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Abstract 
 
The literature on neighborhoods and child obesity links contextual conditions to risk, 
assuming that if place matters, it matters in a similar way for everyone in those places. 
We explore the extent to which distinctive neighborhood types give rise to social 
patterning that produces variation in the odds of child obesity. We leverage geocoded 
electronic medical records for a diverse sample of over 135,000 children aged 2 to 12 
and latent profile modeling to characterize places into distinctive neighborhood contexts. 
Multilevel models with cross-level interactions between neighborhood type and family 
socioeconomic standing (SES) reveal that children with different SES, but living in the 
same neighborhoods, have different odds of obesity. Specifically, we find lower-SES 
children benefit, but to a lesser degree, from neighborhood advantages and higher-SES 
children are negatively influenced, to a larger degree, by neighborhood disadvantages. 
The resulting narrowing of the gap in obesity by neighborhood disadvantage helps 
clarify how place matters for children’s odds of obesity and suggests that efforts to 
improve access to community advantages as well as efforts to address community 
disadvantages are important to curbing obesity and improving the health of all children. 
 
Key Words: Neighborhoods; Child Obesity; Multilevel Modeling; Socioeconomic Status; 
Electronic Medical Records; Latent Profile Analysis 
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Child Obesity and the Interaction of Family and Neighborhood Socioeconomic 
Context 
 
INTRODUCTION 
 

In response to dramatic increases in child obesity, a growing body of literature 

considers the consequences of this epidemic for children, families, and communities 

(Wang et al. 2011; Roberto et al. 2015). These efforts highlight the impact of obesity, 

especially experienced early in life, on both the trajectories of individuals and the future 

health and vitality of society. Although the root cause of weight gain trends in children 

remains elusive, a wealth of data indicate that obesogenic environments lead to 

changes in consumption practices and lifestyle behaviors (Swinburn et al. 2011) that 

drive the prevalence and severity of obesity in children. While this literature increases 

our understanding of the demographic and socioeconomic variation in child obesity, we 

know little about how multiple demographic factors may combine to produce steep 

socioeconomic gradients in obesity among children living in a single residential context 

and still less about the role neighborhood socioeconomic status (SES) plays in these 

disparities.  

 Scholars are increasingly attending to the relationship between self and place to 

better understand socioeconomic impact on obesity outcomes (Ludwig et al. 2011; 

Alvarado 2016). In fact, many recent studies link child demographic data to measures of 

area deprivation to draw out the impact of neighborhood factors on children’s weight 

status above and beyond individual and family-level characteristics (Kimbro and Denney 

2013; Carroll-Scott et al. 2013; Grow et al. 2010). It has been shown, for example, that 

neighborhoods with higher concentrations of poverty have increased child obesity 

prevalence (Grow et al. 2010; Kimbro and Denney 2013). This indicates that children 
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who are at higher risk for a multitude of health and developmental problems are also 

living in places that exacerbate those risks. It is also likely, however, that the influence is 

multi-directional and may also flow from the family context to the neighborhood 

environment (Arcaya et al. 2016). The research on neighborhoods and child well-being 

has largely linked specific neighborhood conditions (e.g., the built environment) to child 

obesity in order to generate an average effect of the neighborhood environment on child 

obesity. This prior work thus implicitly assumes that if place matters, it matters in a 

similar way for everyone in those places (e.g., access to healthy foods influencing all 

community members). A clear connection between the empirical evaluation of how 

neighborhoods matter differently by child characteristics and a theoretical premise for 

why the residential context is experienced differently by specific segments of the 

population is needed (Sharkey and Faber 2014) to advance the literature on 

neighborhoods and child obesity.  

In the present analysis, we investigate whether children with different family SES, 

but living in the same neighborhood contexts, have differing odds of obesity. We 

systematically explore the extent to which distinctive residential environments give rise 

to social patterning that produces variation in obesity prevalence. We examine the 

complexities of associations between child obesity, area disadvantage, and 

neighborhood-level social characteristics through a more nuanced lens by leveraging 

unique electronic medical record data and using latent profile modeling techniques to 

characterize neighborhoods into areas of distinctive physical and social contexts. We 

then use a series of models to examine how the residential socioeconomic context 

impacts children differently by household SES.  
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BACKGROUND 
 
Socioeconomic differences in child obesity   
 

Sociologists have long considered disparities in health as evidence of the 

systemic socioeconomic patterning of stratification that is evident in American 

neighborhoods (Sampson 2008). Indeed, considerable research describes the 

socioeconomic disparities in child obesity and a stream of work focuses on how 

neighborhood conditions might influence these disparities. Explanations for why 

neighborhood factors might influence child obesity, specifically, include differences in 

institutional resources such as schools, parks, and healthy food options, as well as the 

socioeconomic composition of the neighborhood (Jencks and Mayer 1990; Shonkoff 

and Phillips 2000). Other lines of work highlight that the effects of neighborhoods may 

reach far beyond the physical characteristics of the community (Sampson and Sharkey 

2008; Arcaya et al. 2016). Brooks-Gunn and colleagues (1993), for example, first show 

that living in areas characterized by high rates of crime and deprivation may lead to 

worse developmental outcomes in children through mechanisms related to stress and 

adaptation.  

Much of this work incorporates a range of socioeconomic and social cohesion 

indicators to differentiate neighborhood conditions, including measures of concentrated 

disadvantage (Kimbro and Denney 2013), parent-reported neighborhood resources and 

safety (Singh, Siahpush, and Kogan 2010), crime rates (Carroll-Scott et al. 2013), lower 

mean levels of education, median household income, and home ownership (Grow et al. 

2010). Across all of these studies, neighborhood factors representing lower SES and 

greater social disorder are shown to be significant predictors of child obesity, beyond 
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individual-level factors. A wealth of literature also quantifies the growing disparities in 

obesity outcomes in an attempt to disentangle the relative prominence of social and 

contextual associations that contribute to these disparities (see Wang and Beydoun 

2007 for a review). Thus, it seems clear that indicators representing lower SES and 

social disorder at the neighborhood level are associated with increased prevalence of 

child obesity. These studies, however, all estimate average effects across all 

neighborhoods. It is unclear whether some children’s obesity status might be more 

resilient – or more vulnerable – to neighborhood conditions due to neighborhood effect 

heterogeneity.  

 Neighborhood effect heterogeneity on child obesity  
  

It is likely that the same context is not universally experienced across groups or 

individuals, and this differential in experience can be reflected in neighborhood effect 

heterogeneity (Harding et al. 2010). Children living in the same residential context may 

have different levels of exposure to neighborhood conditions that construct their 

experience of the community in which they live and, in turn, may differentially shape the 

impact of community characteristics on individual well-being (Harding et al. 2010; 

Sharkey and Faber 2014). The most convincing evidence of this emerges from the 

Moving to Opportunity (MTO) project. Kling and colleagues (2005), for example, find 

that girls, relative to boys, receive greater gains in school performance and mental 

health after moving to a less impoverished community. This finding is further supported 

by ethnographic work conducted at the MTO sites showing that peer influences, 

friendship networks, and use of space also vary by gender (Clampet-Lundquist et al. 

2011). As Sharkey (2006) contends, to some extent, exposure levels to different 
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neighborhood characteristics are governed by children (and their parents) through 

decisions, likely conditioned by family SES (Sampson 2002), about where, how, and 

with whom to spend time. Interaction with other neighborhood children (Crowder and 

South 2003), access to community resources (Allard and Small 2013), and involvement 

in the community (Sharkey 2010), all drive neighborhood effects and vary by child and 

his/ her family (Sharkey 2006).  

