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Abstract—We apply cluster analysis to a sample of 2,116
children with Autism Spectrum Disorder in order to identify
patterns of challenging behaviors observed in home and center-
based clinical settings. The largest study of this type to date, and
the first to employ machine learning, our results indicate that
while the presence of multiple challenging behaviors is common,
in most cases a dominant behavior emerges. Furthermore, the
trend is also observed when we train our cluster models on the
male and female samples separately. This work provides a basis
for future studies to understand the relationship of challenging
behavior profiles to learning outcomes, with the ultimate goal of
providing personalized therapeutic interventions with maximum
efficacy and minimum time and cost.

I. INTRODUCTION

In recent years, an increase in the rate of diagnosis of
Autism Spectrum Disorder (ASD) [4] has fueled interest in
applications of machine learning to improve the lives of
those afflicted. Though the majority of research has focused
on diagnosis and genetic modeling, progress has also been
made in leveraging machine learning to model social and
behavioral aspects of ASD. Autism spectrum disorder is a
neurodevelopmental disorder that manifests itself in behaviors
typically observed in the early years of life, though diagnosis
may be delayed until adulthood. While combinations of ASD
symptoms can vary greatly from one individual to another,
those diagnosed often display challenging behaviors which
can impact safety, learning, social interaction, and adaptive
development. As a result, the presence of challenging behav-
iors can have profound consequences for therapeutic treatment
models, such as applied behavior analysis (ABA). Thus, it is
important to evaluate the topography and functions maintaining
challenging behaviors in order to mitigate the detrimental
effects on skill acquisition and quality of life.

The landscape of challenging behaviors in ASD is large
and diverse, with some behaviors lacking concrete operational
definitions agreed upon by the behavior analysis community.
To this end, we restrict the focus of this paper to eight widely-
observed and widely-studied behaviors:

• Aggression (hitting, kicking, scratching, etc.)

• Self-injury (head-banging, hand-biting, hitting walls,
etc.)

• Disruption (interrupting, yelling, knocking things over,
etc.)

• Elopement (wandering, bolting, etc.)

• Stereotypy (hand-flapping, rocking, toe-walking, etc.)

• Tantrums (crying, screaming, defiant behavior, etc.)

• Non-compliance (disobeying directions, whining, etc.)

• Obsession (repeatedly talking about the same topic,
perseveration, etc)

It is important to note that the presence of challenging be-
haviors is not limited to one developmental stage such as
early childhood. Indeed, challenging behaviors are present
in young children, adolescents, and adults with ASD [16].
Further, no significant relationship between symptom severity
and frequency with age has been found [15], which suggests
that challenging behaviors persist throughout an individual’s
life.

While previous work has been undertaken to understand
these behaviors and their function, behavioral phenotypes of
the autism spectrum remain largely unexplored. This study
aims to expand work in this area by providing the first
machine learning based study of challenging behaviors using
cluster analysis in order to determine common challenging
behavior profiles and behavior co-occurrences. We leverage
a large clinical dataset consisting of 2,116 geographically
dispersed patients with confirmed ASD diagnoses. Our results
indicate that while there are indeed common co-occurrences
of challenging behaviors, most patients exhibit a dominant
behavior that drives their profile.

The remainder of the paper is organized as follows. Section
2 presents an overview of the clinical dataset which forms the
basis of our study, including criteria for inclusion and basic
demographic statistics for our sample size. Section 3 provides
a brief algorithmic overview the machine learning methods
employed for analysis. Section 4 presents behavioral patterns
identified via our analysis, and discusses how these results
can be applied to improve ASD treatment in a clinical setting.
Finally, we discuss related work in section 5, followed by
conclusions in section 6.



Fig. 1: Distribution of Challenging Behavior Counts

II. DATA

To build our unsupervised models of challenging behav-
iors, we were provided access to the SKILLSTM database.
SKILLSTM is a proprietary repository of treatment data main-
tained by a large national provider of autism treatment services,
and contains complete treatment histories for children who
are actively enrolled, or have been enrolled, in ABA inter-
vention. As part of ABA services all patients are assigned
a behavior intervention plan by a board-certified behavior
analyst (BCBA), and behaviors are tracked over time using a
combination of mobile applications and web-based software.
While the database stores a substantial amount of phenotypic
data, for this study we focus on the records of challenging
behaviors observed in the course of ABA therapy sessions
conducted as part of home and center-based treatment.

