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Abstract 23 

The objective of this study was to determine if oranges in the top and bottom layers 24 

within a Standard Place Pack were impacted differently by irradiation after long-term 25 

storage. ́ Barnfield´ Navel oranges were packed in Standard Place Pack cartons and 26 

treated with 0, 0.15 or 1 kGy of gamma irradiation. The fruit were stored for three 27 

weeks at 5 °C and then for one week at 20 °C. After storage, the fruit from the top 28 

and bottom layers were separately evaluated for quality. The development of stem 29 

end rind breakdown (SERB) was the main cause of quality loss and was greater in 30 

irradiated fruit in the top layer. Fruit in the bottom layer showed more physical 31 

damage (flattening) but lower incidence of SERB.  The changes in individual sugar 32 

content were minimal but significant for layer. The content of individual organic acids 33 

was consistently lower in irradiated fruit from the bottom layer. Layer type showed a 34 

stronger effect on phenolic compounds than irradiation dose. The tristimulus color, 35 

total soluble solids, titratable acidity, and firmness of fruit were not influenced by 36 

irradiation dose or layer type.  The results show that damage in irradiated Navel 37 

oranges depends on dose and layer, with the top layers showing greater 38 

physiological damage and bottom layers showing more physical damage. 39 

 40 

 41 

Keywords: Ionizing energy; Physiological disorders; Chemical composition; Citrus; 42 

Phytosanitary treatment; Postharvest quality 43 

 44 
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Introduction 45 

The US is one of the largest orange producing countries in the world, with California 46 

and Florida providing much of the oranges for the fresh market and for processing, 47 

respectively (USDA 2017). Fresh oranges from the US are exported to several 48 

countries, mainly to South Korea, Canada, and Japan (AMRC 2013). However, the 49 

production of oranges in the US has decreased slightly but continuously in recent 50 

years, causing an increase in the importation of oranges from countries such as China, 51 

Australia, Mexico, Jamaica, and the Philippines (APHIS 2014; USDA 2017). The high 52 

volume of international and domestic trade of oranges can infer a high risk for the 53 

spread of quarantine pests. Thus, oranges being imported, exported, or even moved 54 

within the US must be subjected to phytosanitary treatments before shipment (APHIS 55 

2014). Several postharvest phytosanitary treatments have been approved for citrus 56 

fruits but irradiation has advantages over the other treatments in terms of exposure of 57 

fruit to unsuitable high or low temperatures for extended periods of time, human 58 

safety, and environmental impacts (Hallman 2012).  59 

Generic doses of 0.15 and 0.4 kGy are approved to control many classes of insects 60 

except the pupae and adult stages of Lepidoptera (APHIS 2014), while a maximum of 61 

1 kGy is allowed by the FDA for use on fresh fruits and vegetables (Follett and Wall 62 

2013; Hallman 2012). The dose of 0.15 kGy is sufficient to control insects commonly 63 

found on oranges and may limit the negative effects on quality, which are manifested 64 

in oranges as softening, peel injury, chemical (loss of nutrients, bioactive compounds, 65 

volatiles) and sensory changes (Ladaniya et al. 2003; McDonald et al. 2013; Miller et 66 

al. 2000; Nagai and Moy 1985). Many of these effects have been related to the 67 
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irradiation-mediated increase in ethylene biosynthesis and respiration rate (Ladaniya 68 

et al. 2003), but the incidence and severity of these negative effects depend on orange 69 

variety, maturity stage, and irradiation dose (Bustos and Mendieta 1988; Miller et al. 70 

2000; Nagai and Moy 1985).  71 

Oranges in the US are generally packed precisely in four layers in 18.1 kg Standard 72 

Place Pack cartons. They are typically packed without protective trays between layers, 73 

resulting in the compression of fruit, especially in the bottom layer during long-distance 74 

shipping (Moresi et al. 2012). This kind of damage can compromise the appearance 75 

of the fruit and might cause the rejection of the entire fruit shipment (Mazidi et al. 76 

2016).  Compression damage in citrus fruits, as with any other physical damage, 77 

triggers a burst of ethylene production (Lu et al. 2014) directly or indirectly impacting 78 

the respiration rate, and resulting in softening, peel injury and chemical changes 79 

(Porat et al. 2004; Rojas-Argudo et al. 2010, 2012). Compression damage can alter 80 

the levels of sugars, organic acids (mainly ascorbic acid), volatiles, and phenols in 81 

citrus fruit (Mazidi et al. 2016; Obenland et al., 2018; Rojas-Argudo et al. 2010, 2012). 82 

Transportation temperature and distance also influence the severity and incidence of 83 

compression damage (Ahmadi 2012; Ahmadi et al. 2010).  84 

Irradiation-induced stress in oranges can elicit a similar physiological response to that 85 

of compression damage (Mazidi et al. 2016; Rojas-Argudo et al. 2012). Thus, the 86 

combination of compression and irradiation might exacerbate postharvest damage in 87 

oranges. In our previous work, we noted that the undesirable effects of irradiation on 88 

