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Abstract

Discounted Expected Utility theory has been a workhorse in

economic analysis for over half a century. However, it cannot ex-

plain empirical violations of `dimensional independence' demon-

strating that risk interacts with time preference and time interacts

with risk preference, nor does it explain present bias or magnitude-

dependence in risk and time preferences, or correlations between

risk preference, time preference, and cognitive re�ection. We demon-

strate that these and other anomalies are explained by a dual sys-

tem model of risk and time preferences that uni�es models of a

rational economic agent, models based on prospect theory, and

dual process models of decision making.
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1 Introduction

Many decisions in life involve uncertain outcomes that materialize at di�er-

ent points in time. For example, the struggle to kick an addiction involves

a tradeo� between short term grati�cation and an increased risk to future

health. Saving for retirement involves delaying immediate consumption to

guard against uncertainty about future income. Whether to pursue a long-

term project involves consideration of the time the project is expected to take

and the likelihood of project success. The decision to purchase a warranty

on an appliance involves a higher immediate cost, but reduced product break-

down risk. The decision to take a `buy-it-now' option on eBay or wait until the

auction ends for the chance of a better deal, the decision to purchase a laptop

today or wait for a potential Black Friday sale, and the decision to take out a

mortgage on a home or wait for a possibly lower interest rate each involve a

tradeo� between a certain, immediate payo� and a risky, delayed payo�.

As these examples illustrate, decisions often involve both risk and delays.

Yet the domains of risk and time have traditionally been studied separately.

In cases where risk and time preferences are both considered, the discounted

expected utility (DEU) model remains a major workhorse for analyzing indi-

vidual behavior. There are, however, a variety of basic shortcomings of DEU.

For instance, it implies that risk has no e�ect on time preference, that delays

have no e�ect on risk preference, that risk and time preferences are generated

by the same utility function, that people are risk-seeking toward lotteries over

uncertain payment dates, that people discount the future exponentially, and

that discounting does not depend on the magnitude of outcomes. All of these

predictions have been contradicted by experimental evidence.

In this paper, we introduce a dual process model of choices under risk

and over time that resolves each of these limitations of the DEU model. The

model generalizes both rank-dependent utility theory (Quiggin, 1982), and

Mukherjee's (2010) dual system model of choice under risk to develop a uni�ed

model that accounts for attitudes toward risk, attitudes toward time, and

systematic interaction e�ects between risk and time preferences. The proposed
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model also provides a uni�cation of three classes of decision models � rank-

dependent utility, expected utility, and dual process (or dual selves) theories.

We refer to the model developed here as Dual Process Utility (DPU) theory.

The DPU model introduces a new parameter into the analysis of eco-

nomic decision models which represents the decision maker's `cognitive type'

or `thinking style'. Essentially, an agent's `cognitive type' identi�es whether

a person naturally engages in more intuitive and feeling-based processing or

relies on more analytical and calculation-based processing. While cognitive

types have been found to correlate with a wide variety of economic behaviors

including risk and time preferences (e.g., Frederick, 2005; Burks et al., 2009),

saving behavior (Ballinger et al., 2011), strategic sophistication (Carpenter et

al., 2013), and e�ciency in experimental asset markets (Corgnet et al., 2015),

they appear nowhere in the conventional economic models of individual choice.

After providing some background in �2, the DPU model is introduced in

�3. In �4 we demonstrate that DPU explains present bias and that DPU re-

solves a long-standing paradox in decision theory by simultaneously predicting

both the magnitude e�ect for choice over time and peanuts e�ect for choice

under risk. In �5, we show that DPU explains empirically observed inter-

action e�ects between risk and time preferences that violate the principle of

dimensional independence which is implicitly assumed by the leading rational

and behavioral models of decision making. In �6 we demonstrate that DPU

predicts (i) a separation between risk and time preferences, (ii) a preference

for diversifying payo�s across time, (iii) risk aversion toward timing risk, (iv)

observed correlations between risk preference, time preference, and cognitive

re�ection, and (v) the observed non-monotonic relation between cognitive re-

�ection and present bias. The behaviors implied by the model are summarized

in �7. Related literature is discussed in �8. Concluding remarks are provided

in �8. Proofs are provided in the appendix. To preview our results, we note

that this paper makes the following contributions:

1. General formulation of System 1 and System 2 processes in

decision making: We provide a formal link between the System 1 / System

2 paradigm often discussed qualitatively and predictions regarding economic
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behavior by postulating that System 1 has standard `behavioral' preferences

whereas System 2 has standard `rational' preferences, and that these two sys-

tems interact when making decisions (modeled by a convex combination of

rational and behavioral preferences).

2. Explaining empirical violations of dimensional independence:

A byproduct of our formulation is that the DPU model provides a simple and

general approach to predicting and explaining empirical violations of the di-

mensional independence axiom that cannot be explained by standard rational

preferences or behavioral preferences. Surprisingly, under our approach the

violations of dimensional independence are predicted in the direction observed

in experiments by combining the standard rational and behavioral models.

Moreover, each violation of dimensional independence explained by DPU, can

only be explained due to the interaction between System 1 and System 2 (con-

vex combination parameter strictly between 0 and 1), and thus cannot be

explained by any multiplicatively separable model that multiplies a discount

function by a probability weighting function by a utility or value function.

3. Explaining correlations between preferences and `cognitive

types': The convex combination parameter that places a weight on the Sys-

tem 2 value function can be viewed as indexing the decision maker's thinking

style or `cognitive type' � the extent to which the decision maker naturally

relies on re�ective System 2 processes or intuitive System 1 processes in de-

cision making. The DPU model then implies that the agent's cognitive type

is correlated with risk and time preferences. In particular, agents with higher

`cognitive types' are predicted to be more patient and to be closer to risk-

neutrality, These predictions are supported by recent experimental evidence.

In doing so, the DPU model incorporates a factor (thinking style or cogni-

tive type) that appears nowhere in conventional economic models of decision

making but which accounts for observed heterogeneity in economic behavior.

4. Resolving the peanuts e�ect/magnitude e�ect paradox: Since

the work of Prelec and Loewenstein (1991), it has been generally assumed

that no model of risk and time preferences can explain the peanuts e�ect in

choices under risk (switching from risk seeking at low stakes to risk aversion at
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high stakes) and the magnitude e�ect for choice over time (increasing patience

at larger stakes). In fact, the most commonly used speci�cation of prospect

theory with a power value function does not explain the peanuts e�ect for any

probability weighting function and the model of quasi-hyperbolic discounting

does not explain the magnitude e�ect. The challenge becomes even greater

when developing a model of both risk and time preferences since the peanuts

e�ect appears to reveal decreasing sensitivity to payo�s at larger stakes while

the magnitude e�ect appears to reveal increasing sensitivity to payo�s at larger

stakes. We show that this paradox is resolved under our approach and that

the DPU model predicts both the peanuts e�ect and the magnitude e�ect.

5. Explaining general violations of discounted expected utility

theory: We demonstrate that DPU also allows for a separation of risk prefer-

ences and inter-temporal substitution, and that it predicts present bias, aver-

sion to timing risk, and a preference for diversifying risks across time.

2 Background

The study of risk preferences and time preferences, both analytically and em-

pirically, has been the primary focus of research on individual choice for over

half a century. However, although expected utility theory was axiomatized

by von Neumann and Morgenstern in 1947, and discounted utility theory was

axiomatized by Koopmans in 1960, it was not until 1991 when researchers

identi�ed remarkable parallels between anomalous behaviors across both do-

mains � such as a common ratio e�ect in choice under risk and a common

di�erence e�ect in choice over time (Prelec and Loewenstein, 1991). However,

even in pointing out parallel behaviors between risk and time, Prelec and

Loewenstein also presented a kind of impossibility result, indicating that no

model could resolve both the peanuts e�ect in choice under risk (Markowitz,

1952) and the magnitude e�ect in choice over time (Prelec and Loewenstein,

1991). Prototypical examples of both of these e�ects are illustrated in Ta-

ble I. For the peanuts e�ect, preferences switch from risk-seeking at small

stakes (e.g., preferring a 1% chance of winning $100 to $1 for certain) to risk-
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averse at larger stakes (preferring $100 for certain over a 1% chance of winning

$10,000). For the magnitude e�ect, behavior switches from impatient at small

stakes (e.g., preferring $7 now to $10 in one year) to more patient at larger

stakes (preferring $1,000 in one year over $700 now). Both e�ects involve scal-

ing outcomes up by a common factor. The peanuts e�ect is not explained by

the most widely used speci�cation of cumulative prospect theory due to Tver-

sky and Kahneman (1992) with a power value function, even when allowing

for any probability weighting function. A more fundamental challenge when

relating risk and time preferences is that the peanuts e�ect seems to reveal

decreasing sensitivity to payo�s at larger stakes, while the magnitude e�ect

seems to reveal increasing sensitivity to payo�s at large stakes. Thus, any

conventional approach to explaining the peanuts e�ect should predict the op-

posite of the magnitude e�ect (and vice versa). Prelec and Loewenstein could

not explain both e�ects, and this challenge has remained unresolved over the

subsequent twenty-�ve years, posing an apparent impossibility result that no

common approach to modeling risk and time preferences can capture both of

these basic behaviors. Somewhat surprisingly, we will demonstrate that the

model presented here simultaneously predicts both e�ects. Since the `common

approach' to risk and time preferences pioneered by Prelec and Loewenstein

(1991), other models have emerged to explain behaviors across both domains.