Data was stored in Microsoft SQL Server running on
a 16-core Intel Xeon processor, 256 GB of RAM, 256GB
solid state hard drive and a 8TB spinning-disk hard drive for
data storage. Data was extracted using the industry standard
Structured Query Language (SQL) in the form of various query
statements. The R statistical computing language was used to
clean and prepare the data set so that it could be used in the
analysis presented here.

Preprocessing resulted in a candidate pool of 4,315 chil-
dren receiving ABA therapy services from the provider. We
then applied filtering criteria to isolate patients that exhibited
repeated instances of challenging behavior over time. This
criteria produced a sample size of 2,116 participants. Of the
2,116 participants, 82.3% were male and 17.7% were female.
Since ASD is known to affect males at approximately 4 times
the rate of females, this imbalance is expected. The mean age
of the participants was 7.48 years (SD =2.33). Participants
in this study resided and received services in the states of
Arizona, California, Colorado, Illinois, Louisiana, New York,
Texas, and Virginia.

To create the data matrix for our study we aggregated 8-
dimensional feature vectors for each patient. These vectors
correspond to the number of times each challenging behavior
was observed for an individual patient over the course of
their therapy. For normalization purposes, each vector element
was divided by the total number of observations for the
patient, resulting in a probability distribution over challenging
behaviors. This is also convenient for visualization, as each

challenging behavior vector element is scaled between 0.0
and 1.0, with higher values suggesting higher frequency of
the corresponding behavior. After data processing, the end
result is a 2116× 8 dimensional matrix representing a total of
24,112 instances of challenging behaviors across all patients.
The minimum number of observations for a patient is 6, with
a corresponding maximum of 492. The mean number of ob-
servations is 11.40, with a standard deviation of 13.36. Figure
1 presents a histogram for the total number of challenging
behavior observations for our study sample, with a logarithmic
transform applied to account for the fact that number of
observations spans two orders of magnitude from minimum
to maximum.

III. METHODS

For this analysis we employ K-means clustering to extract
common behavior profiles across the previously defined cate-
gories of challenging behaviors. In this section we provide a
brief mathematical overview of K-means before presenting the
results of our study.

K-means is a simple algorithm that determines cluster
membership by identifying cluster centroids [13]. Consider a
data matrix, D, of dimension m×n. D can then be represented
as a collection of vectors, D = {X1, X2, ..., Xm}. Each vector,
Xi, represents a unique data instance, and each vector element,
Xi,j , a specific measurement (attribute) for that point.

K-means clustering takes D as input, as well as the number
of clusters to be fit from the data, k. The algorithm then
proceeds as follows:

1) Initialize k centroids C = {C1, C2, ..., Ck} (one for
each cluster) with k random data points.

2) For each point, Xi ∈ D, find the closest centroid,
Cj , from C based on any appropriate distance metric.
Assign Xi to cluster j.

3) For all Cj ∈ C recalculate

Cj = (
∑

i

Xi)/Pj

for all Xi assigned to cluster j and where Pj is the
number of points assigned to cluster j.

4) Go to step 2 and repeat until cluster memberships do
not change.

Once the cluster membership has stabilized, cluster structure
may be visualized, with the centroid of each cluster serving
as a representative description of data points captured by that
group.

While k-means provides an algorithmically straight-
forward way for identifying grouping, the substantial challenge
is determining the number of clusters, k, to be modeled.
In absence of domain information to suggest the correct
parameter setting, several mechanisms exist for statistically
determining the most likely k, including nonparametric sta-
tistical techniques. Here we rely on determining k by finding
the value that gives the most drastic reduction in intra-cluster
sum of squared distances.



TABLE I: Frequency of Challenging Behaviors

Behavior Frequency

aggression 51.61%

stereotypy 50.47%

tantrums 49.29%

noncompliance 49.01%

selfinjurious 22.02%

elopement 21.17%

disruption 14.74%

obsessive 5.77%

IV. RESULTS

To begin our analysis, we first explore the prevalence of
challenging behaviors among our sample of 2,116 patients.
Table 1 presents the percentage of the sample population
that exhibits each behavior. The data indicates that of the
eight behaviors, the most common are aggression, stereotypy,
tantrums, and noncompliance, all of which are present in
approximately 50% of the sample. This is in agreement with
previous surveys of the challenging behavior landscape [5],
and gives credibility to the representativeness of the data
considered here.