Navel oranges, especially peel injury, seemed to depend on the position of the fruit 89 

within the case, but this phenomenon was not systematically investigated (McDonald 90 
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et al. 2013), and the literature does not provide any information in this regard. The 91 

objective of this study was to determine if oranges in the top and bottom layers within 92 

a Standard Place Pack were impacted differently by irradiation after long-term storage. 93 

The 0.15 kGy dose was selected since it is the minimum target dose for oriental fruit 94 

fly.  A dose of 1 kGy was included to accentuate the impacts of irradiation on the fruit 95 

to allow these effects to be detected and measured.   96 

  97 

Materials and Methods 98 

Fruit Procurement, Treatment, and Storage  99 

´Barnfield´ Navel Oranges (Citrus sinensis (L.) Osbeck) (size 72) were harvested from 100 

a commercial orchard in Kern County, CA, USA. The fruit were commercially treated 101 

and packed by Paramount Citrus Exchange (Delano, CA, USA). The handling involved 102 

three washing steps with chlorine; one at dumping point (150 mg/L), then at high 103 

pressure (200 mg/L, 862 kPa) and a final immersion for 3 min in 3% sodium 104 

bicarbonate solution containing chlorine (200 mg/L).  After rinsing with water, the fruit 105 

were treated with Imazalil (300 mg/L) for 30 s in an immersion tank, then rinsed with 106 

water. Finally, the fruits were waxed with a carnauba based wax containing Imazalil 107 

(1 g/L) and thiabendazole (3.5 g/L). The oranges were bulk packed in 18.14 kg (72-108 

80 fruits) Standard Place Pack cartons (40.6 x 27.9 x 25.4 cm) and refrigerated at 5 109 

°C. In each carton, the fruit were distributed in four layers; each layer containing ~20 110 

fruit.  The oranges were transported to Sterigenics, Inc. (Tustin, CA, USA), for 111 

treatment, where six cases of oranges were placed two rows high and three across at 112 

a precise distance from a 60Co source (~37PBq). Dose mapping was conducted by 113 
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placing 24 alanine pellet dosimeters (FarWest Technology, Inc., Goleta, CA, USA) at 114 

various locations in the cases.  The dose rate was determined to be 0.637 Gy/s. Six 115 

cases of oranges were placed exactly in the same configuration as the dummy cases 116 

to receive treatment at a target dose of 0.15 and 1 kGy (4.6-5.5% uncertainty) and 117 

Dmax/Dmin ratio of 1.33. Midway through treatment, the boxes were rotated 180° to 118 

ensure uniform treatment. After treatment, the oranges were transported to Chapman 119 

University, and stored at 5 °C and 95% RH for 3 weeks to simulate sea shipment to 120 

Asian markets. After cold storage, the oranges were placed at room temperature (20 121 

°C) for one week to simulate retail display. Following this four week storage, twenty 122 

fruit from the top and bottom layers of each of the four cases were pooled, to obtain a 123 

total of 80 fruit for each layer.  Of the 80 fruit per layer, ten were used to measure 124 

tristimulus color and ten for firmness.  Sixty fruits were distributed in five subsamples, 125 

juiced and the juice was used to measure titratable acidity (TA), total soluble solids 126 

(TSS), individual sugars, organic acids, and total and individual phenols. Twenty 127 

oranges from top and bottom layers from the remaining two cartons were evaluated 128 

for stem-end breakdown (SERB), fungal infections, shape deformation and weight 129 

loss. All fruits included in the experiment were free of physiological, physical and 130 

biological damage (flattening, SERB, fungal infections and insect damage). Their 131 

average weight (270.7 ± 3.8 g), peel color (L*= 65.1 ± 0.3,  a*= 29.4 ± 0.5, b*= 48.1 ± 132 

0.9), internal color (L*= 46.4 ± 0.4, a*= 8.7 ± 0.2, b*= 31.1 ± 0.6), peel firmness, (6.8 133 

± 0.5 N), pulp  firmness (3321.8 ± 173.0 N mm),  TSS content (12.6 ± 0.03 %)  and 134 

TA (0.43 ± 0.006%) at the beginning of the experiment were characteristic of ripe 135 

Navel oranges. 136 
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Peel Damage  137 

Shape deformation by compression was reported as the percentage of fruit showing 138 

flattening. These fruit were also grouped according to the severity of compression 139 

damage. The severity of flattening was estimated by calculating the percent of fruit 140 

surface area showing flattening. These areas were converted into a 5 point scale 141 

according to Yue et al. (2007), with 0= no damage, 1= 1-4%, 2= 5-8%, 3= 9-12%, 142 