For instance, models of similarity judgments apply the same cognitive process

to explain anomalies for risk and time (Rubinstein 1988; Leland 1994; Leland

2002; Rubinstein, 2003). However, this approach does not address another

basic question of how risk and time preferences interact.

2.1 Violations of Dimensional Independence

It has been only fairly recently that attention has shifted to explaining interac-

tions between risk and time preferences. This research direction was partially

spurred by experimental studies from Keren and Roelofsma (1995) and Bau-

cells and Heukamp (2010) who each observed di�erent and systematic interac-

tions between risk and time preferences. For instance, Keren and Roelofsma
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(1995) observed that uncertainty induces more patient behavior. Baucells and

Heukamp (2010) and Abdellaoui et al. (2011) both observed that time delays

induce more risk-taking behavior. Andersen et al. (2011) and Miao and Zhong

(2015) observed a preference for diversifying risks across time. Onay and On-

culer (2007) and DeJarnette et al. (2015) observed risk aversion to lotteries

over uncertain payment dates. These behaviors are illustrated in Table I.

A standard approach to modeling risk and time preferences is to multiply a

time discount function by a probability weighting function by a utility or value

function. However, this approach does not explain the �nding that time delay

reduces risk aversion (see Table I) since both alternatives used by Baucells

and Heukamp (2010) are delayed by the same amount (three months) and so

the discount weights cancel when comparing options A and B. This approach

also does not explain the �nding that uncertainty reduces impatience, since

both payo�s used by Keren and Roelofsma (1995) have the same probability

(50%), and so the probability weights cancel when comparing options A and

B. In addition, this approach does not explain the �nding of subendurance

in the example by Baucells et al. (2009), since both options have the same

payo�s (¿100) and so the utilities cancel when comparing options A and B. It

is then not obvious how to model such interaction e�ects between time delays,

probabilities, and payo�s. It may be even less clear how to derive behaviors

in the direction observed in experiments, or whether the same approach that

explains interaction e�ects for time delays can also explain interaction e�ects

for probabilities and payo�s. We will show that a uni�ed approach to these

interaction e�ects is possible and has a simple and intuitive interpretation.

The risk-time-money interaction e�ects in Table I each provide a test of

the same general principle. This principle, called dimensional independence

(Keeney and Rai�a, 1993; Bhatia, 2016) states that two attribute dimensions

x and y are independent if for all x , y , x ′, y ′, an alternative (x , y) is chosen

over (x ′, y) if and only if (x , y ′) is chosen over (x ′, y ′). This principle re�ects

the intuition that identical attribute values in the same dimension will cancel

in the evaluation process and not a�ect decisions. This principle is a general

feature of the leading normative and behavioral decision models.
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Table I. Choices between Options involving Risk and Time

2.2 Dual Processes in Decision Making

Recent literature in cognitive science argues that people do not have a single

mental processing system, but rather have two families of cognitive processes.

Stanovich and West (2000), and Kahneman and Frederick (2002) label these

families neutrally as System 1 and System 2 processes where System 1 includes

automatic, intuitive and a�ective processes and System 2 includes more de-

liberative, logical, and re�ective processes. Kahneman (2011) simply distin-

guishes between processes that are `fast' and `slow.' Rubinstein (2007, 2013)
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distinguishes between �instinctive� and �cognitive� processes. Hsee and Rot-

tenstreich (2004) posit two qualitatively di�erent types of valuation processes �

valuation by feeling and valuation by calculation. We adopt the standard Sys-

tem 1/System 2 distinction in our analysis. The relation between our approach

and alternative dual system or dual selves models in economics is discussed

in �8. Despite their recent rise to theoretical prominence, two-system (dual

process) theories date back to the early days of scholarly thought. The con-

�ict between reason and passion, for instance, features prominently in Plato's

Republic and in Adam Smith's Theory of Moral Sentiments.

3 Dual Process Utility Theory

We let there be a �nite set, T, of time periods, a set, M , of outcomes with

M ⊆ R, and a �nite set X, of consumption sequences. We index consumption

sequences by j ∈ {1, 2, ..., n} and we index time periods by t ∈ {0, 1, ...,m}. A
consumption sequence xj := [xj0 , ..., xjm ] is a sequence of dated outcomes. A

stochastic consumption plan is a probability distribution over consumption se-

quences. We denote a stochastic consumption plan by a function f : X→ [0, 1],

with f (xj ) denoting the probability assigned to consumption sequence xj , where∑
x∈X f (x ) = 1. Denote the set of stochastic consumption plans by F .

Our main assumption is that System 1 has behavioral preferences (which

we formalize as discounted rank-dependent utility preferences), while System 2

has standard rational preferences (which we formalize as discounted expected

utility preferences). We will demonstrate that a by-product of our approach

is that it presents a simple way to predict and explain the empirical viola-

tions of the dimensional independence axiom in Table I, while resolving other

systematic limitations of the DEU model.

The assumption of discounted expected utility preferences seems particu-

larly appropriate for System 2 which may be intuitively thought to resemble

the rational economic agent. However, in addition to di�erences in the con-

tent of risk and time preferences between systems (i.e., that the systems di�er

in their degrees of risk aversion and impatience), one might further propose

9



that the two systems di�er in the structure of their risk and time preferences,

with System 2 having normative DEU preferences, and with System 1 having

behavioral preferences based on prospect theory (PT) or rank dependent util-

ity (RDU) theory. Supporting this, Rottenstreich and Hsee (2001) �nd that

inverse S-shaped probability weighting (as assumed in RDU theory (Quiggin

1982) and PT (Tversky and Kahneman 1992)) is more pronounced for a�ect-

rich outcomes. Support for assuming System 1 has PT preferences also comes

from Barberis et al. (2013) who use PT to model �System 1 thinking� for

initial reactions to changes in stock prices. Re�ecting on PT three decades

later, Kahneman (2011, pp. 281-282) remarks, �It's clear now that there are

three cognitive features at the heart of prospect theory. . . They would be seen

as operating characteristics of System 1.�

To formalize the risk and time preferences of System 1, let π : [0, 1]→ [0, 1],

be a standard rank-dependent probability weighting function with π(0) = 0

and π(1) = 1, that is de�ned as:

π(f (xjt)) = w(f (xjt) + · · ·+ f (x1t))− w(f (xj−1,t) + · · ·+ f (x1t)),

for j ∈ {1, 2, ..., n}, where consumption sequences are ranked according to

the discounted utility for System 1 for each sequence such that
∑

t δ
t
1u1(xnt) ≤

...≤
∑

t δ
t
1u1(x1t).We assume System 1 has discounted RDU preferences. That

is, System 1 evaluates stochastic consumption plans according to (1):

V1(f ) =
∑

t

∑
j

δt1π(f (xjt))u1(xjt) (1)

We assume System 2 has discounted expected utility preferences in (2):

V2(f ) =
∑

t

∑
j

δt2 f (xjt)u2(xjt) (2)
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De�nition 1 (Dual Process Utility Theory): In Dual Process Utility

(DPU) theory, there exists utility functions u1 , u2 , discount factors, δ1 < δ2,

probability weighting function, π, and a unique parameter, θ ∈ [0, 1], such that

for any f , g ∈ F , f % g if and only if V(f ) ≥ V(g), where V(f ) is given by (3),

V1 is given by (1), and V2 is given by (2):

V(f ) = (1− θ)V1(f ) + θV2(f ) (3)

In (3), the parameter θ may be interpreted as the degree to which an agent

is hard-wired to rely on System 2. We will refer to θ as the decision maker's

cognitive type, with one's cognitive type becoming less based on feeling and

intuition and more reliant on logic and calculation as θ increases. From a

neuro-economic perspective, there are tight neural connections between the

prefrontal cortex, a brain region implicated in planning, analytical thinking,

and executive function and the limbic system, an evolutionarily older brain

region involved in the generation of emotions and the experience of pleasure.

One might view θ as indexing the strength of neural connections in the pre-

frontal areas relative to the strength of neural connections in the limbic areas.

Note that DPU adopts the view of cognitive types implicit in the interpre-

tation of the cognitive re�ection test (Frederick, 2005) and models of level-k

thinking (Camerer et al., 2004), namely that there are re�ective thinkers or

those with high levels of reliance on System 2, and there are intuitive thinkers

or those with high levels of reliance on System 1. It is in this sense in which

we view θ as re�ecting a decision maker's `cognitive type' which allows for

heterogeneity across agents. Within agents, DPU re�ects a compromise be-

tween the System 1 preference for immediate grati�cation and the more patient

preferences of System 2. This `compromise' is consistent with the �ndings of

Andersen et al. (2008) who �. . . observe what appears to be the outcome of a

decision process where temptation and long-run considerations are simultane-

ously involved.�

To apply the model, we make simplifying assumptions regarding the pref-

erences of System 2. Mukherjee (2010) and Loewenstein et al. (2015) both
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argue that risk-neutrality is a plausible, and even natural, assumption for Sys-

tem 2. To the extent that System 2 characterizes an idealized rational agent,

it appears at least plausible that it does not have a pure rate of time pref-

erence which some authors have argued to be irrational (e.g., Harrod, 1948;

Traeger, 2013), and that it maximizes expected value. In Sections 4, 5, and 6,

we illustrate DPU under the risk-neutrality and delay-neutrality assumptions

for System 2. Formally, this means that we set u2(xjt) = xjt , and δ2 = 1. This

simpli�cation also serves to restrict the number of free parameters. Let E[f ]

denote the undiscounted expected value of a stochastic consumption plan f .