This substantial variation in children’s experiences of the same residential 

context may exist due to the variant patterns of interaction between child and family 

characteristics and neighborhood conditions (Harding et al. 2010). For example, girls 

and adolescents experience higher odds of obesity relative to boys and younger 

children due to neighborhood disadvantage (Alvarado 2016). Moreover, developmental 

and behavioral problems comorbid with child obesity (Halfon et al. 2013) link to 

children’s low SES and neighborhood disadvantage (Singh & Ghandour 2012). In 

addition, parents may use avoidance management strategies in response to 

neighborhood violence and require that children remain indoors after school (Harding et 

al. 2010), likely engaging in sedentary behaviors, or permit play outside only under strict 

parental supervision. The impact of these two reactions to the same neighborhood 

circumstance for obesity is harmful in the first case when children are relegated indoors 

and beneficial in the second when parents allow children to engage in play under their 

supervision, and thus could generate variation for different children living in the same 

community.  
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Hypotheses 
 

We motivate our hypotheses by focusing on the incongruence of children’s 

sociodemographic characteristics within distinctive neighborhood contexts. We begin by 

hypothesizing that, in general, the more disadvantaged the community the higher the 

odds of obesity for children in those communities. This is derived from prior research 

(Grow et al. 2010; Kimbro and Denney 2013). Thus, 

H1. The odds of obesity for children will be higher in more socioeconomically 
disadvantaged communities than in less disadvantaged communities. 
 
Next, we consider whether the influence of a disadvantaged neighborhood differs 

across children in more and less advantaged families. We develop two additional 

hypotheses that focus on the relative impact of neighborhood context on child obesity 

by family SES.   

 It may be that neighborhood disadvantages accumulate along with family 

disadvantages (Ferraro & Kelley-Moore 2003). In this scenario, and in line with the 

cumulative disadvantage perspective, children’s low family SES may fail to buffer 

against the additional deleterious effects of living in a disadvantaged community. In 

contrast, higher-SES children may be less influenced by neighborhood conditions and 

thus maintain relatively healthy weights by leveraging their family advantages to avoid 

obesogenic neighborhood factors. As a consequence, the gap in obesity between low- 

and high-SES children grows as neighborhood disadvantage increases.  

Alternatively, pursuant to the Blaxter hypothesis, increasing neighborhood 

disadvantage might influence high-SES children more than low-SES children (Blaxter 

1990). If more socioeconomically advantaged children live in areas characterized by 

features of socioeconomic and other disadvantages, those children may be exposed to 
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a more obesogenic environment (Townshend and Lake 2009) and adhere more closely 

to local weight-related behaviors and expectations. Meanwhile, children from low-SES 

families are more accustomed to the health norms and customs of lower-SES 

neighborhoods. In this way, the impact of the neighborhood environment might be 

enhanced for higher-SES children, and socioeconomic advantages typically leveraged 

toward better health may not be realized to the same extent when living in a less 

advantaged place. This heterogeneity between family SES and neighborhood 

conditions will in turn impact the odds of obesity differently and ultimately shrink the gap 

in obesity between lower-SES and higher-SES children the more disadvantaged the 

neighborhood. Thus, we test the following two competing hypotheses: 

H2a. Increasing neighborhood disadvantage will impact the odds of obesity more 
for low-SES children than for high-SES children, resulting in a larger gap in 
obesity the more disadvantaged the neighborhood. 
 
H2b. Increasing neighborhood disadvantage will impact the odds of obesity more 
for high-SES children than for low-SES children, resulting in a smaller gap in 
obesity the more disadvantaged the neighborhood. 
 

METHODS 
 
Data Sources 
 

Our focal data set is a compilation of electronic medical and administrative 

records from the largest single system network of pediatric clinics and hospital 

admissions in the country in Houston, TX. Medical records include inpatient and 

emergency room pediatric encounters at a large pediatric hospital as well as outpatient 

visits to one of 50 pediatric clinics throughout the Houston metropolitan area for all 

patients who were 2 – 12 years old between 2011 and 2013. To be included in our 

analysis, children needed at least one outpatient record. Children who only had 
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inpatient records were not included because BMI is less frequently tracked for inpatient 

visits. We randomly selected one child per family to eliminate bias at the household 

level.  

The pediatric electronic medical records were geocoded to the Census tract level 

and then linked to neighborhood-level social, economic, walkability, and crime data to 

provide a comprehensive portrait of the different kinds of neighborhoods in Houston, 

TX. We follow prior work and use census tracts to represent neighborhoods (Massey et 

al. 1994). Although census tracts are by no means a perfect operationalization of 

neighborhoods (Tienda 1991), they remain a useful spatial entity available to us in the 

approximation of a neighborhood (Arcaya et al. 2016; White 1987). Social and 

economic indicators were generated using the 2010 decennial Census files and 2009 – 

2013 American Community Survey (ACS) data. Walkability was determined using 2011 

– 2013 data from WalkScore.com. Crime data were derived from 2011 – 2013 monthly 

Uniform Crime Reports (UCR) provided by the City of Houston police department. 

Crime statistics, by offense type and frequency, were aggregated to the tract-level from 

police reports by district and beat. 

Measures 
 

The key outcome measure is a dichotomous variable indicating whether or not 

the child is obese. Because these are clinical records, height and weight are objectively 

measured at time of medical visit. This provides an advantage over parent-reported 

survey data, which may be prone to bias (Dubois and Girad 2007). We selected each 

child’s first visit between 2011 and 2013, and used measures from that visit. We 

calculated body mass index (BMI) from height and weight measures using the standard 
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formula (weight [kg]/height [m]2). Children were coded as being obese if they had an 

age- and sex-specific BMI ≥95th percentile (Wang and Chen 2012). Obesity rates in our 

data are comparable to other local and state estimates, giving us confidence in the 

results reported here (RWJF 2017). 

We include all available covariates from the medical record to represent child and 

familial characteristics. Child characteristics include age at recorded time period, 

gender, race/ethnicity, and child’s insurance type as a proxy for SES. Age is a 

continuous measure and represents the age of the child when he/she visited the clinic, 

centered on the mean age of children in our sample (5.70 years, SD= 3.22) for ease of 

interpretation. Gender is a dichotomous variable and represents whether or not the child 

is male, with female as the referent. Race/ethnicity is a categorical measure 

representing the parent-reported race/ethnicity of the child categorized as non-Hispanic 

White (referent), non-Hispanic Black, Hispanic, and Asian/other race. Insurance type is 

a categorical measure indicating the type of medical insurance held by the child at the 

time of the visit, and is categorized as private provider (referent) or public provider (e.g., 

Children’s Health Insurance Program (CHIP) or Children’s Medicaid). While using 

insurance type as a proxy for SES is far from ideal, insurance coverage is widely used 

as a marker for individual-level SES with reasonable validity (Goyal et al. 2011; Casey 

et al. 2013; Kristal et al. 2015).   

Nearly 38% of children were missing on measures of either race/ethnicity or 

insurance type. Typically, we would impute values for children with missing data on 

these specific characteristics; however, multiple imputation would not be appropriate 

due to the lack of comprehensive individual-level measures (Allison 2001). As such, we 
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used listwise deletion to eliminate children who were missing on race/ethnicity (n= 

21,706) or insurance type (n= 49,820) resulting in 135,974 children for analysis. 

Estimates presented here are substantively similar to supplementary analyses where 

we estimated models on the full sample and included an indicator for whether the child 

was missing on race/ethnicity or insurance type (available upon request). Finally, we 

compared the representativeness of our electronic medical records by comparing our 

racial/ethnic proportions to those from the American Community Survey (ACS) in the 

Houston metropolitan area. For example, the ACS 5 year estimates from 2009-2013 

show 58% white, 24% black, 44% Hispanic, and 6% Asian, which is closely aligned with 

our data presented in Table 2. 

The neighborhood data include social, economic, walkability, and crime 

measures known to be independently associated with obesity. Social and economic 

indicators were generated using the Census and ACS data and include educational 

attainment, unemployment rate, median income, median year the house was built, 

percent of female-headed households, percent foreign born, percent receiving public 

assistance, percent in poverty, and percent of homes that are vacant in the tract. The 

walkability measure extracted from Walkscore.com isolates whether, and the extent to 

which, a pedestrian can access key residential services such as grocery stores, 

schools, parks, and leisure spaces in a given area with minimal automobile use 

(Leinberger 2013). Higher scores indicate greater pedestrian accessibility. For crime 

data derived from the City of Houston police department, we followed the model by 

Tabarrok, Healton, and Helland (2009) and partitioned the offenses into violent (murder, 

rape, robbery, aggravated assault) and non-violent (burglary, theft, auto theft). We then 
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calculated the proportion of violent and non-violent crime for a given tract. We control 

for neighborhood population density in all models. The research was conducted in 

accord with prevailing ethical principles and approved by the Rice University and Baylor 

College of Medicine Institutional Review Boards. 