4=13-15%, and 5= 16% or more of damaged surface. The fruit surface area was 143 

determined by measuring their equatorial diameter and assuming a spherical shape 144 

while the flattened areas were measured using a Vernier caliper.  145 

The incidence and severity of SERB were determined by digital image analysis, given 146 

the irregular shape of SERB lesions and the consequent difficulty to be evaluated 147 

using a Vernier caliper. The incidence of SERB was determined by calculating the 148 

percent of fruit showing this damage. The severity of SERB was determined by 149 

estimating the area and color of SERB lesions by digital image analysis. The peduncle 150 

side of 20 fruit per layer was photographed using a digital camera. An algorithm, 151 

designed in MATLAB (R2010a, MathWorks, USA), was used to determine the area 152 

and tristimulus color of the SERB lesions in the digital images. The digital image is an 153 

M×N×P array, where M×N represents the image dimension in pixels, while P is the 154 

number of color planes, three in this case, corresponding to the matrices R', G', and 155 

B'. In order to convert an R'G'B' digital image to an L*a*b* color space (CIELab), the 156 

MatLab object ColorSpaceConverter was used.  In the L*a*b* color space, L* indicates 157 

lightness, a* is the red (+a)/green coordinate (-a), and b* is the yellow (+b)/blue 158 

coordinate (-b) (Chen et al., 2010).   For the determination of SERB area, the digital 159 
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image was transformed to a gray-scale image.  The % of area showing SERB lesions 160 

was calculated relative to the area of the fruit in the picture. 161 

The incidence of fungal infections was determined by calculating the percent of fruits 162 

per layer showing areas with mycelia. The area of the fungal infection (severity) was 163 

not determined since under commercial conditions any fruit showing fungal infection 164 

must be discarded, in contrast to fruit showing SERB or flattening. 165 

 166 

Tristimulus Color of Fruits  167 

Peel color was measured in areas free of injuries at two equidistant points on the 168 

equatorial axis of 10 fruit using a CM-2500d Konica Minolta Spectrophotometer 169 

(Ramsey, New Jersey, USA). Then, the oranges were cut at the equatorial axis and 170 

two color measurements were taken on the internal surface of each half.  The L*, a* 171 

and b* values were recorded. 172 

 173 

Firmness 174 

Firmness of the peels and intact segments of the fruit was measured. For peel 175 

firmness, four peel sections were vertically excised from 10 fruit using a paring knife 176 

and evaluated for penetration resistance to a 3 mm puncture probe using a TA-XT2 177 

Texture Analyzer (Texture Technology Corp; Scarsdale, NY, USA), which moved 178 

downward through the peel at 3 mm/s until breakpoint. The maximum force (N) 179 

required to puncture the peel was recorded.  For pulp firmness, the segments from 180 

the peeled oranges were carefully separated by hand and distributed in eight 181 

subsamples of 150 g each. Each subsample of intact segments was placed into a 182 
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Kramer Shear Cell (TA-91) and the five flat-blade press, set at 80 mm from the bottom 183 

of the cell platform, was moved downward through the segments at 5 mm/s for 75 184 

mm. The area (N.mm) under the force deformation curve was determined. 185 

 186 

Weight Loss, Titratable Acidity (TA) and Total Soluble Solids content (TSS) 187 

Weight loss (%) was determined by measuring the change in weight during storage in 188 

the fruit used for peel damage determination. For TA, 5 g of juice were diluted with 50 189 

g of water and titrated to a pH of 8.2 with 0.1N NaOH. TA was calculated using the 190 

factor of 0.064 for citric acid, according to McDonald et al. (2013).  The content of TSS 191 

of the juice was directly determined by placing a few drops of juice on the glass surface 192 

of a PAL digital refractometer (Atago Co., LTD, Tokyo, Japan).  193 

 194 

Sugars 195 

Glucose, fructose, and sucrose were measured according to Ornelas-Paz et al. 196 

(2013), with some modifications. An aliquot of juice (100 µL) was mixed with 2 mL of 197 

HPLC water. The mixture was filtered with a 45 µm pore size acrodisk and 198 

automatically injected (20 µL) into an Agilent 1100 series HPLC system (Agilent Inc., 199 

Santa Clara, CA, USA) equipped with a refractive index detector. The separation was 200 

performed in a Sugar SC 1821 (8.0 x 300 mm, 6 µm) column at 80 °C with a Sugar 201 

SC-LG (6.0 x 50 mm, 10 µm) precolumn (Showa Denko K.K.; Tokyo, Japan). The 202 

mobile phase was 100% HPLC grade water at a flow rate of 0.8 mL/min. The sugars 203 