To simplify notation, when applying DPU in Sections 4, 5, and 6, we also now

drop the subscripts on the System 1 utility function and discount factor. The

DPU functional form in (3) now simpli�es to (4):

V(f ) = θE[f ] + (1− θ)
∑

t

∑
j

δtπ(f (xjt))u(xjt) (4)

The DPU model in (4) is represented by a discount factor, probability

weighting function, and utility function for System 1, as well as the decision

maker's cognitive type, θ. Model (4) is thus a two-parameter generalization of

the discounted expected utility model.

3.1 A Simple Dual Process Utility Theorem

Recent impossibility results (Mongin and Pivato, 2015; Zuber, 2016) have

demonstrated di�culties in using axiomatic methods to aggregate non-expected

utility preferences. For instance, Zuber (2016) considers a general class of non-

expected utility preferences and concludes, �non-expected utility preferences

cannot be aggregated consistently.� As such, it is not clear whether the gen-

eral form of the DPU model in (3) can be characterized from more primitive

assumptions. As we show in this section, however, we can obtain a simple

and natural characterization of the special case of (3) in which both systems

have consistent DEU preferences and di�er only in their degrees of risk aver-

sion and impatience. This special case of the model delivers all of our results
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except for those that emerge due to non-linear probability weighting. Under

this approach, the assumption of discounted expected utility preferences for

each system can be viewed as postulating that each system has consistent risk

and time preferences, and that inconsistencies that we observe are emergent

phenomena that arise through the interaction between systems.

Formally, we take a semi-axiomatic approach. Let %s and �s denote weak

and strict preference, respectively, between pairs of stochastic consumption

plans for system s , s ∈ {1, 2} that satisfy the non-triviality conditions f �1 g

and f ′ �2 g ′ for some f , g , f ′, g ′ ∈ F .

Assumption 1 (Preferences of Systems 1 and 2): Each system

s , s ∈ {1, 2}has consistent risk and time preferences represented by discounted

expected utility theory. That is, there exists utility functionsus , s , s ∈ {1, 2}
and discount factors δs , s , s ∈ {1, 2} such that for each s , s ∈ {1, 2} and for all

f , g ∈ F , f %s g ⇐⇒ Vs(f ) ≥ Vs(g), where:

Vs(f ) =
∑

t

∑
j

δts f (xjt)us(xjt) (5)

Let % and � represent, respectively, weak and strict preferences of the

decision maker over stochastic consumption plans. We minimally constrain the

agent's time preferences, allowing for a very general time preference functional.

In particular, we do not impose stationarity, nor do we impose that time

preferences are multiplicatively separable into a discount function and a utility

function. Formally, our Assumptions 2 and 3 can be viewed as special cases

of Assumptions 2 and 3 in Harsanyi's (1955) theorem, as presented in Keeney

and Nau (2011) in the domain of choice under uncertainty.

Assumption 2 (Preferences of the Decision Maker): There exists

utility function ut , such that for all f , g ∈ F , f % g ⇐⇒ V(f ) ≥ V(g), where:

V(f ) =
∑

t

∑
j

f (xjt)ut(xjt) (6)

Our �nal assumption is a consistency condition which relates the prefer-

ences of each system to the preferences of the decision maker:
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Assumption 3 (Pareto E�ciency): For all f , g ∈ F , if both systems

weakly prefer f to g , then f % g , and if, in addition, one system strictly prefers

f to g then f � g .

Proposition 1 (Dual Process Utility Theorem): Given Assumptions

1, 2, and 3, there exists a unique constant1 θ ∈ (0, 1), utility functions u1, u2 ,

and discount factors, δ1, δ2, such that for all f , g ∈ F , f % g if and only if

V(f ) ≥ V(g), where V(f ) is given by (7) and Vs(f ), s ∈ {1, 2} is given by (5):

V(f ) = (1− θ)V1(f ) + θV2(f ) (7)

Proposition 1 derives the existence and uniqueness of the θ parameter and

provides a formal justi�cation for the convex combination approach. Propo-

sition 1 provides a more general preference aggregation result than Harsanyi

(1955), in that Proposition 1 simultaneously aggregates risk and time prefer-

ences. Although including both risk and time, and applying Harsanyi's theo-

rem from social choice theory to model individual choice behavior are new, the

proof for Proposition 1 follows straightforwardly from the proof of Theorem 1

in Keeney and Nau (2011). A related �nding for decisions involving time but

not risk was obtained in the context of group decision making by Jackson and

Yariv (2015).

3.2 Basic Properties of DPU

Consider two stochastic consumption plans f and g , where f (xj ) and g(xj )

are the probabilities which f and g assign to consumption sequence xj , re-

spectively. Since a decision maker either receives one consumption sequence

or another and so cannot interchange components of any arbitrary sequences,

we �rst seek a means of objectively ranking di�erent consumption sequences,

analogous to how one would rank individual outcomes. We can then extend

the standard de�nition of stochastic dominance from lotteries over outcomes to

1In Harsanyi's theorem, the weights on individual utilities are positive and unique up to

a common scale factor. Without loss of generality, the weights can be scaled to sum to 1 in

which case θ ∈ (0, 1) is uniquely determined.

14



lotteries over consumption sequences. In particular, we say sequence xj domi-

nates sequence xk if xjt ≥ xkt for all t∈{0,1,. . . ,T}, with a strict inequality for

at least one t . We say that consumption sequences x1, ..., xn are monotonically

ordered if xj dominates xj+1 for all j∈{1,. . . ,n − 1}. For any monotonically

ordered consumption sequences x1, ..., xn , we say f (�rst-order) stochastically

dominates g if F(xj ) ≤ G(xj ) for all j∈{1,. . . ,n}, where F and G are the cumu-

lative distribution functions for f and g , respectively. Note that this reduces

to the standard de�nition of stochastic dominance in an atemporal setting.

Proposition 2: Let % have a DPU representation as in (3). Then for any

�xed θ ∈ [0, 1], % is transitive and complete and satis�es �rst order stochastic

dominance.

The proof of transitivity and completeness in Proposition 3 are standard so

we prove only stochastic dominance. Recall that sequenes are ranked such that∑
t δ

t
1u1(xnt) ≤ ...≤

∑
t δ

t
1u1(x1t) prior to applying the π(.) transformation.

Note that if consumption sequences x1, ..., xn are monotonically ordered, then

u1(x1t) ≥ ... ≥ u1(xnt) for all t ∈{0,1,. . . ,T}, and for any increasing function

u1. Thus, π(.) preserves the monotonic ordering of the sequences. If f stochas-

tically dominates g , then δt1
∑

j π(f (xj ))u1(xjt) > δt
1

∑
j π(g(xj ))u1(xjt), for each

period t ∈{0,1,. . . ,T}, which implies that V1(f ) > V1(g). Since V2(f ) > V2(g),

the convex combination of V1 and V2 ranks f higher than g for all θ ∈ [0, 1].

4 Expected and Discounted Utility Violations

In this and the following sections, all propositions assume the decision maker

has dual process utility preferences (given by (4)). Proofs of Propositions in

�4 and �5 are given in the appendix. Each of these results (Propositions 3, 4,

5, 6, 7, and 8) do not hold when θ = 0 or θ = 1, indicating the need for a dual

process paradigm in our setup. First, we show that DPU resolves two empirical

violations of discounted utility theory - present bias and the magnitude e�ect.
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4.1 Present Bias

Systematic empirical violations of the stationarity axiom of discounted utility

theory (Koopmans, 1960), such as present bias, have been well-documented in

experiments (Frederick et al., 2002), and are thought to reveal time-inconsistent

preferences (Laibson 1997; O'Donoghue and Rabin 1999). Formal accounts of

present bias and hyperbolic discounting have often directly assumed such be-

havior in the functional form of the agent's preferences (e.g., Laibson 1997).

Present bias emerges as a general property of DPU without any explicit as-

sumptions regarding hyperbolic discounting or diminishing sensitivity to de-

lays. In fact, present bias is predicted by DPU even though each system has

time consistent preferences. A similar result in the context of group decision

making was shown by Jackson and Yariv (2015).

Let (c, p, t) denote a stochastic consumption plan which has one non-zero

outcome, c, to be received with probability p at time t . We have the following

de�nition:

De�nition 2 (Present Bias): Present bias holds if for all y ∈ (0, c), and

t ,∆> 0, (y , p, 0) ∼ (c, p,∆) implies (y , p, t) ≺ (c, p, t + ∆).

Proposition 3: Under DPU, present bias holds if and only if θ ∈ (0, 1).