Statistical Analyses  
 

We first used a maximum-likelihood latent profile analysis (LPA; Lazarsfeld and 

Henry 1968) to shed light on the graded relationship between children’s odds of obesity 

and neighborhood type. We characterize neighborhoods into clusters based on a range 

of social, economic, and physical indicators frequently used to define a child’s 

neighborhood of residence (Jencks and Mayer 1990). We include mean levels of 

educational attainment, rates of unemployment, median household income levels, 

median year the house was built, percent foreign born, percent of homes that are 

vacant in the tract, crime, and walkability. We did not include race/ethnic composition in 

the construction of the residential environments to reduce the amplification of direct 

effects with the inclusion of individual values and group level values on the same 

variable (i.e., endogenous effects; Manski 1993). We did, however, test the robustness 

of our results with the inclusion of neighborhood racial/ethnic concentration in two sets 

of analyses, with percent black and percent Hispanic. The substantive interpretation of 

the findings reported here did not change with the inclusion of these level 2 covariates 

(available upon request). 

We estimated a 1-class model and fit successive models with an increasing 

number of classes to characterize neighborhoods. We used entropy and theoretically 

driven evidence to select the most appropriate number of profiles. We identified the 
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most parsimonious model through Bayesian information criterion (BIC), p-value-based 

likelihood ratio tests, and bootstrap p-value. Analyses indicated that neighborhoods in 

the Houston metropolitan area, given our data, are most appropriately captured by a 4-

class solution (see Online Resource 1).  

 To test the impact of neighborhood conditions on the odds of obesity among 

children we estimated multi-level logistic regression models (Guo and Zhao 2000; 

Rabe-Hesketh and Skrondal 2008) with Stata 14 software (StataCorp 2015). The 

models treat level-1 children as nested within level-2 neighborhoods. All models use 

maximum likelihood estimation with adaptive quadrature (Rabe-Hesketh and Skrondal 

2008). This approach adjusts for problems that otherwise downwardly bias estimated 

standard errors including clustering within neighborhoods, different sample sizes for 

level-1 and level-2 units, heteroscedastic error terms, and variable numbers of cases 

within level-2 units (Raudenbush and Bryk 2002). We test hypothesis 1 by including 

level-2 neighborhood type (and a level-2 error component uj) along with the level-1 

predictors and an individual error term (eij). For example, equation 1 represents the 

logged odds of obesity, allowing the odds to vary across neighborhoods, and includes 

child health insurance type (β1j), k control variables, and the neighborhood type (Nj) as a 

level-2 explanatory variable: 

ln [Prob(Y = 1) / Prob(Y = 0)] = β0j + β1j * Xij + ∑ βkij * Xkij + β2j * Nj + uj + eij  (1) 
 
 To test hypotheses 2a and 2b we included cross-level interactions (Meyers 2006) 

between neighborhood type and child insurance type (Table 3, Model 3; equation not 

shown). These models treat the intercept (β0j) and the child insurance effect (β1j) as 

random across neighborhood types and the effects of the control variables as fixed. We 
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report coefficients and odds ratios (OR) from the regressions. To ease interpretation of 

the cross-level interactions, we produce fully adjusted predicted probabilities from the 

regression estimates for obesity by child insurance type across the different types of 

residential contexts.   

RESULTS 
 

Figure 1 depicts how the 4 neighborhood profiles cluster in the Houston 

metropolitan area. Based on the descriptive characteristics and location of these 

neighborhood types, we assigned descriptive labels of Urban Elites (i.e. high SES and 

low crime), Suburban Elites, Suburban Strivers, and Urban Strivers (i.e. low SES and 

high crime). The most advantaged neighborhoods, Urban Elites, cluster in the south and 

west parts of the city center. As shown in Table 1, Urban Elites have the highest median 

household income ($124,000), highest overall levels of education (63% of residents had 

at least 16 years of education), lowest percentage of people living in poverty (4%), 

lowest proportion of violent crime (5% violent), and are the most walkable (46.72 

average walk score out of 100). In comparison, Urban Strivers make up the north, east, 

and southern parts of the central city, and are the most disadvantaged neighborhoods 

on nearly every indicator. They have the lowest median household income ($35,100), 

the lowest education levels (43% of adult residents lack a high school degree), the 

highest proportion of the population in poverty (44%), and the highest proportion of 

violent crime (20%).   

< Table 1 and Figure 1 about here> 
 

Table 2 displays means and standard errors for child and family characteristics 

overall and by residential context. Obesity prevalence is significantly different across 
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neighborhoods. For example, children living in Urban Strivers have higher rates of 

obesity (13%) than children living in Suburban Strivers (10%), Suburban Elites (6%), 

and Urban Elites (4%). The racial/ ethnic and socioeconomic measures show 

considerable child- and family-level variation across residential environments. The 

majority of children in the most affluent areas are Non-Hispanic Whites with private 

insurance (Urban Elites: 68% Non-Hispanic White, 94% privately insured; Suburban 

Elites: 62% Non-Hispanic White, 85% privately insured). Suburban Strivers have similar 

percentages of Non-Hispanic White (34%), Non-Hispanic Black (29%), and Hispanic 

(35%) children, with 56% of children privately insured. The most disadvantaged 

communities, Urban Strivers, have, on average, 11% Non-Hispanic White, 20% Non-

Hispanic Black, and 67% Hispanic children, and 30% of children in Urban Strivers are 

privately insured. Even though there are stark differences in the racial and ethnic 

representation in the four neighborhood types, as well as large differences in insurance 

coverage, there remain large numbers of children with different demographic 

characteristics in each of the neighborhood types. This is illustrated in Figure 2, which 

depicts the distribution of publically and privately insured children across neighborhood 

types. In other words, there is sufficient variation in neighborhood exposures for children 

of all race/ethnicities and socioeconomic levels in our data to assess whether the impact 

of neighborhood environment differs across children. 

< Table 2 and Figure 2 about here> 
 

 Table 3 presents results of our multilevel logistic regression models predicting 

child obesity. Model 1 includes age at recorded time period, gender, race/ethnicity, and 

insurance type at level-1 and population density (logged) at level-2. Model 2 adds 
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neighborhood type at level-2, and Model 3 adds a cross-level interaction between the 

neighborhood type and insurance type (our proxy for SES) of child. In Model 1, we see 

that older children, Non-Hispanic black and Hispanic children, and publicly-insured 

children have higher odds of obesity. Asian/other children, relative to white children, 

have lower odds of obesity; and boys are as likely to be obese as girls. In Model 2, 

accounting for neighborhood type slightly reduces the race/ethnic and insurance type 

differences in the odds of obesity, indicating that some of the higher odds of obesity for 

Non-Hispanic blacks and Hispanics relative to whites, and publicly-insured children 

relative to privately-insured children, is due to neighborhood context. Turning next to the 

odds ratios for the neighborhood categories, we see that there is a graded relationship 

between neighborhood disadvantage and child obesity. Children living in the most 

disadvantaged neighborhoods, the Urban Strivers, have more than two and a half times 

the odds of obesity relative to children living in the most advantaged neighborhoods, the 

Urban Elites. Accounting for child’s age, gender, race/ ethnicity, and insurance type, the 

more disadvantaged the community in which a child lives, the higher the odds of 

obesity.       

< Table 3 about here> 
 

Next, we examine whether distinctive residential contexts influence the odds of 

obesity differently based on family SES, measured by insurance type.  

