).  The difference in the conformation of the two helices 

(right-handed versus left-handed) could be due to the opposite stereochemistry at the 3 carbon in 

the peptide backbone.  The radius and the pitch for the two helices are found to be similar. 

The extra amide bond in the side chain of 3-peptides derived from L-Asp monomers 

provides opportunities for additional hydrogen bonding capabilities and perhaps unprecedented 

secondary structures.  However, we found that the side chain amide bonds in these 3-peptides (1, 

5a, and 6) do not seem to interact much except that for 3-peptide 1 we see a Leu3 side chain O 

to Leu6 side chain N hydrogen bond possible in some structures.  All possible NOEs were 

incorporated into the structure calculations, and clearly there were not enough contacts observed 
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between the i and i+3 side chains to constrain them in a way to give consistent hydrogen bonds in 

the side chains. 

 

CONCLUSIONS 

In summary, we show that 3-peptides can readily be synthesized from L-Asp monomers 

and for the first time compare the solution conformation of 3-peptides synthesized from 3-

homoamino acids and L-Asp monomers.  Both 3-peptides form similar 14-helix structure which 

can be stabilized by salt-bridge interactions of the side chains at i and i+3 positions in conjunction 

with a maintained helix macrodipole.  The 3-hexapeptides reported here with the charged side 

chains (5 and 6) at i and i+3 positions, however, did not have the basic and acidic side chains in 

the correct order to stabilize the helix macrodipole and therefore, did not give stable structures 

compared to the 3-peptide with no salt-bridge interaction (3-peptide 1).  The synthesis of 3-

peptides with charged residues that will maintain the helix macrodipole is currently in progress.  

The findings presented here show that 3-peptides derived from L-Asp will facilitate the design 

and development of peptidomimetics with improved biological properties. 

 

MATERIALS AND METHODS 

Solvents and reagents.  Rink amide methylbenzhydrylamine (MBHA) resin (0.58 mmol/g), 2-

chlorotrityl chloride resin (1.4 mmol/g),  N-α-Fmoc-L-aspartic acid α-allyl ester, Fmoc-Asp(OtBu)-

OH, Boc-L-asparagine, Fmoc-3hLeu-OH, Fmoc-3hLys(Boc)-OH, Fmoc-3hVal-OH, tert-butyl 

N-(4-aminobutyl)carbamate, β-alanine t-butyl ester hydrochloride, 1-hydroxybenzotriazole 

(HOBt), and benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate 
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(BOP) were purchased from NovaBiochem (San Diego, CA).  Isobutylamine, isopropylamine, 

dimethylformamide (DMF), N-methyl morpholine (NMM), trifluoroacetic acid (TFA), and all 

other reagents were purchased from Sigma-Aldrich (St Louis, MO, USA).  Piperidine was 

purchased from Caledon.  All commercial reagents and solvents were used as received.  Silica gel 

for column chromatography was obtained from Rose Scientific Ltd.  Column chromatography was 

performed under slight positive air pressure using silica gel 60 (70-230 mesh). 

 

Equipment.  RP-HPLC purification and analysis were carried out on a Waters (625 LC system) 

HPLC system using auto-injector mode or Varian Prostar HPLC system (Walkersville, MD, USA) 

using manual injector.  Vydac C18 semi-preparative (1 x 25 cm, 5 μm) and analytical (0.46 x 25 

cm, 5 μm) columns were used.  Peptides were detected by UV absorption at 220 nm.  Mass spectra 

were recorded on a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) 

Voyager spectrometer (VoyagerTM Elite) or Waters micromass ZQ (Waters Corp., Milford, MA, 

USA) mass spectrometer.  CD measurements were made on an olis CD spectrometer (Georgia, 

USA) at 25 °C in a thermally controlled quartz cell (Hellma, Plainview, NY).  NMR experiments 

were recorded on a Bruker AM-300 spectrometer at the Faculty of Pharmacy and Pharmaceutical 

Sciences (University of Alberta), or on a Varian INOVA 500 MHz NMR spectrometer equipped 

with a triple-resonance HCN Cold Probe with z-axis pulsed field gradients at the Quebec/Eastern 