Proposition 3 implies that DPU explains the example of the common dif-

ference e�ect illustrated in Table I demonstrated by Keren and Roelofsma

(1995). In particular, a decision maker indi�erent between 100 Dutch guilders

for sure now and 110 Dutch guilders for sure in 4 weeks will strictly prefer

110 Dutch guildrs for sure in 30 weeks over 100 Dutch guilders for sure in 26

weeks.

It is also clear from the proof of Proposition 3 that present bias does not

hold if θ = 0 or θ = 1. Thus, under DPU, present bias arises due to the inter-

action between System 1 and System 2. This implication of DPU generates a

strong empirical prediction: While time consistent discount rates will be posi-

tively correlated with cognitive types, present bias will not be correlated with

cognitive types since it is observed for intermediate values of θ. Although this

prediction may seem counter-intuitive, it has experimental support. Bradford

et al. (2014) tested for a relationship between performance on the cognitive
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re�ection test of Frederick (2005) and the time consistent and present bias pa-

rameters in Laibson's (1997) model of present bias. Bradford et al. report, �...

we �nd that more patient individuals are more likely to answer each question

correctly. However, the present bias discount factor β is uncorrelated with the

CRT questions� (p. 19). Indeed, they �nd that the time consistent component

parameter of the quasi-hyperbolic model, δ, is positively correlated with cogni-

tive types at a p-value less than 0.01, although the present bias parameter β is

not related to cognitive types. Both of these �ndings con�rm the predictions

of DPU.

4.2 The Magnitude E�ect

The DPU model also o�ers an explanation of the magnitude e�ect in intertem-

poral choice. The magnitude e�ect is the robust observation that behavior is

more patient for larger rewards than for smaller rewards (Prelec and Loewen-

stein, 1991). Formally:

De�nition 3 (Magnitude E�ect): The magnitude effect holds if for all

y ∈ (0, c), s > t , and r > 1, (y , p, t) ∼ (c, p, s) implies (ry , p, t) ≺ (rc, p, s).

Proposition 4: For any concave power utility function u, the magnitude

e�ect holds under DPU, if and only if θ ∈ (0, 1).

4.3 The Peanuts E�ect

While PT and RDU explain violations of expected utility theory (EU) such

as the Allais paradoxes, standard speci�cations of PT or RDU do not explain

the `peanuts' e�ect. An example of this behavior is a willingness to pay $1

for a one-in-ten million chance of $1 million, but prefer a sure $1000 over

a one-in-ten million chance of $1 billion. Under a power value function for

PT, indi�erence in the former choice implies indi�erence in the latter for any

probability weighting function and the peanuts e�ect does not hold. The

problem is more challenging when incorporating both risk and time because,

since Prelec and Loewenstein (1991), it has not been clear how the magnitude

e�ect and the peanuts e�ect coexist. Yet DPU simultaneously predicts both
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e�ects. The peanuts e�ect holds since risk-seeking at small stakes is due

to overweighting low probabilities (the domain where the peanuts e�ect is

observed) while scaling payo�s up shifts more weight on the System 2 value

function (if u1 is more concave than u2 ) which shifts preferences toward risk

neutrality (if u2 = x) or toward risk aversion (if u2 is concave).

De�nition 4 (Peanuts E�ect): Let E[(y , p, t)] > E [(c, q , t)]. The peanuts

effect holds if for all y ∈ (0, c), p > q , and r > 1, (c, q , t) ∼ (y , p, t) implies

(c, q , t) ≺ (ry , p, t).

Proposition 5: For any concave power utility function u, the peanuts

e�ect holds under DPU, if and only if θ ∈ (0, 1).

If System 2 is even slightly risk-averse, the peanuts e�ect also holds when

E[(y , p, t)] = E [(c, q , t)]. In addition to resolving the peanuts and magnitude

e�ects, DPU explains the �nding in Fehr-Duda et al. (2010) that probability

weighting is more pronounced at low stakes than at high stakes. This observa-

tion holds naturally under DPU given the assumption that the System 2 value

function is closer to risk-neutrality than the System 1 value function. How-

ever, this stake-size e�ect violates prospect theory which assumes probability

weights and outcomes are independent.

5 Risk and Time Preference Interactions

In this section, we apply DPU to explain the systematic interaction e�ects be-

tween risk and time preferences in Table I. We show that the DPU predictions

are systematic: DPU predicts the interaction e�ects in the direction observed

in experiments and rules out interaction e�ects in the opposite direction.

5.1 Delay Reduces Risk Aversion

As displayed in Table I, Baucells and Heukamp (2010) found most respondents

preferred a guaranteed 9 Euros immediately over an 80% chance of 12 Euros

immediately, but chose the chance of receiving 12 Euros immediately when the

probabilities of winning were scaled down by a factor of 10. This behavior is
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an instance of the common ratio e�ect (Allais, 1953). Baucells and Heukamp

further observed that when the receipt of payment is delayed 3 months, most

respondents preferred an 80% chance of 12 Euros over a guaranteed 9 Euros.

This �nding that people are less risk-averse toward delayed lotteries was also

observed by Abdellaoui et al. (2011). The common ratio e�ect example from

Baucells and Heukamp (2010) holds under DPU if the probability weighting

function is sub-proportional. Here we con�rm that DPU explains the �nding

that delay reduces risk aversion which holds even if System 1's value function

is linear in probabilities. Let E[f ] denote the (undiscounted) expected value of

stochastic consumption plan f . We consider the case where the riskier lottery

has the higher expectation as in Baucells and Heukamp (2010).

De�nition 5: Let E[(c, αp, t)] > E [(y , p, t)]. Delay reduces risk aversion

if for all y ∈ (0, c), α ∈ (0, 1), and s > t , (y , p, t) ∼ (c, αp, t) implies

(y , p, s) ≺ (c, αp, s).

Proposition 6: Under DPU, delay reduces risk aversion if and only if

θ ∈ (0, 1).

5.2 Uncertainty Reduces Impatience

As displayed in Table I, Keren and Roelofsma (1995) found most respondents

preferred a guaranteed 100 Dutch guilders immediately over a guaranteed 110

Dutch guilders in 4 weeks, but chose the guaranteed 110 when the receipt

of both payments was delayed an additional 26 weeks. This behavior is an

example of present bias. Keren and Roelofsma further observed that when the

chance of receiving each payment was reduced, most respondents preferred a

50% chance of 110 Dutch guilders in 4 weeks over a 50% chance of 100 now.

That is, making both options risky leads to more patient behavior, analogous

to the e�ect of adding a constant delay to both options.

De�nition 6: Uncertainty reduces impatience if for all y ∈ (0, c), t,∆ > 0,

and q < p, (y , p, t) ∼ (c, p, t + ∆) implies (y , q , t) ≺ (c, q , t + ∆).

Proposition 7: Under DPU, for any convex weighting function, w , un-

certainty reduces impatience if and only if θ ∈ (0, 1).
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In the example by Keren and Roelofsma in Table I, convexity of the weight-

ing function in Proposition 8 implies w(0.5) < 0.5, which implies π(0.5)< 0.5.

This condition is a general feature of observed probability weighting func-

tions (Starmer, 2000; Wakker, 2010) and represents a form of pessimism.

This condition holds for all convex probability weighting functions as well

as for the familiar inverse-S-shaped weighting functions (such as those param-

eterized by Tversky and Kahneman (1992), Wu and Gonzalez (1996), Prelec

(1998), and Gonzalez and Wu (1999)), Abdellaoui (2000), and Bleichrodt and

Pinto (2000)). This condition is also a general property resulting from Prelec's

(1998) axiomatic characterization of his one-parameter probability weighting

function. This condition (π(0.5)< 0.5) will reappear in our analysis and is

the only substantive property of the weighting function that is necessary for

DPU to explain the experimental observations studied here. The more general

convexity condition is only necessary for the generalization of the behavior

observed by Keren and Roelofsma to all q < p as formalized in De�nition 6.

5.3 Time Dominates at Low Stakes, Risk at High Stakes

Baucells et al. (2009) found that 81% of respondents preferred ¿100 for sure in

one month to ¿100 with 90% probability immediately, but 57% preferred ¿5,

with 90% probability immediately over ¿5 for sure, in one month. Baucells

and Heukamp (2012) refer to this behavior as subendurance and they de�ne it

more generally as follows:

De�nition 7: Subendurance holds if for all y ∈ (0, c), t,∆ > 0, and

λ ∈ (0, 1), (c, p, t + ∆) ∼ (c, λp, t) implies (y , p, t + ∆) ≺ (y , λp, t).

Proposition 8: For any concave utility function u such that u(0) = 0,

subendurance holds under DPU if and only if θ ∈ (0, 1).

Subendurance re�ects behavior in which time dominates at low stakes and

risk dominates at high stakes. In particular, at low stakes, people are more

sensitive to the time dimension and choose the sooner reward, whereas at larger

stakes, with the same objective tradeo� between time and risk (e.g., receiving a

sure payo� in one month or an immediate payo� with probability 0.90), people
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are more sensitive to the risk dimension and choose the higher probability

reward. Subendurance thus reveals one way in which people directly trade o�

time versus risk.