In Model 3, when we add our cross-level interaction between neighborhood and 

insurance type, we see that the impact of all neighborhood types on obesity odds differs 

by child insurance type, such that publicly insured children’s odds of obesity are less 

impacted by living in a disadvantaged neighborhood relative to privately insured 
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children. Thus, children with public insurance have 2.2 times the odds of clinically 

assessed obesity compared to private insurance holders living in the same advantaged 

(or Urban Elites) community. However, as neighborhood disadvantage increases, 

moving from top to bottom of Model 3 in Table 3, the interaction coefficients are 

consistently negative and significant, indicating that the slope for publicly insured 

children, relative to privately insured children, is less steep. Finally, information at the 

bottom of Model 3 in Table 3 indicates that the random slope for insurance type is, in 

fact, significantly different by residential context. 

Figure 3 uses the information generated from Model 3 in Table 3 and provides 

fully adjusted predicted probabilities of obesity for public and private insured children 

across the neighborhood types. The figure illustrates two important trends in the 

probability of obesity among children. First, the gap in obesity for children by family SES 

is largest in the most advantaged neighborhoods. For example, the likelihood of obesity 

for children with public insurance in Urban Elites (.07) is higher than the likelihood for 

privately insured children (.03; p < 0.001). Second, the likelihood of obesity by 

neighborhood disadvantage rises faster for privately insured children than for publically 

insured children. Moving left to right of Figure 3, as neighborhood disadvantage 

increases, the probability of obesity for children with public insurance moves from .07 to 

nearly .14 in Urban Elites versus Urban Strivers neighborhoods. Children with private 

insurance, however, see a larger increase, from .03 in the most advantaged 

neighborhoods to over .12 in the most disadvantaged neighborhoods. The result is a 

narrowing of the gap in obesity between more and less advantaged children the more 

disadvantaged the neighborhood. In fact, the fully adjusted probability of obesity for 



19 
 

privately and publically insured children in Suburban Strivers, the next to most 

disadvantaged neighborhood type, is statistically indistinguishable, 0.104 for public 

insurance and 0.099 for private insurance.  

< Figure 3 about here > 
 
Finally, because children who are publicly insured likely differ from children who 

are privately insured on many characteristics, which we cannot directly observe, Models 

4 and 5 stratify the sample by insurance type. Indeed, the first finding to note is how 

dramatically the race/ethnic odds ratios differ across the private and publicly-insured 

models, due in part to the large race/ethnic differences in the composition of each 

sample. For example, among publicly-insured children, there is no difference in the 

odds of obesity between Non-Hispanic black and Non-Hispanic white children. Next, the 

neighborhood type odds ratios are quite different across the stratified models. For 

privately insured children, living in a Suburban Elites neighborhood is associated with 

1.7 times higher odds compared to living in the most advantaged neighborhoods. For a 

privately-insured child, living in a Suburban Strivers or Urban Strivers neighborhood is 

associated with nearly three times higher odds of obesity compared to living in an Urban 

Elites neighborhood. In contrast, there is no significant difference in the odds of obesity 

for publicly-insured children living in Suburban Elites relative to those in Urban Elites, 

and the increase in odds for Strivers neighborhoods, while significant, is more modest. 

The table also notes that differences in the effect of neighborhood type on child obesity 

across the private and public-insured models are significantly different from each other. 

This provides more evidence that, indeed, neighborhood disadvantage is more 
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impactful on increasing the obesity odds for privately insured children than for publically 

insured children. 

DISCUSSION 
 

We investigated whether distinctive residential contexts generate variation in the 

odds of obesity by SES. Aligned with previous studies, and consistent with H1, we show 

that the likelihood of obesity is higher for children in more socioeconomically 

disadvantaged areas. We add to this literature by examining additional hypotheses and 

finding that the impact of neighborhood disadvantage is different for children of different 

socioeconomic standing, such that higher-SES children’s odds of obesity in 

disadvantaged communities are more impacted by the community in which they live 

relative to other lower-SES children living in those same neighborhoods. In part, our use 

of Latent Profile Analysis (LPA) provided analytical strength in the characterization of 

the city of Houston into different kinds of environments that children may reside. As a 

result, our findings indicate that when the differential experiences of children in the 

same neighborhood are accounted for within distinct residential environments, the gap 

in obesity between children by social status begins to converge.  

Considerable empirical research indicates that neighborhood effect heterogeneity 

should be considered when isolating the impact of distinctive residential environments 

on child outcomes (Sampson 2008; Harding et al. 2010; Sharkey 2006, 2010; Sharkey 

and Faber 2014). For example, studies indicate that boys procure greater gains from 

living near affluent neighbors than girls in terms of IQ scores, verbal ability, and reading 

achievement scores (see Leventhal and Brooks-Gunn 2000, for review). Disentangling 

these associations, however, introduces several challenges for neighborhood 
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researchers that exploit large survey or experimental data sets. For example, Sampson 

(2008) attempted to analyze the differential impact of exposure to highly disadvantaged 

groups using the MTO data, but because children from different socioeconomic 

backgrounds occupy entirely different types of communities in cities like Baltimore and 

Chicago, the examination was not possible.   

Our data source, geocoded medical records from the largest single system 

network of pediatric clinical settings in the country located in Houston, Texas, allows us 

to overcome some of the methodological challenges involved in trying to uncover 

neighborhood effect heterogeneity. As a setting, Houston represents the demographic 

future of the U.S. (Lewis et al. 2011) due to its racial/ethnic compositional makeup, and 

although socioeconomically and racially segregated like most major urban areas, 

Houston’s ethnic diversity and lack of zoning results in an eclectic mix of residents living 

near one another. We are able to take advantage of this heterogeneity along with the 

large number of children of all race/ethnicities and socioeconomic levels clustered within 

neighborhoods (see Table 2 and Figure 2) and the large sample size to estimate 

differential impacts of family SES by neighborhood context on children’s odds of 

obesity.   

Extant research indicates that multiple components of a child’s residential 

environment influences his/her likelihood of being obese (Kimbro and Denney 2013; 

Carroll-Scott et al. 2013; Grow et al. 2010). Largely unknown, however, is the extent to 

which distinctive residential contexts impact obesity in different ways for different 

children who also live in the same neighborhood. Several known mechanisms through 

which a child might experience a single residential context differently based on SES 
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have been identified. Most notable for the present analysis is the economic composition 

within a particular residential context. We focus on this aspect because of the known 

bundling of spatial advantages or disadvantages present within this dimension (Sharkey 

2013). Every individual, familial, and contextual factor, however, works in unison to 

create a varied experience for each child and depending on how a child adapts to these 

components physiologically, psychologically, and socially his/her chance of being obese 

may be influenced in different ways compared to that of the child next door. These 

complex processes inform a multitude of dimensions that generate an infinite number of 

possibilities to either contribute to, or counteract, obesity.  

Our results provide evidence, consistent with H2b, that higher-SES children’s 

odds of obesity are more impacted by living in a lower-SES area. Although it is beyond 

the scope of our analysis to examine precisely why, it may be that economically 

advantaged children living in communities characterized by disadvantage, such as 

higher rates of crime and diminished walkability, are more vulnerable to neighborhood 

context. In this way, and in line with work from Blaxter (1990), the impact of the 

neighborhood environment matters less for lower-SES children perhaps due to already 

high rates of exposure to the deleterious effects of social disadvantage. The direction 

and magnitude of these two adaptations push in opposite directions, thereby generating 

more pronounced differences in the odds of obesity by sociodemographic attributes. In 

other words, neighborhood disadvantage associates with greater weight among children 

overall, and it does so differentially by child and family characteristics. Given that the 

neighborhood environment influences children’s obesity status between the ages of 2-

12 years old, however, the magnitude of this effect is likely to increase in adolescence 
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(Harding et al. 2009) and adulthood (Sokal-Gutierrez 2017) when peers and 

neighborhoods begin to assume an increasingly important role in influencing weight-

related behaviors and attitudes. 