Before diving into the cluster analysis, it is useful to not
only understand the frequency of individual challenging be-
haviors, but also the relative frequency of pairs of challenging
behaviors. Table 2 presents the prevalence of all pairs of
challenging behaviors observed in our sample population. Not
surprisingly, the most common pairs of challenging behaviors
are drawn from the Cartesian product of the most prevalent
single behaviors in table 1. However, we also observe substan-
tial co-occurrence of elopement with these behaviors as well.
These simple statistics suggest that the overall challenging
behavior profiles of our sample are likely to contain a mix
of challenging behaviors.

As a first step in our K-means cluster analysis, we first
determined the value of k that best explained the latent
structure in the data. This was achieved by varying k from
1 to 20, and then selecting the value of k that corresponded
to a plateau in intra-cluster sum of squared distances. This
technique is colloquially referred to as the “elbow method” in
the machine learning community [19]. For our data set, this
approach identified a total of seven clusters, and so we use
this value of k for the final analysis.

Figure 2 depicts the centroids of the seven clusters ex-
tracted by K-means. Each cluster is well-represented by
patients from the sample, with each cluster containing the
following number of data points:

• Cluster 1: 211 patients

• Cluster 2: 265 patients

• Cluster 3: 494 patients

• Cluster 4: 233 patients

• Cluster 5: 243 patients

• Cluster 6: 155 patients

• Cluster 7: 515 patients

From the figure one is immediately struck by the fact that
most clusters are defined by a single dominant challenging

TABLE II: Frequency of Challenging Behavior Pairs

Behavior Pair Frequency

stereotypy noncompliance 49.57%

tantrums noncompliance 47.21%

noncompliance aggression 46.50%

stereotypy tantrums 44.85%

tantrums aggression 43.81%

stereotypy aggression 42.82%

elopement noncompliance 26.65%

elopement aggression 24.24%

elopement tantrums 24.05%

aggression selfinjurious 23.16%

elopement stereotypy 22.64%

stereotypy selfinjurious 20.84%

tantrums selfinjurious 20.13%

noncompliance selfinjurious 19.28%

disruption aggression 16.07%

disruption noncompliance 14.93%

disruption stereotypy 13.00%

disruption tantrums 12.62%

stereotypy obsessive 10.59%

noncompliance obsessive 9.83%

elopement selfinjurious 9.40%

tantrums obsessive 9.22%

disruption elopement 8.22%

obsessive aggression 8.03%

disruption selfinjurious 7.14%

elopement obsessive 4.35%

obsessive selfinjurious 3.26%

disruption obsessive 2.74%

behavior, though obsessive behavior is not a significant com-
ponent of any group. When multiple challenging behaviors
are present, such as in cluster 5 and 6, we see that the relative
strengths of challenging behaviors, other than the dominant
behavior, are all small. The sole exception is cluster 7, which
shows similar levels of aggression, noncompliance, tantrums,
stereotypy, and elopement. This aligns well with our analysis
of challenging behavior pairs, and would indicate that if a
patient exhibits diversity in challenging behaviors, it is most
likely to come from these areas.

After analyzing clusters of behaviors for the entire sample,
we repeated the analysis separately on the male and female
sample populations. In each case eight clusters were identified
as best explaining the latent structure of the data. The results
for the male and female groups are displayed in figures 3 and
4, respectively. As with the clusters fit on the entire population,
the male population exhibits clusters that are all dominated by
a single challenging behavior. This is also largely the case with
the female population, though clusters 1 and 3 stand out as
exceptions. The almost equal presence of elopement/tantrums
and noncompliance/stereotypy are not present in the male pro-
files, and suggest there are gender differences in challenging
behaviors on the spectrum that should be taken into account
for treatment.