The interaction e�ects in this section challenge a larger class of time pref-

erences than DEU. Indeed, they cannot be explained by any model of dis-

counting in which evaluation of payo�s, probabilities, or delays is multiplica-

tively separable. As Baucells and Heukamp (2012) note, when evaluating

a stochastic consumption plan (x , p, t), �One may be tempted to propose

V(x , p, t) = w(p)f (t)v(x ). Unfortunately, this form is not appropriate because

. . . probability and time cannot be separated. One may then propose the more

general form V(x , p, t) = g(p, t)v(x ), but this fails to accommodate suben-

durance.� Moreover, Ericson and Noor (2015) reject the assumption that dis-

counting and utility functions are separable for nearly 70% of their partici-

pants. Given the necessity of a seemingly complex form for evaluating (x , p, t)

to explain the observations in Table I, the DPU functional form in (4) is sur-

prisingly simple.

5.4 Variations in Risk and Time

Figure I graphs (4) for di�erent values of θ (within panels) and for di�erent

delays (across panels), as probabilities increase from 0 to 1. The �gure em-

ploys Prelec's (1998) probability weighting function and evaluates a stochastic

consumption plan paying x > 0 with probability p at time t and 0 otherwise,

under the simpli�ed case where u1 (x ) = u2 (x ) := 1 and u1 (0) = u2 (0) := 0.

This speci�cation may be viewed as a time-dependent probability weighting

function that becomes �atter as the time horizon increases. In general, DPU

does not have a separable probability weighting function that is independent of

outcomes or time, but we can see how time a�ects the shape of the weighting

function in the special case when u1 (.) = u2 (.).
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Figure I suggests people are less sensitive to variations in probability for

longer time horizons. Also, relative to an event's probability p, the function

over-weights low probability events with short horizons, such as weekly state

lottery drawings (if δtw(p) > p), but under-weights low probability events with

long horizons, such as natural disasters and health risks from addictions (if

δtw(p) < p). Epper and Fehr-Duda (2016) also argue that accounting for time

permits the coexistence of overweighting and underweighting tail events.

Figure I. Time Dependent Probability Weighting

For stochastic consumption plan (x , p, t) yielding $x with probability p at time t
and 0 otherwise, Figure I plots (5) for di�erent values of θ, di�erent time delays (0

to 10 periods), and di�erent probabilities. The parameters were set to δ = 0.8, and

w(p) = exp(−(−ln(p))α) (Prelec's one-parameter probability weighting function),

with α = 0.5. These parameter values are arbitrary and chosen for rough plausibility.
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Figure II graphs the DPU function from (4) for di�erent values of θ (within

each panel) and for di�erent probabilities (across panels), as the time horizon

increases from 0 to 10 periods, using the same parametric speci�cation as in

Figure I. This speci�cation may be viewed as a probability-dependent time

discounting function for the special case where u1 (.) = u2 (.). In Figure II, the

function becomes steeper at higher probabilities, suggesting people are less

patient as the outcome becomes more likely to be received, possibly re�ecting

anticipation prior to a reward.

Figure II. Probability Dependent Time Discounting

For stochastic consumption plan (x , p, t) yielding $x with probability p at time t
and 0 otherwise, Figure II plots (5) for di�erent values of θ, di�erent time delays (0

to 10 periods), and di�erent probabilities. The parameters were set to δ = 0.8, and

w(p) = exp(−(−ln(p))α) with α = 0.5.
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6 Other Relationships between Risk and Time

We next consider four other relationships between risk and time: risk prefer-

ence and intertemporal substitution, a preference for diversifying risks across

time, aversion to timing risk, and correlations with cognitive re�ection.

6.1 Risk Preference and Intertemporal Substitution

The DEU model uses the same utility function for risk and time. However, risk

preference and inter-temporal substitution are often observed to be distinct

(e.g., Miao and Zhong, 2015). Consider the stochastic consumption plan, f , be-

low, also considered by Miao and Zhong (2015), subject to (1 + r)c1 + c2 = 100

and (1 + r)c
′
1 + c

′
2 = 100, where r ∈ (0, 1) is an interest rate.

Figure III. A Simple Stochastic Consumption Plan

The present equivalents PE(c1, c2) and PE
′
(c

′
1, c

′
2) of consumption (c1, c2)

and (c
′
1, c

′
2), respectively, are determined such that PE/PE' at t1 is indi�erent

under V to receiving (c1, c2)/(c
′
1, c

′
2)on the time horizon. They are de�ned as

PE(c1, c2) := V−1((1− θ)(u(c1) + δu(c2)) + θ(c1 + c2)).

PE′(c
′

1, c
′

2) := V−1((1− θ)(u(c′1) + δu(c′2)) + θ(c′1 + c′2)).

Employing rank-dependent probability weighting to aggregate the certainty

equivalent as in the Chew-Epstein-Halevy approach (see Miao and Zhong,

2015), the certainty equivalent (CE) under DPU can be expressed as

CE(f) = V−1(w(p)V(PE(c1, c2)) + w(1− p)V(PE(c
′

1, c
′

2))) if PE ≥ PE′.

CE(f) = V−1(w(1− p)V(PE(c1, c2)) + w(p)V(PE(c
′

1, c
′

2))) if PE ≤ PE′.

24



This approach permits a separation between risk attitude (which is par-

tially determined by w) and inter-temporal substitution (which does not de-

pend on w).

6.2 Preference for Diversi�cation across Time

Miao and Zhong (2015) provide a variant of the example shown below:

Figure IV. Preference for Diversi�cation across Time (A % B)

We can think of the consumption sequences as being determined by the toss

of a fair coin. Then Option A pays $100 in period 0 if the coin lands heads,

and it pays $100 in period 1 if the coin lands tails. In contrast, Option B pays

$100 in both periods if the coin lands heads, and it pays $0 in both periods

if the coin lands tails. Miao and Zhong (2015) propose and �nd experimental

support for the hypothesis that many people prefer Option A in which risks

are diversi�ed across time over Option B in which they are not. Such behavior

has also been observed by Andersen et al. (2011) who refer to this preference

pattern as `correlation aversion' or `intertemporal risk aversion.'

Correlation aversion is simply explained by DPU. Note that, for Option

A, System 1 will rank consumption sequence x := (100, t = 0; 0, t = 1) higher

than the sequence y := (0, t = 0; 100, t = 1) in order of preference for all δ1 < 1.

Thus, DPU assigns weight π(0.5) to x and (1−π(0.5)) to y , with weights

assigned analogously for Option B. In most experimental studies of rank-

dependent probability weighting functions (see references in �5.2), it has been

found that π(0.5)<0.5. Under DPU, with u(0) = 0,

V(A) = (1− θ)(π(0.5)u(100) + (1− π(0.5))δu(100)) + θ(100).

V(B) = (1− θ)(π(0.5)(u(100) + δu(100))) + θ(100).

Hence, A is preferred to B if π(0.5) <0.5.
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6.3 Aversion to Timing Risk

Onay et al. (2007) and DeJarnette et al. (2015) experimentally investigate

preferences over lotteries that pay a �xed prize at an uncertain date. For

instance, in choices such as receiving $100 in 10 weeks for sure (Option A), or

receiving $100 in either 5 or 15 weeks with equal probability (Option B), they

�nd that people are generally risk-averse toward timing risk, preferring Option

A. However, DEU and the standard models of hyperbolic and quasi-hyperbolic

discounting imply people will be risk-seeking toward timing risk.

Consider a choice between receiving $100 at time t (Option A), or $100

at either time t − r or time t + r with equal probability (Option B). Under

DPU, the values are:

V(A) = (1− θ)δtu(100) + θ(100).

V(B) = (1− θ)(δt−rπ(0.5)u(100) + δt+r(1− π(0.5))u(100)) + θ(100).

For all θ ∈ [0, 1), A is preferred to B if the following inequality holds:

1 > [δ−rπ(0.5) + δr(1− π(0.5))]

This inequality can hold if π(0.5) < 0.5, a robust �nding, noted in �5.2.

6.4 Risk and Time Preferences and Cognitive Type

The DPU model also captures observed relationships between risk preference,

time preference, and cognitive re�ection. An agent's `cognitive type', as pa-

rameterized by θ can be interpreted as a measure of reliance on System 2

processing and, since Frederick (2005), reliance on System 2 is thought to be

correlated with cognitive re�ection. DPU accommodates a continuum of types

- any θ ∈ [0, 1]. Note that the DPU speci�cation in (4) predicts the following:

Remark: For a decision maker with preferences given by (4):

(i) The decision maker approaches risk-neutrality as θ increases.

(ii) The decision maker becomes more patient as θ increases.

(iii) Expected value maximization is negatively correlated with impatience.

(iv) Present bias is not monotonic in θ.

26



Consistent with implications (i), (ii), and (iii), correlations between risk

neutrality, patience, and cognitive types have been observed by Frederick

(2005), Burks et al. (2009), Oechssler et al. (2009), Cokely and Kelley (2009),

Dohmen et al. (2010), and Benjamin et al. (2013). Burks et al. (2009) report

�those individuals making choices just shy of risk-neutrality have signi�cantly

higher CS [cognitive skills] than those making more either risk-averse or more

risk-seeking choices� (p. 7747). However, Andersson et al. (2016) �nds no

correlation between risk preferences and cognitive skills. See Dohmen et al.