One mechanism through which this variation might occur is through residential 

social networks. Social networking paths closely follow socioeconomic lines and are a 

key source through which weight-related cultural scripts are transmitted to children 

(Muttarak 2018). Children and families within a neighborhood tend to share specific 

cultural and social norms (Jencks and Mayer 1990; Shonkoff and Phillips 2000) that 

might motivate weight-related behaviors including dietary practices and physical activity 

levels, all of which influence the likelihood of obesity. A similar pattern is observed when 

peer groups serve as the primary agent of socialization for adolescents (Umberson, 

Crosnoe, and Reczek 2010). Variation in the internalization of these norms and 

attitudes that are present within the neighborhood might serve to inhibit or increase the 

odds of obesity differently for children. For example, the concentration of children within 

a neighborhood who are obese may lead, in some spaces, to an overarching normative 

acceptance of obesity as collective attitudes towards it are focused more on living with it 

than on preventing it (Powell and Kahn 1995). In other contexts, obesity prevalence 

may serve to increase awareness and encourage preventative measures. 

Consequently, although social referents within the neighborhood context operate in the 

periphery of the child’s social network (Childers and Rao 1992), they still exert a degree 

of influence on children’s weight-related behaviors. 

A second source of variation in child obesity risk within residential contexts is 

children’s different physiological, emotional, or social responses to the challenges of 
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daily life in disadvantaged environments. Sharkey (2006) made the distinction between 

imposed environments (everything that exists in the neighborhood where a child lives) 

and selected environments (the people and institutions with whom he or she interacts) 

to emphasize that children living in the same neighborhood may choose very different 

milieu for themselves. It follows, then, that the choices children (and their parents) make 

may impact the odds of obesity differently for different children within the same context. 

For example, Crosnoe (2009) found that impoverished students perform worse 

academically when attending middle-class schools than when in schools with similar 

peers. He finds that this is largely due to stigmatization and diminished social 

recognition. Crosnoe argues that how students perform is a function of the way in which 

they view themselves, along with how they perceive others to evaluate them relative to 

their peers. If we apply this theory to differences in child obesity, it is possible that 

cultural authenticity within a disadvantaged neighborhood (Harding 2009) may take the 

form of appropriate body size, and influence obesity outcomes in children.  

Limitations 

 To the best of our knowledge, we are the first to suggest and examine variation 

in obesity risk among different children living in the same residential context. However, 

this study is not without limitations. Electronic medical records, like most data, come 

with advantages and disadvantages. We have a large and diverse number of patients 

nested within the same neighborhoods with objectively measured indicators such as 

height and weight, but the patient record is primarily intended for clinical and 

administrative use. Accordingly, the variables available for analysis are often limited due 

to issues of privacy and security. Thus, the present analysis is constrained by the 
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rudimentary control measures available in the electronic medical record data, therefore 

limiting the scope of our analysis and likely masking more nuanced patterns. For 

example, we do not have information on health care quality though prior research 

indicates that quality of care differs by insurance type (Kreider et al. 2016). We also use 

a public-private insurance type dichotomization as a proxy measure for SES. While it is 

not ideal to use insurance type as a proxy for SES, publicly provided health care 

coverage such as Medicaid is only available to children who meet stringent income 

criteria, with the exception of some that suffer from limited medical conditions 

(Rosenbaum 2002). In addition, insurance coverage is widely used as a marker for 

individual-level SES with reasonable validity and reliability (Goyal et al. 2011; Casey et 

al. 2013; Kristal et al. 2015). Future researchers should apply a more comprehensive 

set of covariates to test the reliability of our findings, and include individual- and family-

level conditions known to track with obesity (e.g., parenting behaviors, peer group 

influences).  

Further, although only 6% of children in Urban Elites neighborhoods have public 

health insurance, which may impact standard errors, this lack of variation is offset by 

our large sample size. Also, because we treat latent class membership as a manifest 

categorical variable in a larger model of interest our approach of first classifying 

individuals into latent classes and then performing a subsequent analysis may induce 

attenuation in our estimates (Bray et al. 2015; Oberski 2016). Online Resource 1, 

however, provides evidence that our classify-analyze approach induces bias but does 

not have a meaningful impact on findings. To be sure, like any analytical technique LPA 

comes with its own suite of limitations. Still, we believe our analysis can inspire future 
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research efforts into treating neighborhoods as influential for health and well-being 

through bundles of risks and resources. Indeed, these future efforts might incorporate 

other diagnostic procedures, such as the evaluation of bivariate residuals (BVR) and the 

comparison between the associations with latent variables and individual items (see 

Vermunt and Magidson 2002). 

 Moreover, despite that our patient sample is drawn from all 13 counties in the 

Houston metropolitan area, our sample is still limited to this region, reducing the 

generalizability of our findings to a portion of children in the Houston, TX region 

between the years of 2011 and 2013. In addition, the cross-sectional nature of our data 

is a methodological limitation that attenuates the ability to make causal inferences. 

Finally, we believe our analyses further call for different conceptualizations or foci in 

characterizing places. Where we focus on family and neighborhood social and 

economic conditions explicitly, other research might focus on, for example, family and 

child propensities to spend time outside in parks or otherwise recreating and evaluating 

those associations in the context of explicit neighborhood accessibility for outdoor 

recreation. Doing so will further our understanding of neighborhood heterogeneity and 

its relevance in linking place to well-being.   

Despite these limitations, researchers generally lack access to data that explicitly 

link social determinants of health to children’s obesity prevalence among specific 

subgroups of children in a single residential environment. The current study addresses 

this deficit by using more than 135,000 medical records from a diverse group of children 

residing in Houston, TX, linked to demographic and multifaceted contextual data. Using 

an innovative analytical technique to characterize neighborhood types across the city 
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we show that neighborhood disadvantage matters differently for children’s obesity 

based on their (and their parent’s) socioeconomic position. Our findings allow 

neighborhood researchers to move beyond the simple linkages of neighborhood 

conditions to child obesity and demonstrate how this association varies for specific 

subgroups of children from distinctive residential environments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

References  

Allard S, Small ML. 2013. Reconsidering the urban disadvantaged: the role of systems, 
institutions, and organizations. The Annals of the American Academy of Political and 
Social Sciences 647(1):6–20. 
 
Allison, P. D. 2001. Missing data (Vol. 136). Sage publications.  
 
Alvarado, Steven Elías. 2016. Neighborhood disadvantage and obesity across 
childhood and adolescence: Evidence from the NLSY children and young adults cohort 
(1986–2010). Social Science Research 57: 80-98. 
doi:10.1016/j.ssresearch.2016.01.008. 
 
American Community Survey: Demographic and Housing Characteristics, 2011-2015, 
U.S. Census Bureau. https://factfinder.census.gov, Accessed October 28, 2017 
 
Arcaya, M., Tucker-Seeley, R., Kim, R., Schnake-Mahl, A., So, M., & Subramanian, S.  
2016. Research on Neighborhood Effects on Health in the United States: A Systematic 
Review of Study Characteristics. Social Science & Medicine 168: 16–29. 
 
Arcaya, M., Graif, C., Waters, M., and S.V. Subramanian. 2016. Health selection into  
neighborhoods among families in the Moving to Opportunity program. American Journal 
of Epidemiology 183(2): 130-137. 
 
Blaxter, Mildred. 1990. Health and Lifestyles. London: Tavistock. 
 
Bray, Bethany C., Lanza, Stephanie T., and Xiamming Tan. 2015. “Eliminating bias in  
classify-analyze approaches for latent class analysis.” Structural Equation Modeling 
22(1): 1-11.  
 
Brooks-Gunn, J., Duncan GJ, Klebanov, PK,Sealand, N. 1993. Do neighborhoods 
influence child and adolescent development. American Journal of Sociology 99(2):353–
95. 
 
Carroll-Scott A, Gilstad-Hayden K, Rosenthal L, Peters SM, McCaslin C, Joyce R, et al. 
2013. Disentangling neighborhood contextual associations with child body mass index, 
diet, and physical activity: the role of built, socioeconomic, and social environments. 
Social Science & Medicine 95:106–14. 
 
Casey, JA, Curriero, FC, Cosgrove, SE, Nachman, KE, Schwartz, BS. 2013. High-
density livestock operations, crop field application of manure, and risk of community-
associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA 
Internal Medicine 173:1980–90. 
 