Canada High Field NMR Centre, McGill University, Montreal, Quebec. pH measurements for all 

buffer solutions were done at 25 °C with a digital SB20 Symphony VWR pH meter using a 

calibration buffer set (Fluka). 
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Peptide Synthesis.  The synthesis of 3-peptide 1 has been reported previously15 and eight 3-

peptides (2-6) were synthesized following the manual Fmoc-solid phase peptide synthesis.  The 

crude peptides were cleaved from the resin by treatment with TFA:TIPS:H2O (96:2:2) cocktail 

mixture with stirring for 2 h.  The crude peptides were purified using semi-preparative RP-HPLC 

prior to characterization by electrospray and/or MALDI-TOF mass spectrometry and analytical 

HPLC (Table S1 and Figure S2).  All eight peptides were also characterized by 1D proton NMR 

(Tables S2-S9). 

3-Peptide 2 was synthesized by coupling Fmoc-3h-amino acids (Fmoc-3hLeu-OH, 

Fmoc-3hLys(Boc)-OH or Fmoc-3hVal-OH) sequentially to the Rink amide MBHA resin using 

BOP and HOBt as coupling reagents.  The syntheses of 3-peptides 3 and 4 followed the same 

procedure as reported for 3-peptide 1 using orthogonally protected Fmoc-L-aspartic acid.15  

Briefly, orthogonally protected L-aspartic acid (Nα-Fmoc-L-aspartic acid α-allyl ester) is coupled 

to the Rink amide MBHA resin using BOP with HOBt.  The side chain allyl group is first removed 

with Pd(PPh3)4 followed by coupling with an amine (for the corresponding side chain).  Next the 

Fmoc group is removed and orthogonally protected L-aspartic acid is coupled to follow the next 

cycle till the sequence is complete. 

The synthesis of 3-peptide 5 was accomplished by coupling monomeric Fmoc-3-amido-

amino acid (Nβ-Fmoc-β3amV-OH) to 3-peptide 4.  For 3-peptide 6, orthogonally protected L-

aspartic acid was coupled to introduce the first two amino acids, and the last four residues were 

coupled as monomeric Fmoc-3-amido-amino acids to complete the sequence.  Monomeric Fmoc-

3-amido-amino acids (Fmoc-β3amV-OH, Fmoc-β3amL-OH, Fmoc-β3amK(Boc)-OH, and Fmoc-
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β3amE(tBu)-OH) were synthesized using solid phase or solution phase synthesis as described 

below. 

 

Solid Phase Synthesis of Fmoc-3-Amido-Amino Acid Monomers.  Orthogonally protected β3-

amido amino acid monomers were synthesized in four steps as shown in Scheme 1.  In a solid 

phase reactor, chlorotrityl resin (74 mg, 0.1 mmol) was suspended in CH2Cl2 (4 mL) for swelling 

for 30 min.  The swelled resin was reacted with a solution of Fmoc-L-aspartic acid α-allyl ester 

(118.6 mg, 3 equiv) and DIPEA (210 μL, 12 equiv) in dry CH2Cl2 for 2 h.  The resin was capped 

by washing with a solution of dry CH2Cl2–MeOH–DIPEA (17:2:1).  The resin was washed with 

DMF (4 x 1 min), DCM (4 x 1 min) and IPA.  Deallylation was carried out in the presence of 

Pd(PPh3)4 (0.08 equiv) and PhSiH3 (8 equiv) in DCM (3 x 35 mins) under nitrogen to remove the 

side chain allyl protection.  Subsequently, the side chain amine (2.5 equiv) was coupled using BOP 

(110 mg, 2.45 equiv), HOBt (33 mg, 2.5 equiv), and NMM (75 uL, 4.5 equiv) in DMF for 5 h.  

Cleavage of the monomer from the resin was done either by treating with 50% TFA/DCM for 30 

min, or with TFE/DCM (20/80%) for 45 min at room temperature. 