10 
 

were quantified using calibration curves constructed with at least three independent 204 

sets of dilutions of glucose, sucrose, and fructose. 205 

Organic Acids 206 

One mL of juice was mixed with 3 mL of 5 mM H2SO4. The mixture was filtered using 207 

a 45 µm pore acrodisk and automatically injected (20 µL) into the HPLC system 208 

described above, which is also equipped with a diode array detector. The separation 209 

was performed using an Aminex HPX-87H ion exchange column (7.8 x 300 mm; Bio-210 

Rad Laboratories, Hercules, CA, USA) at 60 °C. The mobile phase was 5 mM H2SO4 211 

and acetonitrile (90:10, v/v) at flow rate of 0.4 mL/min. Oxalic, citric, tartaric, malic, 212 

quinnic, succinic, and fumaric acids were monitored at λ=210 nm while ascorbic acid 213 

was monitored at λ=260 nm. The quantification was based on calibration curves 214 

constructed with at least three independent sets of dilutions of standard compounds. 215 

 216 

Phenolic Compounds  217 

The analysis of individual and total phenols was performed simultaneously. The juice 218 

was filtered with a membrane of 0.45 µm pore size and directly injected (100 μL) into 219 

the HPLC described previously. The separation of phenolic compounds was 220 

performed using a Kinetex C18 column (4.6 x 100 mm) (Phenomenex; Torrance, CA, 221 

USA) at 30 °C. The phenolic compounds were monitored at λ= 280, 320, 350 and 520 222 

nm. The mobile phase consisted of 2% acetic acid (A), and acetonitrile (B), according 223 

to the following gradient: 100% A at 0 min, 93% A at 12 min, 89% A at 20 min, 86%A 224 

at 35 min, 84% A at 36 min, 82% A at 41 min, 79% A at 44, 0% A from min 55 to 225 
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60. The flow rate was 1 mL/min. The phenolic compounds were identified and 226 

quantified by using reference compounds. The UV-Vis spectrum of each phenol was 227 

also used for identification purposes. 228 

For total phenolic content, 100 µL of filtered juice were mixed with 100 µL of Folin-229 

Ciocalteu reagent, 3 mL of deionized water and 100 µL of 20% Na2CO3. The mixture 230 

was vigorously shaken for 1 min and incubated for 1 h in the dark. The absorbance 231 

was evaluated five times at 765 nm using a FLUOstar Omega microplate reader (BMG 232 

LABTECH Inc.; Cary, NC, USA). The absorbance values were corrected with those 233 

generated with blank reactions.  Quantification was based on a calibration curve 234 

constructed with several sets of dilutions of gallic acid. The results were expressed as 235 

mg GAE per liter of juice. 236 

 237 

Statistical Analysis 238 

The effects of irradiation dose and layer were determined using a linear mixed effects 239 

model and pairwise Tukey Kramer Test, using a level of significance of 0.05. Analysis 240 

was conducted using R 3.2.3 software with lme4, multcomp, and car packages (R 241 

Core Team, 2015, Vienna, Austria).  242 

 243 

Results and Discussion 244 

Peel Damage 245 

SERB, flattening and fungal infections were observed in control and irradiated fruit 246 

from both layers (Table 1). SERB was characterized by collapsed, darkened, and 247 
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sunken rind tissue around the calyx, as described by Ritenour et al. (2004). It was 248 

observed after cold storage in all treatments, but was more evident after storage at 249 

room temperature. This disorder has been observed in other studies for non-irradiated 250 

oranges (Alférez et al., 2003). The incidence of SERB lesions increased with 251 

irradiation dose (Table 1) (P<0.05).  Image analysis showed that the area of the 252 

lesions was similar for fruit in the top and bottom layers (P>0.05) (Fig. 1A). Irradiation 253 

dose and layer also affected the L* and b* values in the SERB lesions (Figs. 1B and 254 

1C). Fruit treated with 1 kGy showed darker  lesions as compared to 0.15 kGy and 255 

control fruit (P<0.05) and, the fruit from top layer showed darker lesions in all 256 

experimental groups as compared with fruit from the bottom layer (P<0.05). 257 

Differences in gas composition between the top and bottom layers might explain the 258 

differences in SERB incidence. Fruit from the bottom layer might produce more CO2 259 

and ethylene because that fruit was subjected to higher stress by compression 260 

(flattening).  Also, given the higher density of CO2, fruit in the bottom layer was 261 

probably exposed to higher CO2 levels which might avoid the oxidation of phenolic 262 

compounds. This hypothesis might explain the less darkening (higher L* values) of 263 

SERB lesions for control and irradiated fruit in the bottom layer (Fig. 1). Porat et al. 264 

(2004) demonstrated that modified atmosphere packaging (reduced levels of O2 and 265 

increased levels of CO2) reduced SERB in oranges. On the other hand, most of the 266 

C2H4 would diffuse from bottom to the top and accumulate there because of its lower 267 

density (CO2 > O2 > C2H4). Higher levels of C2H4 could lead to increased phenylalanine 268 

ammonia lyase (PAL) activity resulting in the production of phenols which are then 269 

oxidized by polyphenol oxidase and peroxidase to o-quinones that further polymerize 270 
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to the brown pigments characteristic of SERB lesions (Banerjee et al., 2015). 271 