Crosnoe R. 2009. Low-income students and the socioeconomic composition of public 
high schools. American Sociological Review 74(5):709–30. 



29 
 

Crowder K, South SJ. 2003. Neighborhood distress and school dropout: the variable 
significance of community context. Social Science Research 32:659–98. 
 
Dondero, Molly and Jennifer Van Hook.  2016. Generational Status, Neighborhood 
Context, and Mother-Child Resemblance in Dietary Quality in Mexican-origin Families.  
Social Science and Medicine 150: 212-220. 
 
Dubois L, Girad M. 2007. “Accuracy of maternal reports of pre-schoolers’ weights and 
heights as estimates of BMI values.” International Journal of Epidemiology 36:132-8. 
 
Ellen IG, Turner MA. 1997. Does neighborhood matter? Assessing recent evidence. 
Hous. Policy Debate 8(4):833–66. 
Ellen IG, Turner MA. 2003. Do neighborhoods matter and why? In Choosing a Better 
Life? A Social Experiment in Leaving Poverty Behind: Evaluation of the Moving to 
Opportunity Program, ed. JM Goering, JD Feins, pp. 313–38. Washington, DC: Urban 
Inst. Press. 
 
Ferraro, Kenneth F., and Jessica A. Kelley-Moore. 2003. Cumulative Disadvantage and 
Health: Long-Term Consequences of Obesity. American Sociological Review 68:707-
29.  
 
Goyal NK, Fiks AG, Lorch SA. 2011. Association of late-preterm birth with asthma in 
young children: practice-based study. Pediatrics 128: 830–38.  
 
Guo, G., & Zhao, H. 2000. Multilevel modeling for binary data. Annual Review of 
Sociology 26: 441-462. 
 
Grow, H. M. G., Cook, A. J., Arterburn, D. E., Saelens, B. E., Drewnowski, A., & 
Lozano, P. 2010. Child obesity associated with social disadvantage of children’s 
neighborhoods. Social Science & Medicine 71(3): 584-591. 
 
Harding DJ. 2009. Collateral consequences of violence in disadvantaged 
neighborhoods. Social Forces 88(2):757–82. 
 
Harding DJ, Gennetian L, Winship C, Sanbonmatsu L, Kling J. 2010. Unpacking 
neighborhood influences on education outcomes: setting the stage for future research. 
National Bureau of Economic Research Working Paper No. 16055. 
 
Halfon N, Kandyce L, Slusser W. 2013. Associations between obesity and comorbid 
mental health, developmental, and physical health conditions in a nationally 
representative sample of US children aged 10 to 17. Academic Pediatrics 13(1):6–13. 
 
Houston, Texas City Website. 2017. http://www.houstontx.gov/planning/Demographics/ 
Accessed October 19, 2017. 
 
 



30 
 

Jencks, C., & Mayer, S. E. 1990.The social consequences of growing up in a poor 
neighborhood. In L. E. Lynn, & M. G. H. McGeary (Eds.), Inner city poverty in the 
United States (pp. 111e186). Washington, DC: National Academy. 
 
Jeon, L. Buettner, C.K., and E. Hur. 2014. Family and neighborhood disadvantage, 
home environment, and children's school readiness. Journal of Family Psychology 28: 
718-727 
 
Kimbro, Rachel Tolbert and Justin T. Denney. 2013. Neighborhood Context and 
Racial/Ethnic Differences in Young Children’s Obesity: Structural Barriers to 
Interventions. Social Science & Medicine 95:97-105. 
http://dx.doi.org/10.1016/j.socscimed.2012.09.032 
 
Kling JR, Liebman JB, Katz LF. 2005. Experimental analysis of neighborhood effects. 
NBER Working Paper: 11577. 
 
Kreider, Amanda R., French, Benjamin, Aysola, Jaya, Saloner, Brendan et al. 2016. 
“Quality of Health Insurance Coverage and Access for Children in Low-Income 
Families.” JAMA Pediatrics 170(1): 44-51.  
 
Kristal RB, Blank AE, Wylie-Rosett J, Selwyn PA. 2015. Factors associated with daily 
consumption of sugar-sweetened beverages among adult patients at four federally 
qualified health centers, Bronx, New York, 2013. Preventing Chronic Disease 12:E02. 
 
Lazarsfeld, Paul F. and Neil W. Henry. 1968. Latent Structure Analysis. Houghton 
Mifflin: Rancho Cucamonga: CA.  
 
Leinberger, Christopher B. 2013. The WalkUP Wake-Up Call: Atlanta. Washington, DC: 
The George Washington University School of Business. 
 
Leventhal, Tama and Jeanne Brooks-Gunn. 2000. The Neighborhoods They Live in: 
The Effects of Neighborhood Residence on Child and Adolescent Outcomes. 
Psychological Bulletin 126(2): 309-337. 
 
Lewis, Valerie A., Emerson, Michael O., and Stephen L. Klineberg. 2011. Who We'll 
Live With: Neighborhood Racial Composition Preferences of Whites, Blacks and 
Latinos. Social Forces 89(4): 1385-1407 doi:10.1093/sf/89.4.1385.  
 
Lobstein, Tim, Jackson-Leach, Rachel, Moodie, Marjory L., Hall, Kevin D., Gortmaker, 
Steven L., Swinburn, Boyd A., James, W Phillip T., Wang, Woufa, and Kim McPherson. 
(2015). Child and adolescent obesity: Part of a bigger picture. The Lancet (14): 1-11.  
http://dx.doi.org/10.1016/S0140-6736(14)61746-3. 
 
 
 



31 
 

Ludwig, Jens, Sanbonmatsu, Lisa, Gennetian, Lisa, Adam, Emma, Duncan, Greg J., 
Katz, Lawrence F., Kessler, Ronald C., Kling, Jeffrey R., Lindau, Stacy Tessler, 
Whitaker, Robert C., and Thomas W. McDade. 2011. Neighborhoods, Obesity, and 
Diabetes — A Randomized Social Experiment. New England Journal of Medicine 
365:1509-1519 DOI: 10.1056/NEJMsa1103216. 
 
Manski, Charles F. Identification of Endogenous Social Effects: The Reflection Problem. 
The Review of Economic Studies 60(3): 531-542.  
 
Massey, Douglas S., Andrew B. Gross, and Kumiko Shibuya. 1994. Migration,  
Segregation, and the Geographic Concentration of Poverty. American Sociological 
Review 59:425–45. 
 
McCulloch, C. E., & Searle, S. R. 2001. Generalized, Linear, and Mixed models. New 
York: Wiley. 
 
Meyers, Jason L. and S. Natasha Beretvas. 2006. The Impact of Inappropriate 
Modeling of Cross-Classified Data Structures. Multivariate Behavioral Research 41(4): 
473-497. doi: 10.1207/s15327906mbr4104_3 
 
Muttarak, Raya. 2018. Normalization of plus size and the danger of the unseen 
overweight and obesity in England. Obesity 26: 1125-1129. 
https://doi.org/10.1002/oby.22204 
 
Oberski, D.L. 2016. Beyond the number of classes: separating substantive from non-
substantive dependence in latent class analysis. Advances in Data Analysis & 
Classification 10: 171-182. 
Pampel, Fred C., and Richard. G. Rogers. 2004. Socioeconomic Status, Smoking, and 
Health: A Test of Competing Theories of Cumulative Advantage. Journal of Health and 
Social Behavior 45: 306-21. 
 
Pickett, K.E., & Pearl, M. 2001. Multilevel analyses of neighborhood socioeconomic 
context and health outcomes: A critical review. Journal of Epidemiology and Community 
Health 55:111–122. 
 
Powell AD, Kahn AS.1995 Racial differences in women's desires to be thin. 
International Journal of Eating Disorders 17:191–195.  
 
Rabe-Hesketh, Sophia and Anders Skrondal. 2008. Multilevel and Longitudinal 
Modeling Using Stata, Second Edition. Stata Press: College Station, TX.  
 