 

Synthesis of Nβ-Fmoc-β3amV.  Nβ-Fmoc-β3amV-OH was synthesized using the procedure 

described above.  Isopropylamine was coupled after removal of side chain allyl group and the final 

product was cleaved from the resin using 50% TFA/DCM for 30 min.  The residue was added to 

cold Et2O (40 mL, -78 °C) and centrifuged at 3,500 rpm for 5 min. The Et2O was decanted and the 

pellet was resuspended in cold Et2O (40 mL, -78°C) and centrifugation was repeated three times.  

Again the Et2O was decanted and the pellet was dried with N2 with an overall yield 65%. The purity 

was assessed by analytical HPLC as shown in Figure S1.  1H NMR (300 MHz, CD3OD): δ= 1.06 
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(d, J= 6.7, 6H, (CH3)2CH), 2.6 (m, 2H, CH2COOH), 3.94 (m, 1H, (CH3)2 CH), 4.25 (m, 1H, 

CHCH2O), 4.7 (m, 2H, CHCH2O), 4.6 (t, 1H, CHCH2COOH), 7.2-7.8 (m, 8H, aryl H).  13C NMR 

(300 MHz, DMSO-d6, CD3OD): δ= 19.93, 40.67, 40.76, 46.51, 50.68, 65.50, 119.76, 124.99, 

126.80, 127.35, 140.52, 143.57, 155.56, 168.8, 172.87, and ES-MS: Calcd. for C22H24N2O5, 

[M+H]+ 397.47; found [M+H]+  397.06. 

 

Synthesis of Nβ-Fmoc-β3amL.  The synthesis of Nβ-Fmoc-β3amL-OH followed the same 

procedure as for Nβ-Fmoc-β3amV-OH, except that isobutylamine was coupled after removal of 

side chain allyl group with an overall yield of 63%.  The purity was assessed by analytical HPLC 

as shown in Figure S1. 1H NMR (300 MHz, CDCl3): δ= 0.96 (d, J=6.6, 6H, (CH3)2CH), 1.85 (m, 

1H, (CH3)2 CH), 2.8 (m, 1H, CH2COOH), 2.9 (m, 1H, CH2COOH), 3.2 (m, 2H, (CH3)2 

CH)CH2NH), 4.2 (m, 1H, CHCH2O), 4.45 (m, 2H, CHCH2O, CHCH2COOH), 7.2-7.8 (m, 8H, 

arylH).  13C NMR (300 MHz, CDCl3):  δ= 19.93, 27.9, 36.9, 46.06, 46.51, 50.68, 65.60, 119.76, 

124.99, 126.8, 127.35, 140.52, 143.57, 155.56, 168.87, 172.8, and ES-MS: Calcd. for C23H26N2O5, 

[M+H]+ 411.47; found [M+H]+ 411.00. 

 

Synthesis of Nβ-Fmoc-β3amK(Boc)-OH.  Nβ-Fmoc-β3amK (Boc)-OH was synthesized using the 

same procedure as described above.  The side chain mimicking lysine was introduced by coupling 

with tert-butyl N-(4-aminobutyl)carbamate after allyl group removal.  Nβ-Fmoc-β3amK (Boc)-OH 

was cleaved from the resin using TFE/DCM (2:8) for 45 min to obtain the monomer with an overall 

of yield 52%.  The purity was assessed by analytical HPLC as shown in Figure S1.  1H NMR (300 

MHz, CDCl3): δ=1.3 (m, 13H, (CH3)3 CH (CH2)2), 2.2-2.4 (m, 2H, CH2COOH), 2.7- 3.1 (m, 4H, 

(NH)CH2 CH2 CH2 CH2NH), 3.7 (m, 4H, CHCH2O, 2H, CHCH2O, CHCH2COOH), 7.2-7.8 (m, 
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8H, aryl H).  13C NMR (300 MHz, CD3OD):  = 26.34, 26.83, 28.26, 40.69, 40.98, 51.04, 77.30, 

119.98, 121.10, 122.17, 123.88, 127.68, 128.88, 129.43, 135.33, 137.36, 139.34, 142.50, 155.52, 

170.93, and ES-MS:  Calcd. C28H35N3O7, [M-H]- 524.25; found [M-H]- 524. 