While the existence of challenging behavior clusters is
interesting in its own right, this result has practical applica-
tion for intervention. Specifically, behavior intervention plans
from each group can be examined, and the plans that have
demonstrated the most efficacy historically can be assigned to
other members in the cluster as a starting point for treatment.
In this way, the BCBA assigned to the case need not start
from scratch to formulate a behavior intervention plan, but
rather from a template that has worked well for other patients
with a similar challenging behavior profile. This can build on



Fig. 2: Clusters of Challenging Behaviors Learned by K-means

previous work that demonstrates the importance of intensive,
targeted intervention in ASD treatment [2], [1], [9].

V. RELATED WORK

The study of challenging behaviors in the broader realm
of psychiatric disorders has been a broadly explored research
topic. Emerson et al crafted a composition of current find-
ings related to the assessment and treatment of challeng-
ing behavior. They combined research across disciplines to
further the assessment of challenging behaviors caused by
learning disabilities including nature, epidemiology, causes
and potential treatment outcomes. In particular, they explored
contributions to the understanding of the relationship between
challenging behavior and psychiatric disorder [3]. In our study
we focus specifically on individuals with ASD and the trends
of challenging behaviors within this set.

Although no studies could be found that used machine
learning to analyze challenging behaviors, the work in [17]
aggregated and statistically analyzed data from 22 studies
conducted over the 30 years leading up to 2003. Their findings
emphasized the scarcity of methodologically robust studies
when it comes to the research of challenging behaviors. They
detail the lack of data that would allow for investigation into
incidence, prevalence and chronicity of challenging behavior
in people with intellectual disabilities.

Outside of the study of challenging behaviors, there have

been several other applications of machine learning in the ASD
domain. For example, [7], [21] demonstrate the feasibility of
machine learning to reduce the number of diagnostics that
need to be administered to converge on an ASD diagnosis.
The work in [11] and [10] leverages artificial neural networks
to model the relationship between treatment intensity and
outcomes in ASD. Liu et al built a support vector machine
based affective model in order to improve computer based
ASD intervention tools, allowing them to monitor and gage
an individual’s progress, adjusting therapy accordingly [12].
Mieanner et al trained a random forest classifier to use words
and phrases found in evaluations to classify case status in
Autism Developmental Disability Monitoring [14]. Finally, in
the realm of unsupervised machine learning, [18], [8], [6]
leverage cluster models to learn phenotypic patterns across
the autism spectrum. Unlike our analysis however, clusters are
based on broad diagnostic instruments and sensory processing
characteristics, respectively. The work in [20] extends this by
considering the relationship of sensory processing disorders to
anxiety, though with a small sample size of 57 children.

VI. CONCLUSION

Here we have presented the first machine learning based
analysis of challenging behaviors in a large population sample
of 2,116 patients. Using K-means clustering, we are able
to identify meaningful behavior profiles, which indicate that
in most clusters a dominant single challenging behavior is



Fig. 3: Clusters of Male Challenging Behaviors Learned by K-means

present. Additionally, we identified some potential differences
in challenging behavior profiles across male and female pop-
ulations. This study lays the foundation for future work in
challenging behavior analysis, with the most obvious direction
being to model how treatment intensity, learning objective
mastery, and stimulus response are correlated within each
defined challenging behavior cluster. This, in turn, may provide
a basis for individualized treatment, with the ultimate goal of
higher efficacy at lower cost.

It is important to emphasize that the study presented here
focuses only on the presence of challenging behaviors, and
not the function of those behaviors. Function-based treatment
has been shown to be among the most effective interventions
for challenging behavior, and so a natural way to augment our
work would be to integrate functional components within our
cluster profiles. This is not without its challenges, however,
as identifying the environmental variables and consequences
maintaining behaviors is complex. Such factors vary signif-
icantly across individuals and even within individuals over
contexts and/or time. Nevertheless, we intend to expand our
current work in challenging behaviors to include a functional
component.

As a discipline, it is encouraging to see that ASD research,
like so many other fields, is becoming data-driven. Ultimately,
however, this field lacks an Internet-scale, public repository
of longitudinal data that could serve as a baseline for more
exploratory research in big data. Until then, it is imperative
that machine learning researchers partner directly with ASD

treatment providers to ensure that data, where available, is
leveraged to make informed decisions about treatment. The
work in this paper represents a modest contribution toward
that goal.
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