Raudenbush, S. W. and Bryk, A. S. 2002. Hierarchical linear models. Thousand Oaks, 
CA: Sage Publications. 
 



32 
 

Roberto CA, Swinburn B, Hawkes C, Huang TTK, Costa SA, Ashe M, et al. 2015. 
Patchy Progress on Obesity Prevention: Emerging Examples, Entrenched Barriers, and 
New Thinking. Lancet 385: 2400-2409. 
 
Robert Wood Johnson Foundation (RWJF) and Trust for America's Health. The State of 
Obesity 2017. Washington, D.C.: 2017. 
 
Rosenbaum S. 2002. Medicaid. New England Journal of Medicine 346:635–640. doi: 
10.1056/NEJM200202213460825. 
 
Rossen, Lauren M. 2014. Neighbourhood economic deprivation explains racial/ethnic 
disparities in overweight and obesity among children and adolescents in the USA. 
Journal of Epidemiology & Community Health 68:123-129 doi:10.1136/jech-2012-
202245. 
 
Saelens BE, Sallis JF, Frank LD, Couch SC, Zhou C, Colburn T, Cain KL, Chapman J, 
Glanz K. 2012. Obesogenic neighborhood environments, child and parent obesity: the 
Neighborhood Impact on Kids study. American Journal of Preventative Medicine 
42(5):57-64. doi: 10.1016/j.amepre.2012.02.008. 
 
Sampson RJ. 2012. Great American City: Chicago and the Enduring Neighborhood 
Effect. Chicago: Univ. Chicago Press. 
 
Sampson RJ, Morenoff JD, Gannon-Rowley T. 2002. Assessing “neighborhood effects”: 
social processes and new directions in research. Annual Review of Sociology 28:443–
78. 
 
Sampson RJ, Raudenbush SW. 1999. Systematic social observation of public spaces: a 
new look at disorder in urban neighborhoods. American Journal of Sociology 
105(3):603–51. 
 
SampsonRJ, Raudenbush SW,Earls F. 1997. Neighborhoods and violent crime: a 
multilevel study of collective efficacy. Science 277:918–24. 
 
Sampson RJ, Sharkey P. 2008. Neighborhood selection and the social reproduction of 
concentrated racial inequality. Demographics 45:1–29. 
 
Sampson RJ, Sharkey P, Raudenbush S. 2008. Durable effects of concentrated 
disadvantage on verbal ability among African-American children. Proceedings of the 
National Academies of Science USA 105:845–52. 
 
Sharkey P. 2006. Navigating dangerous streets: the sources and consequences of 
street efficacy. American Sociological Review 71:826–46 
 
Sharkey P. 2008. The intergenerational transmission of context. American Journal of 
Sociology 113:931–69. 



33 
 

 
Sharkey P. 2010. The acute effect of local homicides on children’s cognitive 
performance. Proceedings of the National Academy of Science USA 107:11733–38 
 
Sharkey P. 2013. Stuck in Place: Urban Neighborhoods and the End of Progress 
Toward Racial Equality. Chicago: Univ. Chicago Press. 
 
Sharkey P, Elwert F. 2011. The legacy of disadvantage: multigenerational neighborhood 
effects on cognitive ability. American Journal of Sociology 116:1934–81. 
 
Sharkey, P. 2013. Stuck in place: Urban neighborhoods and the end of progress toward 
racial equality. Chicago, IL: University of Chicago Press. 
 
Sharkey P, Schwartz AE, Ellen IG, Lacoe J. 2013. High stakes in the classroom, high 
stakes on the street: the effects of community violence on students’ standardized test 
performance. Working Paper: 03–13, Institute of Education and Social Policy, New York 
University. 
 
Sharkey, Patrick and Jacob W. Faber. 2014. Where, When, Why, and For Whom Do 
Residential Contexts Matter? Moving Away from the Dichotomous Understanding of 
Neighborhood Effects. Annual Review of Sociology 40: 559-579; DOI: 10.1146/annurev-
soc-071913-043350 
 
Shonkoff, Jack P. and Deborah A. Phillips (Eds). 2000. From Neurons to  
Neighborhoods: The Science of Early Childhood Development. Washington, D.C., 
National Academy Press. 
 
Singh, G. K., Siahpush, M., & Kogan, M. D. 2010. Neighborhood socioeconomic 
conditions, built environments, and childhood obesity. Health Affairs 29: 503-512. 
 
Singh, G.K. and R.M. Ghandour. 2012. Impact of neighborhood social conditions and 
household socioeconomic status on behavioral problems among US children. 
Maternal & Child Health Journal16:158-169 
 
Sokal-Gutierrez, Karen. 2017. “Will overweight children be overweight adults? New 
England Journal of Medicine Resident 360.   
 
Swinburn BA, Sacks G, Hall KD, et al. 2011.The global obesity pandemic: shaped by 
global drivers and local environments. Lancet 378: 804–815. 
       
Tabarrok, Alex, Healton, Paul, and Eric Helland. 2010. The measure of vice and sin: A 
review of the uses, limitations, and implication of crime data. In: Handbook on the 
Economics of Crime. Northhampton, MA: Edward Elgar Publishing.  
 
 
 



34 
 

Tienda, Marta. 1991. “Poor People and Poor Places: Deciphering Neighborhood Effects 
on Poverty Outcomes.” Pp. 244–62 in Macro-Micro Linkages in Sociology, edited by J. 
Huber. Newbury Park, CA: Sage. 
 
Townshend, T., & Lake, A. A. 2009. Obesogenic urban form: theory, policy and practice. 
Health & Place 15(4): 909-916. 
 
Umberson, Debra, Crosnoe, Robert, and Corinne Reczek. 2010. Social relationships 
and health behavior across the life course. Annual Review of Sociology 36:139-57. 
 
Vermunt, J.K., and Magidson, J. (2002). Latent class cluster analysis. J.A. Hagenaars 
and A.L. McCutcheon (eds.), Applied Latent Class Analysis, 89-106. Cambridge 
University Press. 
 
Wang, Y., & Beydoun, M. A. 2007. The obesity epidemic in the United States—gender, 
age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review 
and meta-regression analysis. Epidemiologic reviews 29(1): 6-28. 
 
Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. 2011. Health and 
economic burden of the projected obesity trends in the USA and the UK. Lancet 378: 
815–25. 
 
Wang et al. 2011. Trends and racial / ethnic disparities in severe obesity among US 
children and adolescents 1976-2006. International Journal of Pediatric Obesity 6(1): 12-
20. 
 
Wang, Youfa and Hsin-Jen Chen. 2012. Use of percentiles and Z-scores in 
Anthropometry. In Handbook of anthropometry: Physical measures of human form in 
health and disease, V.R. Preedy (ed.) Springer Science Business Media: New York. 
 
White, Michael J. 1987. American Neighborhoods and Residential Differentiation. New  
York: Russell Sage Foundation. 
 



35 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sig
Mean SE Mean SE Mean SE Mean SE