Unfortunately, the low irradiation doses do not inactivate the polyphenol oxidase and 272 

peroxidase responsible for phenol oxidation and formation of brown pigments. Alférez 273 

et al. (2003) associated the ethylene production of oranges with their susceptibility to 274 

develop postharvest browning. Increased ethylene production  has also been 275 

associated with the development of peel injury in irradiated and wounded citrus fruits, 276 

probably due to its involvement in the activation of enzymes such as peroxidase and 277 

PAL which are resposible for citrus browning (Ladaniya 2008; Lu et al. 2014; 278 

McDonald et al. 2000; Porat et al. 2004). PAL was observed to increase immediately 279 

after irradiation treatment in Clementine mandarins (Oufedjikh et al., 2000) and 280 

grapefruit (Riov et al., 1975) and correlated with an increase in phenolic compounds 281 

in damaged peel cells.  Guerrero et al. (1967) attributed rapid rind breakdown to higher 282 

respiratory rates in ´Washington Navel´ oranges irradiated with 0.5 to 6 kGy.  283 

Flattening was clearly observed in all tested fruit. As expected, fruit in the bottom layer 284 

always presented larger flat areas than fruit in top layer for all treatments (P<0.05) 285 

(Table 2). However, although the incidence of flattening in both layers decreased as 286 

the irradiation dose increased, the severity of flattening increased with irradiation dose 287 

(Tables 1 and 2). Thus, fruit treated with 0.15 and 1 kGy showed a lower incidence of  288 

flattening as compared to control fruit, but the severity of the damage increased with 289 

irradiation dose (Tables 1 and 2).  Nevertheless, the overall flattened area was no 290 

more than 12% of total surface in irradiated fruit and was not the primary contributing 291 

factor to a decrease in quality. These findings demonstrate a differential effect of 292 

irradiation in non-damaged and compressed (damaged) areas of the oranges. Some 293 
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studies have demonstrated that irradiation causes different biochemical responses in 294 

wounded citrus fruits as compared to fruit that are not wounded (Rojas-Argudo et al, 295 

2012); however, there is no information regarding biochemical responses of oranges 296 

subjected to compression stress and irradiation as compared with oranges subjected 297 

to only irradiation. Besides the mechanical weakening of fruit by compression, 298 

ethylene biosynthesis in compressed areas of irradiated oranges might be higher than 299 

in not compressed areas, causing a higher enzymatic softening around flattened areas 300 

and increasing the severity of this kind of damage. The individual effects of 301 

compression and irradiation on ethylene biosynthesis in citrus fruit have been 302 

demonstrated previously (Ladaniya et al. 2003; Lu et al. 2014).  303 

The incidence of fungal infections was similar for fruit in both layers for all experimental 304 

groups (P>0.05) (Table 1).  Vilanova et al. (2014) observed that the susceptibility of 305 

oranges to postharvest infections was increased by fruit wounding. In our study, the 306 

0.15 kGy dose did not increase mold growth as compared to the control.  However, 307 

fruit treated with a dose of 1 kGy showed higher levels of fungal infection most likely 308 

due to damage caused to fruit cell walls and release of nutrients that encourage fungal 309 

growth (Ladaniya et al. 2003; Zhang et al. 2014).  While flattening and decay incidence 310 

are both higher in bottom layer fruit and fruit treated at 1 kGy, the high occurrence of 311 

decay in the top layer of the 1 kGy fruit, suggests that irradiation by itself at this dose 312 

level enhances decay.  Rojas-Argudo et al. (2012) demonstrated that low irradiation 313 

doses (0.51 kGy) stimulated the biosynthesis of antifungal compounds in citrus fruits 314 

and that higher irradiation doses (0.875 kGy) inhibited such biosynthesis, favoring 315 

postharvest infections.  316 
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 317 

Tristimulus Color, Firmness and Weight Loss  318 

Neither irradiation dose nor fruit layer affected tristimulus color and firmness of peel 319 

or pulp (P>0.05) (data not shown). Similarly, McDonald et al. (2013) demonstrated 320 

that the color of Navel oranges was not affected by irradiation doses of up to 0.6 kGy. 321 

Weight loss after storage ranged from 6.4 to 9% and was not impacted by irradiation 322 

treatment and layer type (P>0.05) (data not shown). Miller et al. (2000) demonstrated 323 

that irradiation at 0.15, 0.3 and 0.45 kGy did not significantly alter the color, firmness 324 

and weight loss in five orange cultivars, including Navel oranges.  325 

  326 

Total Soluble Solids (TSS) and Sugars 327 

TSS values, ranging from 12 to12.7% (data not shown), were similar to those reported 328 

previously for oranges (McDonald et al. 2013; Miller et al. 2000), and were not affected 329 

by irradiation dose or layer type (P>0.05). Similarly, Miller et al. (2000) evaluated the 330 

effect of irradiation (0.15-0.45 kGy) on TSS content in fruit from five orange cultivars, 331 

including Navel oranges, and found that irradiation did not affect TSS.   332 

Sucrose was the most abundant of measured sugars in the oranges (P<0.05), 333 

followed by glucose and fructose, which showed similar content (P>0.05) (Fig. 2). 334 