(2018) for a recent review of this literature. Implication (iv) is supported by

the study of Bradford et al. (2014) who observe a strong negative correla-

tion between impatience and cognitive re�ection but �nd no relation between

present bias and cognitive re�ection, as discussed in Section 4.1.

The notion that System 2 is closer to risk-neutrality and is more patient

than System 1 is also supported by studies which employ other means of ma-

nipulating System 1 versus System 2 processing. Placing people under a high

working memory load is one approach to inducing greater reliance on System

1. Studies have found that increased cognitive load (Deck and Jahedi, 2015;

Holger et al., 2016) increases deviations from risk-neutrality such as increased

small-stakes risk aversion and produces less patient and more impulsive be-

havior (Shiv and Fedorikhin, 1999). Leigh (1986), Anderhub et al. (2001),

and Andersen et al. (2008) also �nd that risk aversion is positively correlated

with impatience. In a large study of response times to the common ratio

e�ect choices of Kahneman and Tversky (1979), Rubinstein (2013) observed

slow responders to be signi�cantly more likely to choose the expected value

maximizing alternatives in both decisions than fast responders, and Kahne-

man (2011) has described the speed of cognition as a key di�erence between

System 1 and System 2 processing in his book, �Thinking, fast and slow.�

7 Summary of Results

The dual process utility model in (4) is su�cient to resolve each of the empir-

ical violations of the discounted expected utility model in Table II. Moreover,
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the predictions of DPU are systematic: The predicted shifts in preference are

in the direction observed in experiments. The reverse preference patterns are

not predicted. In addition, given that no model in which preferences are repre-

sented by the product of a discount function, a probability weighting function,

and a utility or value function can explain the risk-time-money interaction

e�ects in Table II, the DPU model in (4) is surprisingly simple.

Table II. Risk and Time Anomalies Predicted by DPU Theory

8 Related Literature

Many models for decisions under risk and for decisions over time have been

developed in the past �ve decades and it is not feasible to review them all here.

Since models developed for only decisions under risk or for only decisions over

time cannot account for the majority of our results, we focus on models which
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consider both risk and time. Prelec and Loewenstein (1991) noted parallels

between anomalies for decisions under risk and decisions over time. Rubinstein

(1988, 2003) and Leland (1994, 2002) provided models of similarity judgments

which explain key anomalies for decisions under risk and over time such as the

Allais paradox and hyperbolic discounting as arising from the same cognitive

process. However, these approaches treat risk and time independently, and

thus cannot explain interaction e�ects between risk and time preferences.

Recent models by Halevy (2008), Walther (2010) and Epper and Fehr-Duda

(2015) focus on implications of rank-dependent utility theory when extended to

an intertemporal framework. Halevy (2008) and Walther (2010) focus primar-

ily on relationships between hyperbolic discounting over time and non-linear

probability weighting under risk. Halevy notes that his model is also consistent

with the experimental evidence of Keren and Roelofsma (1995). The obser-

vations of Keren and Roelofsma and Baucells and Heukamp (2010) are both

explained by the probability-time tradeo� model of Baucells and Heukamp

(2012). However, this model applies only to a restrictive class of prospects

o�ering a single non-zero outcome to be received with probability p at time t .

Aside from extensions of RDU to intertemporal choice, one other major

literature stream is the class of dual-selves models motivated to explain temp-

tation and self-control. A leading example in this is the model of Fudenberg

and Levine (2006, 2011, 2012) and Fudenberg et al. (2014) which can explain

the Allais paradox as well as the interactions between risk and time preferences

identi�ed by Keren and Roelofsma and Baucells and Heukamp. However, Fu-

denberg et al. (2014) comment �Unfortunately the model of Fudenberg and

Levine (2011) is fairly complex, which may obscure some of the key insights

and make it di�cult for others to apply the model.� (p. 56). In addition, a

drawback of the model from both a normative and a descriptive viewpoint is

that it violates transitivity (Fudenberg et al., 2014), even though transitivity is

rarely violated in experiments (Baillon et al., 2014; Regenwetter et al., 2011).

Aside from the work of Fudenberg and Levine, most dual-selves models in

economics are restricted to either risk or time. For decisions involving only risk,

(5) reduces to a variant of the dual system model (DSM) of Mukherjee (2010).
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The DPU model in (4) modi�es the DSM by employing a rank-dependent

probability weighting function for System 1, and extends the model to encom-

pass both risk and time preferences. Rank-dependent weighting for System 1

eliminates the undesirable property that the DSM violates �rst order stochas-

tic dominance. McClure et al. (2007) employ a two-system model of time

preference with two discount factors but with a single utility function. Their

approach can explain present bias, but not the magnitude e�ect or the inter-

action e�ects involving risk and time. Our results also relate to the �nding

in the social choice literature that group discount functions are present-biased

(Jackson and Yariv, 2015). We show a similar phenomenon in a dual system

model of individual choice. However, it should be clear that DPU does not

capture all important behaviors for decisions over time. For instance, DPU

is additively separable across time periods and so does not account for com-

plementarities in consumption across time which is a hallmark of the classic

model of habit formation (e.g., Constantinides, 1990).

9 Conclusion

The DPU model was developed to formalize behaviors based on System 1 and

System 2 processes which are often discussed qualitatively. We have shown

that one natural approach to constructing such a model (in which System 1

has behavioral preferences and System 2 has rational preferences) also pre-

dicts empirical violations of the dimensional independence axiom, as well as

systematic interaction e�ects between risk and time preferences and observed

correlations between risk preferences, time preferences, and cognitive types.

Moreover, in Propositions 3, 4, 5, 6, 7, and 8 it is necessary to have the in-

teraction between systems (θ ∈ (0, 1)) for the results to hold. Hence, these

e�ects are not explained by standard rational or behavioral preferences alone.

In addition to providing a uni�ed approach to risk and time preferences, DPU

provides a uni�cation of models based on a rational agent, models based on

prospect theory or rank-dependent utility and dual system or dual selves mod-

els of behavior.
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Appendix: Proofs of Propositions

In the proofs of Propositions 3 � 8, the agent is assumed to have DPU prefer-

ences from equation (4).

Proposition 3: Present bias holds if and only if θ ∈ (0, 1).

Proof: (Su�ciency) We need to show that (8) implies (9):

(8) V(y , p, 0) = (1− θ)w(p)u(y) + θpy = V(c, p,∆) = (1− θ)δ∆w(p)u(c) + θpc.

(9) (1− θ)δtw(p)u(y) + θpy < (1− θ)δ(t+∆)w(p)u(c) + θpc.

Note that since c > y , equation (9) implies that w(p)u(y) > δ∆w(p)u(c). Also

note that (8) can be rewritten as:

(1− θ)(w(p)u(y)− δ∆w(p)u(c)) = θp(c − y).

In addition, (9) can be rewritten as:

(1− θ)δt(w(p)u(y)− δ∆w(p)u(c)) < θp(c− y).

Thus, (1− θ)δt(w(p)u(y)− δ∆w(p)u(c)) < (1− θ)(w(p)u(y)− δ∆w(p)u(c)).

The above inequality holds since w(p)u(y) > δ∆w(p)u(c).

(Necessity) The agent has a constant discount factor if θ = 0 or θ = 1. �

Proposition 4: For a concave power function u, the magnitude e�ect holds

if and only if θ ∈ (0, 1).

Proof: (Su�ciency) We need to show that (10) implies (11):

(10) V(y , p, t) = (1− θ)δtw(p)u(y) + θpy = V(c, p, s) = (1− θ)δsw(p)u(c) + θpc

(11) (1− θ)δtw(p)u(ry) + pry < (1− θ)δsw(p)u(rc) + θprc

Note that since c > y , equation (10) implies thatδtw(p)u(y) > δsw(p)u(c).

Also note that (10) can be rewritten as:

(12) (1− θ)w(p)(δtu(y)− δsu(c)) = θp(c − y)

Inequality (10) can be written as: (1− θ)w(p)(δtu(ry)− δsu(rc)) < θpr(c − y)

For concave power utility, (i.e., u(z ) = zα, with z > 0, α < 1), this becomes:

(13) (1− θ)rα(δtw(p)yα − δsw(p)cα) < θpr(c − y).

Note that by (11), we have (1− θ)(δtw(p)yα − δsw(p)cα)/θp(c − y) = 1.

Thus, (13) reduces to r > rα, which is satis�ed since r > 1 and α < 1.

(Necessity) If θ = 0 or θ = 1, the scaling constant factors out. �
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Proposition 5: Let E[(y, p, t)] > E[(c, q, t)]. Then for any concave power

function u, the peanuts e�ect holds under DPU if and only if θ ∈ (0, 1).

Proof: (Su�ciency) We need to show that (14) implies (15):

(14) V(y , p, t) = (1− θ)δtw(p)u(y) + θpy = V(c, q , t) = (1− θ)δtw(q)u(c) + θqc.

(15) (1− θ)δtw(p)u(ry) + θpry > (1− θ)δtw(q)u(rc) + θqrc.

For E[(y , p, t)] > E[(c, q , t)], equation (14) implies that δtw(p)u(c) > δtw(p)u(y).

Also note that (14) can be rewritten as:

(16) (1− θ)δt(w(q)u(c)− w(p)u(y)) = θ(yp − cq).