 

Synthesis of Nβ-Fmoc-β3amE(tBu)-OH: Nβ-Fmoc-β3amE(tBu)-OH (10) was synthesized using 

the same procedure as described above for Nβ-Fmoc-β3amK (Boc)-OH.  The side chain mimicking 

glutamic acid was introduced by coupling with β-alanine t-butyl ester hydrochloride after allyl 

group removal.  The overall yield was found to be 50%, and the purity was assessed by analytical 

HPLC as shown in Figure S1. 1H NMR (300 MHz, d-DMSO): δ= 1.4 (s, 9H, (CH3)3C), 2.5-2.8 

(m, 4H, CH2COOH, CH2CH2NHCO), 3.6 (m, 2H, CH2CH2NHCO), 4.25-4.4 (m, 4H, CHCH2O, 

CHCH2O, CHCH2COOH), 7.3-7.8 (m, 8H, aryl H). 13C NMR (300 MHz, d-DMSO):  δ=27, 34.88, 

34.98, 40.34, 46.64, 50.53, 65.77, 79.99, 120.14, 125.28, 127.13, 127.42, 127.68, 140.7, 143.80, 

155.82, 170.76, 171.69, 173.04, and ES-MS: Calcd. for C26H30N2O7, [M-H]-  481.54; found [M-

H]- 481.20. 

 

Solution Phase Synthesis of Fmoc-3-Amido-Amino Acid Monomers.  β3-am-Val and β3-am-

Leu monomers were also synthesized using solution phase synthesis as illustrated in Scheme 1.  

Fmoc-Asp(OtBu)-OH (412 mg, 1 mmol),  BOP (442 mg, 1.95 equiv) , HOBt (135 mg, 2 equiv) 

and  NMM (200 μL, 4.5 equiv) were weighted into a round bottom flask, and dissolved in 

DMF/DCM (4 mL).  The mixture was stirred for 5 min to activate the carboxyl group, following 

which the amine side chain (isopropylamine or isobutylamine, 5 equiv) was added and the reaction 

mixture was stirred for 24 h at room temperature.  The completion of reaction was monitored using 

TLC.  The reaction mixture was evaporated to give oil as the residue.  The residue was dissolved 
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in EtOAc (10 mL).  The EtOAc was washed with 5% NaHCO3 three times followed by washing 

(3x) with brine (0.9% NaCl solution).  The organic layer was then dried (Na2SO4), filtered, and 

concentrated.  The product was characterized using mass spectrometry.  After confirmation of the 

mass, the precipitate was treated with TFA:TIPS:H2O (96:2:2) cocktail mixture with stirring for 2 

h.  The reaction mixture was then evaporated under vacuum and the product was washed several 

times with diethyl ether.  The precipitate obtained was further characterized with mass 

spectrometry, HPLC, and NMR spectroscopy.  The overall yield was 80.5%.  The product was 

used without further purification. 

 

Circular Dichroism. All CD measurements were made on an Olis CD spectrometer (Georgia, 

USA) at 25 °C in 2 mm path length thermally controlled quartz cell, over 190-260 nm.  All samples 

were prepared in the appropriate solvents immediately prior to recording the spectra (TFE, H2O, 

or PBS).  Spectra represent the average of five scans, and were background-corrected and 

smoothed.  Each peptide was analyzed at concentrations of 100, 200, 250, and 500 μM. Peptide 

concentrations were determined using dry weight of the lyophilized peptide.  Spectra were 

normalized to mean residue ellipticity (deg cm2 dmol-1) using the formula A*M*3298/ (L*C), 

where C is concentration in g/L, M is average molecular weight (g/mol), L is path length of the 

cell.30 

 

Two-dimensional NMR and Structure Elucidation of β3-Peptides 2 and 6.  All 2D NMR 

measurements and structure elucidation was done at Quebec/Eastern Canada High Field NMR 

Centre, McGill University, Montreal, Quebec.  A 1.5 mM sample of peptides 2 or 6 in 100% TFE-

d2 (CF3CD2OH) (Cambridge Isotope Laboratories, Inc.) was prepared for 2D NMR experiments.  