Similar sugar composition has been reported previously for oranges (Kelebek et al. 335 

2009; Roussos 2011).  The changes in sugar content as a function of irradiation dose 336 

and layer type were very small but significant in some cases. In fruit from top layer, 337 

sucrose content tended to decrease with the irradiation dose while glucose and 338 

fructose increased (P<0.05). Similar results were reported for mandarins treated with 339 
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0.15, 0.4 and 1 kGy (Ornelas-Paz et al. 2017). However, irradiation caused a different 340 

alteration of sugar content in fruit in the bottom layer, where a slight decreasing trend 341 

was observed for glucose and fructose while sucrose content was not altered 342 

significantly (P>0.05) (Fig. 2). These opposite trends in sugars for fruit in top and 343 

bottom layers suggest sugar conversion in the top layer fruit and increased usage of 344 

glucose and fructose in the bottom layer fruit. Some studies have demonstrated that 345 

irradiation can increase the activity or biosynthesis of enzymes involved in sugar 346 

conversion (invertases, sucrose synthases, fructokinase, hexokinase and sucrose 347 

phosphate synthases) (Shi et al. 2016; Yativ et al. 2010).  Other studies have 348 

demonstrated that, depending on severity, physical damage can induce biological 349 

stress in fruits and ethylene biosynthesis, causing the expression of gene coding 350 

enzymes involved in the sugar composition of citrus fruits (Ladaniya et al. 2003; Lu et 351 

al. 2014; Rojas-Argudo et al. 2012; Shi et al. 2016). The conversion of sucrose to 352 

glucose and fructose is a genetic response of fruit to satisfy the demand for hexoses 353 

due to the increased respiration rate mediated by ethylene exposure and/or wounding, 354 

but generated hexoses are also used for signaling and as precursors for sucrose 355 

biosynthesis in highly damaged fruit because sucrose confers tolerance to fruit against 356 

damage (Cao et al., 2013; Lin et al., 2015). Thus, bottom fruit showed lower levels of 357 

glucose and fructose without alteration of the sucrose content probably because the 358 

hexoses were used for respiration and also to maintain normal levels of the protective 359 

sucrose. 360 

 361 

Titratable Acidity (TA) and Organic Acids 362 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/invertase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sucrose-synthase
https://www.sciencedirect.com/science/article/pii/S0308814617303370#b0220
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TA values (0.44-0.49%) showed no effect of layer or irradiation dose (P>0.05) (data 363 

not shown). Other studies have also shown that irradiation doses of up to 3 kGy do 364 

not significantly alter the TA of orange juice (Miller et al. 2000). Our TA values were 365 

similar to those previously reported for oranges (Flores et al. 2012; Kelebek et al. 366 

2009; Roussos et al. 2011). The most abundant organic acids found in ‘Barnfield’ 367 

Navel oranges were citric and quinnic acids while fumaric and oxalic were the least 368 

abundant, as reported by Flores et al. (2012).  369 

With few exceptions, the content of tested individual organic acids was consistently 370 

lower in irradiated fruit in the bottom layer as compared with that of top layer (P<0.05) 371 

(Fig. 3), suggesting that the metabolic activity was exacerbated in irradiated fruit by 372 

irradiation and physical damage, leading to a higher respiration rate and consequently 373 

to an increased utilization of organic acids. Different types of stress accelerate the 374 

glycolysis and tricarboxylic acid cycle in citrus fruits, enhancing the transition from 375 

sucrose metabolism to organic acid metabolism and leading to extensive citrate 376 

degradation mainly through the gamma-aminobutyric acid and acetyl-CoA pathways 377 

(Lin et al., 2015). These changes are genetically regulated, with the gene cascade 378 

Aco3-IDH2/3-GAD4 serving as the major contributor to acid degradation (Chen et al., 379 

2012). Thus, irradiation and physical damage might induce a higher reduction of the 380 

organic acid content in the bottom fruit as compared with the top fruit. This behavior 381 

was clearly observed for ascorbic acid, which has been related to oxidation of ascorbic 382 

acid by irradiation-generated reactive oxygen species (Wong and Kitts 2001). 383 

Recently, Ramírez-Cahero and Valdivia-López (2018) demonstrated that irradiation 384 