In addition, the inequality in (15) can be rewritten as:

(17) (1− θ)δt(w(q)u(rc)− w(p)u(ry)) < θr(yp − cq)

For a concave power utility function over gains, (i.e., u(z ) = zα, with z > 0, α < 1):

(18) (1− θ)δtrα(w(q)cα − w(p)yα) < θr(yp − cq).

Note that by (16), we have (1− θ)δt(w(q)u(c)− w(p)u(y))/θ(yp − cq) = 1.

Thus, (18) reduces to r > rα, which is satis�ed since r > 1 and α < 1.

(Necessity) If θ = 0 or θ = 1, the scaling constant factors out. �

Proposition 6: Let E[(c, αp, t)] > E[(y , p, t)]. Then delay reduces risk aver-

sion if and only if θ ∈ (0, 1).

Proof: (Su�ciency) We need to show that (19) implies (20):

(19) (1− θ)δtw(p)u(y) + θpy = (1− θ)δtw(αp)u(c) + θαpc

(20) (1− θ)δsw(p)u(y) + θpy < (1− θ)δsw(αp)u(c) + θαpc.

SinceE[(c, αp, t)] > E[(y , p, t)], we have αcp > py , in which case (19) implies

that

δtw(p)u(y) > δtw(αp)u(c). Equation (19) can then be rewritten as:

(1− θ)δt(w(p)u(y)− w(αp)u(c)) = θp(αc − y).

In addition, note that the inequality in (20) can be rewritten as:

(1− θ)δs(w(p)u(y)− w(αp)u(c)) < θp(αc − y).

Thus, (1− θ)δs(w(p)u(y)− w(αp)u(c)) < (1− θ)δt(w(p)u(y)− w(αp)u(c)).

The above inequality holds since w(p)u(y) > w(αp)u(c).

(Necessity) If either θ = 0 or θ = 1, the discount factors in (19) and (20) cancel.

�

32



Proposition 7: For any convex weighting function w , risk reduces impatience

if and only if θ ∈ (0, 1).

Proof: (Su�ciency) We need to show that (21) implies (22):

(21) (1− θ)δtw(p)u(y) + θpy = (1− θ)δ(t+∆)w(p)u(c) + θpc.

(22) (1− θ)δtw(q)u(y) + θqy < (1− θ)δ(t+∆)w(q)u(c) + θqc.

Note that since c > y , equation (21) implies δtw(p)u(y) > δ(t+∆)w(p)u(c),

and therefore u(y) > δ∆u(c). Also note that (21) can be rewritten as:

(1− θ)δtw(p)(u(y)− δ∆u(c)) = θp(c − y).

Note that (22) can be rewritten as:

(1− θ)δtw(q)(u(y)− δ∆u(c)) < θq(c − y).

Then by (21), ((1− θ)δt(u(y)− δ∆u(c)))/θ(c − y) = p/w(p).

By (22), ((1− θ)δt(u(y)− δ∆u(c)))/θ(c − y) < q/w(q). Thus, if w(q)/w(p) < q/p

then (21) implies (22). Since q ∈ (0, p), we can write q = kp, for k ∈ (0, 1). For

any convex w with w(0) = 0, we have w(kp + (1− k)0) < kw(p) + (1− k)w(0),

which implies w(q)/w(p) < q/p.

(Necessity) If θ = 0 or θ = 1, the probability weights in (21), (22) cancel. �

Proposition 8: For any concave u, with u(0) = 0, subendurance holds if and

only if θ ∈ (0, 1).

Proof: (Su�ciency) We need to show that (23) implies (24):

(23) (1− θ)δ(t+∆)w(p)u(c) + θpc = (1− θ)δtw(λp)u(c) + θλpc

(24) (1− θ)δ(t+∆)w(p)u(y) + θpy < (1− θ)δtw(λp)u(y) + θλpy

Since pc > λpc, equation (23) implies δtw(λp)u(c) > δ(t+∆)w(p)u(c). Also

note that (23) can be rewritten as (25) and (24) can be rewritten as (26):

(25) (1− θ)(δtw(λp)u(c)− δ(t+∆)w(p)u(c)) = θpc(1− λ)

(26) θpy(1− λ) < (1− θ)(δtw(λp)u(y)− δ(t+∆)w(p)u(y)).

From (25) and (26), for all θ ∈ (0, 1):

(δtw(λp)u(c)− δ(t+∆)w(p)u(c))y < (δtw(λp)u(y)− δ(t+∆)w(p)u(y))c.

For all θ ∈ (0, 1), the above inequality reduces to, u(c)/c < u(y)/y . Since

y ∈ (0, c), we can write y = kc, for k ∈ (0, 1). For any concave u with u(0) = 0,

we have ku(c) + (1− k)u(0) < u(kc + (1− k)0) which implies u(c)/c < u(y)/y .

(Necessity) If θ = 0 or θ = 1, the utilities cancel in (23) and (24).�

33



References

Abdellaoui, M. (2000): "Parameter-free elicitation of utility and proba-

bility weighting functions." Management Science, 46, 1497-1512.

Abdellaoui, M., E. Diecidue, A. Onculer (2011): �Risk preferences at

di�erent Time periods: An experimental investigation,� Management Science.

57, 975-987.

Allais, M. (1953): �Le Comportement de l'Homme Rationnel devant le

Risque: Critiques des Postulats et Axioms de l'Ecole Americaine.� Economet-

rica, 21, 503-546.

Anderhub, V., W., Güth, U., Gneezy, D. Sonsino (2001): �On the

interaction of risk and time preferences: An experimental study.� German

Economic Review, 2, 239-253.

Andersen, S., G. Harrison, M. Lau, E. Rutstrom (2008): �Eliciting

risk and time preferences.� Econometrica, 76, 583-618.

Andersen, S., G. Harrison, M. Lau, E. Rutstrom (2011): �Intertem-

poral utility and correlation aversion.� Manuscript.

Andersson, O., J. Holm, J.R. Tyran, E. Wengstrom (2016): �Risk

aversion relates to cognitive ability: Preference or Noise?� Forthcoming, Jour-

nal of the European Economic Association.

Baillon, A., H. Bleichrodt, A. Cillo (2014): �A tailor-made test of

intransitive choice.� Operations Research, 63, 198-211.

Ballinger, T.P., E. Hudson, L. Karkoviata, N.T. Wilcox (2011):

�Saving behavior and cognitive abilities.� Experimental Economics, 14, 349-

374.

Barberis, N., A. Mukherjee, B. Wang (2013): �First Impressions:

System 1 Thinking and the Cross-section of Stock Returns.� Yale University

working paper.

Baucells, M., F. Heukamp, A. Villasis (2009): �Trading-o� probability

and time: Experimental evidence.� IESE Business School.

Baucells, M., F.H. Heukamp (2010): �Common ratio using delay.�

Theory and Decision, 68, 149-158.

34



Baucells, M., F.H. Heukamp (2012): �Probability and time trade-o�.�

Management Science, 58, 831-842.

Benjamin, D.J., S.A. Brown, J.M. Shapiro (2013): �Who is `behav-

ioral'? Cognitive ability and anomalous preferences.� Journal of the European

Economic Association, 11,1231-1255.

Bhatia, S. (2016). �Decision making in environments with non-independent

dimensions.� Forthcoming. Journal of Behavioral Decision Making.

Bleichrodt, H., J.L. Pinto (2000): �A parameter-free elicitation of the

probability weighting function in medical decision analysis.� Management Sci-

ence, 46, 1485-1496.

Bradford, D., C. Courtemanche, G. Heutel, P. Mcalvanah, C.

Ruhm (2014): �Time preferences, health behaviors, and energy consumption.�

Manuscript.

Burks, S.V., J.P. Carpenter, L. Goette, A. Rustichini (2009): �Cog-

nitive skills a�ect economic preferences, strategic behavior, and job attach-

ment.� Proceedings of the National Academy of Sciences, 106, 7745-7750.

Camerer, C., Ho., T., J.K. Chong (2004): �A cognitive hierarchy

model of games�. Quarterly Journal of Economics. 119, 816-898.

Carpenter, J., M. Graham, J. Wolf (2013): �Cognitive ability and

strategic sophistication.� Games and Economic Behavior, 80, 115-130.

Cokely, E.T., C.M. Kelley (2009): �Cognitive abilities and superior

decision making under risk: A protocol analysis and process model evaluation.�

Judgment and Decision Making, 4, 20-33.

Constantinides, G.M. (1990): �Habit Formation: A resolution of the

equity premium puzzle.� Journal of Political Economy, 98, 519-543.

Corgnet, B., M. Desantis, D. Porter (2015): �Revisiting Information

Aggregation in Asset Markets: Re�ective Learning & Market E�ciency.� ESI

Working Paper 15-15.

Deck, C., S. Jahedi (2015): �The e�ect of cognitive load on economic

decision making: A survey and new experiments.� Manuscript.

DeJarnette, P., D. Dillenberger, D. Gottlieb, P. Ortoleva (2015):

�Time Lotteries.� Manuscript.

35



Dohmen, T., A. Falk, D. Hu�man, U. Sunde (2010): �Are risk aver-

sion and impatience related to cognitive ability?� American Economic Review,

100, 1238-1260.