18 

 

Sequence specific assignments were established by following the procedures used for -amino acid 

peptides.31  2D TOCSY (60 ms mixing time), COSY and NOESY (mixing time 300 ms) spectra 

were recorded at 10 C on a Varian INOVA 500 MHz spectrometer.  The upper distance restraints 

for 2 and 6 were obtained from a 300 ms mixing time 2D-NOESY recorded at 10 C on a Varian 

INOVA 800 MHz NMR spectrometer, equipped with an HCN cold probe and pulsed-field 

gradients.  Calculation of the complete three-dimensional structure was performed with the 

program CYANA v2.29  The structure calculation statistics for 2 and 6 are summarized in Tables 

S10 and S11, respectively.  The final calculations were started with 200 randomized conformers 

all of which converged to the helical conformation (average backbone RMSD to mean for 200 

structures: 0.54 ± 0.10 Å for 3-peptide 2 and 0.50 ± 0.12 Å for 3-peptide 6).  A bundle of the 20 

lowest energy CYANA conformers were used to represent the NMR structures of 2 and 6 (Figure 

4). 

 

SUPPORTING INFORMATION 

Peptide characterization and data for three-dimensional NMR solution structures of 2 and 6. 
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FIGURE CAPTIONS 

Figure 1.  Structures of the 3-peptides used in this study.  -Peptides 1, 3-6 are derived from -

amido residues, and -peptide 2 is synthesized from -homo residues. 

 

Scheme 1. General pathway of solid phase (top row) and solution phase (bottom row) syntheses of 

Fmoc-3-amido-amino acids from Fmoc-L-Asp. 

 

Figure 2.  Circular dichroism (CD) spectra for 3-hexapeptides (200 M) at 25 ºC showing (a) 1, 

2, 5a, 5b, and 6 in TFE,  (b) 5a in TFE, TFE/water, and aqueous solution, and (C) 6 in TFE, 

TFE/water, aqueous media, and PBC buffer (pH 7.4). 

 

Figure 3. A comparison of the NOE of β3-hexapeptides 1, 2, 5a and 6 (in TFE) are summarized. * 

denotes amide protons not observed due to exchange with solvent and X stands for H protons not 

observed due to overlap with solvent signal. Grey lines indicate ambiguous assignments. 

 

Figure 4.  3D NMR solution structures of -peptides 2 and 6 in TFE.  The top view of the helices 

are shown using stick model (LHS) and overlay of 10 calculated structures (RHS) for 2 (a-b) and 

6 (c-d). 

 

Figure 5.  Solution conformation of -hexapeptides 1 and 2 in TFE showing right-handed 14-

helix for 1 and left-handed 14-helix for 2.  -Peptide 1 has an additional amide group in each side 

chain.  
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Figure 1.  Structures of the 3-peptides used in this study.  -peptides 1, 3-6 are derived from -

amido residues, and -peptide 2 is synthesized from -homo residues. 
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Scheme 1. General pathway of solid phase (top row) and solution phase (bottom row) syntheses of 

Fmoc-3-amido-amino acids from Fmoc-L-Asp. 
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Figure 2.  Circular dichroism (CD) spectra for 3-hexapeptides (200 M) at 25 ºC showing (a) 1, 

2, 5a, 5b, and 6 in TFE,  (b) 5a in TFE, TFE/water, and aqueous solution, and (C) 6 in TFE, 

TFE/water, aqueous media, and PBC buffer (pH 7.4). 
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Figure 3. A comparison of the NOE of β3-hexapeptides 1, 2, 5a and 6 (in TFE) are summarized. * 

denotes amide protons not observed due to exchange with solvent and X stands for H protons not 

observed due to overlap with solvent signal. Grey lines indicate ambiguous assignments. 
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Figure 4.  3D NMR solution structures of -peptides 2 and 6 in TFE.  The top view of the 

helices are shown using stick model (LHS) and overlay of 10 calculated structures (RHS) for 2 

(a-b) and 6 (c-d). 
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Figure 5.  Solution conformation of -hexapeptides 1 and 2 in TFE showing right-handed 14-

helix for 1 and left-handed 14-helix for 2.  -peptide 1 has an additional amide group in each side 

chain. 
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