(0.5, 0.7 and 1 kGy) of ascorbic acid model solutions led to the formation of several 385 
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compounds (2-furaldehyde, 2(5H)-furanone, 2-furoic acid, furfuryl alcohol, 386 

glycolaldehyde, and formic, oxalic, succinic and L-tartaric acids) with the formation of 387 

these compounds dependent on irradiation dose. This direct degradation of certain 388 

organic acids by irradiation, and consequent increase in others could occur in our 389 

study, but the bottom layer almost always showed a reduction in organic acids at 1 390 

kGy, due most likely to accelerated glycolysis and respiration rate of the bottom layer 391 

fruit.  The negative effects of irradiation and mechanical damage on ascorbic acid 392 

content have been separately reported for oranges (Ladaniya 2008; Lee and Kader 393 

2000). In contrast to irradiated fruit, the acid content in control group was generally 394 

higher in fruit from bottom layer as compared with that of the top layer (P<0.05). 395 

Recently, Ornelas-Paz et al. (2017) also observed a generally higher content of 396 

organic acids in non-irradiated mandarins after simulated sea shipment as compared 397 

to irradiated fruit. Our findings demonstrated that irradiation and compression and their 398 

combination affected differentially the metabolism of oranges.  399 

 400 

Total and Individual Phenols  401 

The total phenolic content in fruit of the same layer was unchanged with irradiation 402 

(P>0.05), but showed minor differences between layers. Fruit in the bottom layer 403 

exhibited a lower total phenolic content, as compared to fruit in the top layer (P<0.05) 404 

(Fig. 4). This suggested a wounding-mediated deterioration of phenolic compounds. 405 

The concentration of phenolic substances following irradiation can increase with low 406 

doses but higher doses can lead to reduced synthesis or destruction (Oufedjikh et al., 407 

2000).  Some studies have demonstrated that the combination of wounding and 408 
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irradiation at some doses reduced the biosynthesis of phenolic compounds, as 409 

compared with the individual effects of wounding and irradiation, promoting a higher 410 

incidence of fungal infections (Rojas-Argudo et al., 2012). This might explain the 411 

higher incidence of fungal infections observed in this study for fruit in the bottom layer 412 

(Table 1). Some studies have demonstrated that wounding causes an immediate 413 

increase in the concentration of antifungal compounds, i.e. phytoalexins, which 414 

prevent spore germination and mycelium growth but do not damage the fungal 415 

structures or their viability (Kim et al., 1991; Ben Yehoshua et al., 1992). This 416 

wounding-mediated increase of antifungal compounds is transient (Rojas-Argudo et 417 

al., 2012), favoring the initiation of the disease in wounds as the levels of antifungal 418 

compounds decrease during storage (Kim et al., 1991; Ben Yehoshua et al., 1992). 419 

Thus, the combination of this transient effect of wounding and the well-known 420 

phytotoxic effect of irradiation can, in combination, exacerbate the incidence of fungal 421 

infections. 422 

Some phenolic acids (chlorogenic, p-coumaric, and ferulic acids) and flavonoids (rutin, 423 

narirutin, hesperidin and naringenin) were identified and quantified in the juice of the 424 

tested fruit (Fig. 4). The content of narirutin (93.3-100.2 mg/L) did not change 425 

significantly as a function of irradiation or layer type (P>0.05) (data not shown).  426 

Hesperidin, narirutin, and naringenin were the most abundant phenolic compounds in 427 

tested oranges. Similar concentrations of these compounds have been reported 428 

previously for oranges (Agcam et al. 2014; Rocco et al. 2014). In general, oranges in 429 

the bottom layer had a lower (P<0.05) concentration of hesperidin, p-coumaric acid, 430 

rutin and naringenin compared to oranges in the top layer, although this trend was 431 
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less evident for naringenin. Wounding and other types of mechanical injury increase 432 

PAL activity and the content of phenolic compounds. However, irradiation is able to 433 

inhibit the wounding-mediated activation of PAL, favoring the reduction of phenolic 434 

content by injury (Banerjee et al., 2015). This might be the reason why fruit from 435 

bottom layer showed a lower content of individual phenols. In contrast, the content of 436 

chlorogenic acid was lower in bottom layer of control fruit, while the opposite was 437 

observed for irradiated oranges (P<0.05). This phenomenon might be a consequence 438 

of irradiation-mediated transformation of phenols. As indicated above, the content of 439 

total phenols showed minor changes among experimental groups, suggesting the 440 

transformation of phenolic compounds by irradiation or compression damage, as 441 

reported by Breitfellner et al. (2003) in irradiated strawberries. In our study, the effect 442 

of irradiation dose on individual phenolic compounds was lower than that of the layer 443 

type (P<0.05). Only the content of hesperidin and chlorogenic acid was clearly 444 

affected by irradiation dose (P<0.05).  McDonald et al. (2013) did not observe changes 445 

in the phenolic content of Navel oranges treated with several irradiation doses (0.2- 446 

0.6 kGy). In our study, the phenolic content in tested fruit depended on layer type, 447 

showing the negative effect of compression damage on this quality attribute. Several 448 

studies have already demonstrated that physical damage of citrus fruits alters the 449 

content of some individual phenols (Mazidi et al. 2016; Rojas-Argudo et al. 2010, 450 