Dohmen, T., A. Falk, D. Hu�man, U. Sunde (2018): �On the rela-

tionship between cognitive ability and risk preference.� Journal of Economic

Perspectives, 32, 115-134.

Epper, T., H. Fehr-Duda (2015): �The Missing Link: Unifying Risk

Taking and Time Discounting.� Manuscript.

Epper, T., H. Fehr-Duda (2016): �A Tale of Two Tails: On the Co-

existence of Overweighting and Underweighting of Rare Extreme Events.�

Manuscript.

Ericson, K.M., J. Noor (2015): �Delay Functions as the Foundation of

Time Preference: Testing for Separable Discounted Utility.� National Bureau

of Economic Research, NBER working paper No. 21095.

Fehr-Duda, H., A. Bruhin, T. Epper, R. Schubert (2010): �Ratio-

nality on the rise: Why relative risk aversion increases with stake size.� Journal

of Risk and Uncertainty, 40, 147-180.

Frederick, S. (2005): �Cognitive Re�ection and Decision Making.� Jour-

nal of Economic Perspectives, 19, 25-42.

Frederick, S., G. Loewenstein, T. O'Donoghue (2002): �Time Dis-

counting and Time Preference: A Critical Review.� Journal of Economic Lit-

erature, 40, 351-401.

Fudenberg, D., D.K. Levine (2006): �A dual-self model of impulse

control.� American Economic Review, 96, 1449-1476.

Fudenberg, D., D.K. Levine (2011): �Risk, delay, and convex self-

control costs.� American Economic Journal: Microeconomics, 3, 34-68.

Fudenberg, D., D.K. Levine (2012): �Timing and Self-Control.� Econo-

metrica, 80, 1-42.

Fudenberg, D., Levine, D.K., Z. Maniadis (2014): �An approximate

dual-self model and paradoxes of choice under risk.� Journal of Economic

Psychology, 41, 55-67.

Gonzalez, R., G. Wu (1999): �On the Shape of the Probability Weighting

36



Function.� Cognitive Psychology, 38, 129-166.

Halevy, Y. (2008): �Strotz Meets Allais: Diminishing Impatience and the

Certainty E�ect.� American Economic Review, 98, 1145-1162.

Harrod, R.F. (1948): Towards a dynamic economics, some recent de-

velopments of economic theory and their application to policy (No. HB171

H28).

Harsanyi, J.C. (1955): �Cardinal Welfare, Individualistic Ethics, and

Interpersonal Comparisons of Utility.� Journal of Political Economy, 63, 309-

321.

Holger, G., Biele, G.P., Heekeren, H.R., H. Uhlig (2016): �Cogni-

tive Load increases Risk Aversion.� SFB Discussion Paper No. SFB649DP2016-

011.

Hsee, C.K., Y. Rottenstreich (2004): �Music, Pandas, and Muggers:

On the A�ective Psychology of Value.� Journal of Experimental Psychology.

General. 133, 23-30.

Jackson, M.O., L. Yariv (2015): �Collective Dynamic Choice: The Ne-

cessity of Time Inconsistency.� American Economic Journal: Microeconomics,

7, 150-178.

Kahneman, D. (2011). Thinking, Fast and Slow. New York. Farrar,

Straus, and Giroux.

Kahneman, D., S. Frederick (2002): �Representativeness revisited: At-

tribute substitution in intuitive judgment.� In T. Gilovich, D. Gri�n, D. Kah-

neman, Heuristics and biases: The psychology of intuitive judgment, 49-81.

Cambridge.

Kahneman, D., A. Tversky (1979): �Prospect Theory: An Analysis of

Decision under Risk.� Econometrica, 47, 263-292.

Keeney, R.L., R. Nau (2011): �A theorem for Bayesian group decisions.�

Journal of risk and Uncertainty, 43, 1-17.

Keeney, R. L., H. Rai�a (1993): Decisions with multiple objectives:

Preferences and value trade-o�s. New York. Cambridge.

Keren, G., P. Roelofsma (1995): �Immediacy and Certainty in Intertem-

poral Choice.� Organizational Behavior and Human Decision Processes, 63,

37



287-297.

Koopmans, T.C. (1960): �Stationary ordinal utility and impatience.�

Econometrica, 28, 287-309.

Laibson, D. (1997): �Golden Eggs and Hyperbolic Discounting,� Quar-

terly Journal of Economics, 112, 443-477.

Leigh, J. (1986): �Accounting for tastes: Correlates of risk and time

preferences.� Journal of Post Keynesian Economics, 9, 17-31.

Leland, J. (1994): �Generalized similarity judgments: An alternative ex-

planation for choice anomalies.� Journal of Risk and Uncertainty. 9, 151-172.

Leland, J. (2002): �Similarity Judgments and Anomalies in Intertemporal

Choice.� Economic Inquiry, 40, 574-581.

Loewenstein, G., O'Donoghue, T., S. Bhatia (2015): Modeling the

interplay between a�ect and deliberation. Decision, 2, 55-81.

Markowitz, H. (1952): �The Utility of Wealth,� Journal of Political Econ-

omy, 60, 151-158

McClure, S.M., Laibson, D.I., Loewenstein, G., J.D. Cohen (2007):

�Time discounting for primary rewards,� The Journal of Neuroscience, 27,

5796-5804.

Miao, B., S. Zhong (2015): �Comment on �Risk Preferences Are Not

Time Preferences�: Separating Risk and Time Preference.� American Eco-

nomic Review, 105, 2272-2286.

Mongin, P., M. Pivato (2015). �Ranking multidimensional alternatives

and uncertain prospects.� Journal of Economic Theory, 157, 146-171.

Mukherjee, K. (2010): �A Dual SystemModel of Preferences under Risk,�

Psychological Review, 117, 243-255.

O'Donoghue, T., M. Rabin (1999): �Doing it Now or Later.� American

Economic Review, 89, 103-124.

Oechssler, J., Roider, A., P.W. Schmitz (2009): �Cognitive abilities

and behavioral biases.� Journal of Economic Behavior and Organization, 72,

147-152.

Onay, S., A. Onculer (2007): �Intertemporal Choice under Timing Risk:

An Experimental Approach,� Journal of Risk and Uncertainty, 34, 99 � 121.

38



Prelec, D. (1998): �The probability weighting function.� Econometrica,

66, 497-527.

Prelec, D., G. Loewenstein (1991): �Decision Making Over Time and

Under Uncertainty: A Common Approach.� Management Science, 37, 770-786.

Quiggin, J. (1982): A theory of anticipated utility. Journal of Economic

Behavior and Organization, 3, 323-343.

Regenwetter, M., Dana, J., C.P. Davis-stober (2011): Transitivity

of preferences. Psychological Review, 118, 42-56.

Rottenstreich, Y., C.K. Hsee (2001): Money, kisses, and electric shocks:

On the a�ective psychology of risk. Psychological Science, 12(3), 185-190.

Rubinstein, A. (1988): Similarity and decision-making under risk (Is

there a utility theory resolution to the Allais paradox?). Journal of Economic

Theory, 46, 145-153.

Rubinstein, A. (2003): �Economics and Psychology�? The Case of Hy-

perbolic Discounting. International Economic Review, 44(4), pp.1207-1216.

Rubinstein, A. (2007): �Instinctive and Cognitive Reasoning: A Study

of Response Times.� The Economic Journal. 117, 1243-1259.

Rubinstein, A. (2013): �Response time and decision making: An exper-

imental study.� Judgment and Decision Making, 8, 540-551.

Shiv, B., A. Fedorikhin (1999): �Heart and mind in con�ict: The in-

terplay of a�ect and cognition in consumer decision making.� Journal of Con-

sumer Research, 26, 278-292.

Stanovich, K.E., R.F. West (2000): �Individual di�erences in reasoning:

Implications for the rationality debate?� Behavioral and Brain Sciences, 23,

645-665.

Starmer, C. 2000. Developments in non-expected utility theory: The

hunt for a descriptive theory of choice under risk. Journal of Economic Liter-

ature, 38, 332-382.

Traeger, C.P. (2013): �Once Upon a Time Preference � How Rationality

and Risk Aversion Change the Rationale for Discounting.� CES Working Paper

No. 3793.

Tversky, A., D. Kahneman (1992): �Advances in Prospect Theory:

39



Cumulative representation of uncertainty.� Journal of Risk and Uncertainty,

5, 297-323.

Wakker, P.P. (2010): Prospect Theory: For Risk and Ambiguity. Cam-

bridge.

Walther, H. (2010):"Anomalies in intertemporal choice, time-dependent

uncertainty and expected utility�A common approach.� Journal of Economic

Psychology, 31, 114-130.

Wu, G., R. Gonzalez (1996): �Curvature of the probability weighting

function.� Management Science, 42, 1676-1690.

Zuber, S. (2016): �Harsanyi's theorem without the sure-thing principle:

On the consistent aggregation of monotonic Bernoullian and Archmiedean

preferences.� Journal of Mathematical Economics, 63, 78-83.

40


	Chapman University
	Chapman University Digital Commons
	12-22-2018

	A Dual System Model of Risk and Time Preferences
	Mark Schneider
	Recommended Citation

	A Dual System Model of Risk and Time Preferences
	Comments


	tmp.1547248873.pdf.IzItN