Socioeconomic Proportions
  Median Income (in $10K) 12.40 (0.02) 8.64 (0.01) 5.14 (0.01) 3.51 (0.01) <.001
  Median Year House Built 1989 (0.10) 1994 (0.05) 1984 (0.07) 1970 (0.01) <.001
  Population Density 39.60 (1.37) 29.71 (1.02) 33.24 (1.45) 62.56 (4.07) <.001
  % Adults < 12 years Education 0.04 (0.01) 0.08 (0.01) 0.21 (0.01) 0.43 (0.18) <.001
  % Adults = 12 years Education 0.09 (0.01) 0.20 (0.01) 0.31 (0.01) 0.28 (0.01) <.001
  % Adults > 12 and < 16 years Education 0.20 (0.01) 0.33 (0.01) 0.32 (0.01) 0.19 (0.01) <.001
  % Adults = 16 years Education 0.38 (0.01) 0.28 (0.01) 0.12 (0.01) 0.07 (0.01) <.001
  % Adults = 18 years Education 0.18 (0.01) 0.09 (0.01) 0.04 (0.01) 0.02 (0.01) <.001
  % Adults > 18 and < 21 years Education 0.07 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) <.001
  % Adults = 21 years Education 0.04 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) <.001
  % Unemployed 0.04 (0.01) 0.06 (0.01) 0.10 (0.01) 0.12 (0.01) <.001
  % Foreign-born Residents 0.21 (0.01) 0.16 (0.01) 0.19 (0.01) 0.37 (0.01) <.001
  % Receiving Public Assistance 0.00 (0.01) 0.01 (0.01) 0.02 (0.01) 0.03 (0.01) <.001
  % Female-Headed Households 0.06 (0.01) 0.11 (0.01) 0.19 (0.01) 0.21 (0.01) <.001
  % of Residents in Poverty 0.04 (0.01) 0.09 (0.01) 0.26 (0.01) 0.44 (0.02) <.001
  % of Vacant Homes 0.05 (0.01) 0.06 (0.01) 0.10 (0.01) 0.13 (0.01) <.001
Proportion of Crimes which are Violent 0.05 (0.01) 0.17 (0.01) 0.18 (0.01) 0.20 (0.01) 0.082
Walkability Score (out of 100) 46.72 (2.41) 29.49 (1.24) 30.16 (1.21) 42.22 (0.99) <.001
Neighborhoods n = 146 285 386 256
Children n = 27,664 53,006 37,218 18,059
Source: Data are from the Authors' Compilation of Electronic Medical Records, the Census, American Communtiy Survey (ACS), Houston Crime Data, and Walkscore.com
Note: Significance is evaluated using One-Way MANOVA with the neighborhood variables as the dependent variables and LPA neighborhood type as the independent variable. 

Table 1. Descriptive Neighborhood-level Statistics by Neighborhood Types Created through LPA
Urban Elites Suburban Elites Urban StriversSuburban Strivers
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Sig Sig Sig
Mean SE Mean SE Mean SE Mean SE Mean SE

Health Outcome
 Obesity 0.08 (0.01) 0.04 (0.01) 0.06 (0.01) <.001 0.10 (0.01) <.001 0.13 (0.01) <.001
Individual Characteristics 
  Age at Visit 5.70 (0.01) 5.78 (0.01) 5.74 (0.01) 0.09 5.66 (0.01) <.001 5.55 (0.01) <.001
Gender 
  Male 0.51 (0.01) 0.51 (0.01) 0.52 (0.01) 0.29 0.51 (0.01) 0.62 0.52 (0.01) 0.39
Race/ Ethnicity
  Non-Hispanic White 0.49 (0.01) 0.68 (0.01) 0.62 (0.01) 0.07 0.34 (0.01) <.001 0.11 (0.01) <.001
  Non-Hispanic Black 0.16 (0.01) 0.05 (0.01) 0.12 (0.01) <.001 0.29 (0.01) <.001 0.20 (0.01) <.001
  Hispanic 0.28 (0.01) 0.11 (0.01) 0.18 (0.01) <.001 0.35 (0.01) <.001 0.67 (0.01) <.001
  Asian/ Other Race 0.07 (0.01) 0.15 (0.01) 0.07 (0.01) <.001 0.03 (0.01) <.001 0.02 (0.01) 0.01
Health Insurance 
  Private Provider 0.71 (0.01) 0.94 (0.01) 0.85 (0.01) <.001 0.56 (0.01) <.001 0.30 (0.01) <.001
  Public Provider 0.29 (0.01) 0.06 (0.01) 0.15 (0.01) <.001 0.44 (0.01) <.001 0.70 (0.01) <.001
Neighborhoods n = 1,076 146 285 386 256
Children n = 135,947 27,664 53,006 37,218 18,059

Note: Significance is evaluated using simple linear or logistic regression with Urban Elites as the reference category.

Table 2. Child and Family Descriptive Statistics Overall and by Neighborhood Types Created through LPA

Source: Data are from the Authors' Compilation of Electronic Medical Records, the Census, American Communtiy Survey (ACS), Houston Crime Data, and Walkscore.com

Overall Urban Elites Suburban Elites Suburban Strivers Urban Strivers
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Coeff. SE OR Coeff. SE OR Coeff. SE OR Coeff. SE OR Coeff. SE OR
Intercept -2.81*** 0.11 0.06*** -3.52*** 0.11 0.03*** -3.64*** 0.11 0.03*** -3.72*** 0.13 0.02*** -2.61*** 0.17 0.07***
Demographics
Age at visit 0.20*** 0.00 1.22*** 0.20*** 0.00 1.22*** 0.20*** 0.00 1.22*** 0.20*** 0.00 1.22*** 0.20*** 0.01 1.23***
Gender (female, ref)
  Male -0.03 0.02 0.97 -0.03 0.02 0.97 -0.03 0.02 0.97 -0.02 0.03 0.98 -0.04 0.03 0.96
Race/ ethnicity (non-Hispanic white, ref)
  Non-Hispanic Black 0.46*** 0.03 1.59*** 0.37*** 0.03 1.45*** 0.36*** 0.03 1.43*** 0.52*** 0.04 1.69*** 0.07 0.06 1.07
  Hispanic 0.78*** 0.02 2.17*** 0.68*** 0.03 1.97*** 0.66*** 0.03 1.93*** 0.68*** 0.03 1.97*** 0.50*** 0.05 1.65***
  Asian/ Other Race -0.24*** 0.06 0.79*** -0.19* 0.06 0.833* -0.19* 0.06 0.83* -0.14* 0.07 0.87* -0.47* 0.15 0.63*
Child is publically insured 0.33*** 0.04 1.39*** 0.21*** 0.03 1.23*** 0.80*** 0.11 2.22***
Neighborhoods (Urban Elites, ref)a

  Suburban Elites 0.51*** 0.05 1.67*** 0.54*** 0.05 1.72*** 0.54*** 0.05 1.71*** 0.16 0.10 1.17
  Suburban Strivers 0.84*** 0.05 2.31*** 1.01*** 0.05 2.75*** 0.99*** 0.06 2.70*** 0.28* 0.10 1.32*
  Urban Strivers 0.96*** 0.05 2.61*** 1.10*** 0.07 3.03*** 1.09*** 0.06 2.97*** 0.45*** 0.09 1.57***
Log of Population Density -0.03 0.01 0.97 -0.01 0.01 0.99 0.00 0.01 1.00 0.01 0.02 1.01 -0.01 0.02 0.99
Interaction Effects (Urban Elites, ref)
  Suburban Elites*public insurance -0.37** 0.11 0.69**
  Suburban Strivers*public insurance -0.75*** 0.11 0.47***
  Urban Strivers*public insurance -0.67*** 0.11 0.51***
Random Effects
   Intercept 0.43 0.13 0.34 0.24 0.32 0.25 0.21*** 0.02 0.12 0.05
   Insurance 0.34*** 0.02 0.21*** 0.02 0.19*** 0.02

Table 3. Multilevel logistic regression models of insurance status and neighborhood context on child obesity 
Stratified Model 5: 

Public Only
Z

0.00

0.50

Model 1 Model 2 Model 3 Stratified Model 4: 
Private Only

*p <.05, **p <.01, ***p<.001
a All tests for differences between Private and Public Insurance holders in Models 4 and 5 evaluated using Clogg's Test at the 99.9% confidence level of a two-tailed unit normal distribution.

Private versus 
Public

6.45***
3.60***
0.17

30.40***
52.20***
5.92***
0.31
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Classes AIC BIC a-BIC LL Entropy
1 -8868.21 -8885.13 -8834.20 5971.79 1.00
2 -8774.39 -8737.25 -8743.46 4886.07 0.24
3 -8512.48 -8641.33 -8582.12 4606.16 0.28
4 -8349.99 -8457.49 -8407.09 4472.99 0.31
5 -8451.24 -8513.54 -8467.2 4503.78 0.32

Source: Data are from the Authors' Compilation of Electronic Medical Records, the 
Census, American Communtiy Survey (ACS), Houston Crime Data, and Walkscore.com

Online Resource 1. Model Fit Information for LPAs 
with 1 - 5 Latent Profiles
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