2012). Our study demonstrated that the combination of physical damage and 451 

irradiation affected differently the content of phenolic compounds of citrus fruits.  452 

 453 
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Conclusions 454 

This work demonstrated that the position of the fruit within a case plays a role in the 455 

postharvest quality of irradiated oranges. The observed chemical changes seemed to 456 

be a response to stress caused by irradiation as well as location in the case, as 457 

evidenced by small alterations in sugars, acids and phenol compounds. Irradiation 458 

exacerbated SERB but unexpectedly this disorder was more severe in the top than in 459 

the bottom fruit, probably due to differences in the gas composition and/or relative 460 

humidity inside the case or phenolic compounds. Flattening and fungal decay 461 

depended on irradiation dose and layer type, once again highlighting the combined 462 

effect of irradiation and fruit placement in the case.  This study shows that for large 463 

and heavy fruit such as oranges, which are often packed in multiple layers, packaging 464 

type should be considered when evaluating the effect of irradiation on quality.  Fruit 465 

treated at 0.15 kGy showed minimal alterations in quality independent of fruit position 466 

inside the case, demonstrating that Navel oranges tolerate phytosanitary irradiation at 467 

this low dose.  468 

 469 
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Table 1. Incidence of stem end rind breakdown (SERB), flattening and fungal 654 

infections in oranges taken from top and bottom layers of Standard Place Pack cartons 655 

after storage (3 weeks at 5 °C + 1 week at 20 °C).  656 

Table 2.  Percentage of fruits from top and bottom layers of Standard Place Pack 657 

cartons showing different levels of flattening after storage (3 weeks at 5 °C + 1 week 658 

at 20 °C). 659 

Figure captions 660 

Figure 1. Percentage of fruit surface area affected by SERB (A) and L* (B) and b* (C) 661 

values on SERB lesions in oranges taken from top ( ) and bottom ( ) layers 662 

of Standard Place Pack cartons after storage (3 weeks at 5 °C + 1 week at 20 °C). 663 

Data represent the mean value of twenty fruits ± the standard error. 664 

Figure 2. Content of sucrose, glucose, and fructose in juice of Navel oranges taken 665 

from top ( ) and bottom ( ) layers of Standard Place Pack cartons after 666 

storage (3 weeks at 5 °C + 1 week at 20 °C). Data represent the mean value of five 667 

measurements ± the standard error. 668 

Figure 3. Content of organic acids in juice of Navel oranges taken from top ( ) 669 

and bottom ( ) layers of Standard Place Pack cartons after storage (3 weeks at 5 670 

°C + 1 week at 20 °C). Data represent the mean value of five measurements ± the 671 

standard error. 672 

Figure 4. Content of total and individual phenols in juice of Navel oranges taken from 673 

top ( ) and bottom ( ) layers of Standard Place Pack cartons after storage (3 674 

weeks at 5 °C + 1 week at 20 °C). Data represent the mean value of five 675 

measurements ± the standard error. 676 



 

Table 1. 

Irradiation dose (kGy) 
  
Layer 

Damaged fruit (%) 

SERB Flattening Fungal infections 

0 Top 10.0±10.0a 58.8±21.2b 8.8±8.8a 

 Bottom 6.3±6.3a 100±0a 19.4±2.3a 

0.15 Top 48.2±23.2a 35.7±35.7b 12.1±0.4a 

 Bottom 16.3±3.8b 95±5.0a 13.9±2.8a 

1 Top 100±0a 6.3±6.3b 22.2±0.7a 

 Bottom 100±0a 81.3±6.3a 27.8±5.6a 

Data represent the mean values ± the standard error. Mean values in the same column for every irradiation dose 

connected by the same letter are not significantly different. 

 

 

 

 



 

Table 2 

Irradiation dose 

(kGy) 

  

Layer 

Damage level  

0 1 2 3 4 5 

0 Top 41.3±21.3a 58.8±21.3a 0.0±0.0b 0.0±0.0a 0.0±0.0a 0.0±0.0a 

 

Bottom 0.0±0.0b 87.5±12.5a 12.5±0.0a 0.0±0.0a 0.0±0.0a 0.0±0.0a 

0.15 Top 64.3±35.7a 35.7±35.7a 0.0±0.0b 0.0±0.0b 0.0±0.0a 0.0±0.0a 

 

Bottom 5.0±5.0b 55.0±5.0a 22.5±2.5a 17.5±7.5a 0.0±0.0a 0.0±0.0a 

1 Top 93.8±6.3a 6.3±6.3b 0.0±0.0b 0.0±0.0b 0.0±0.0a 0.0±0.0a 

 

Bottom 18.8±6.3b 50.0±0a 18.8±6.3a 12.5±0.0a 0.0±0.0a 0.0±0.0a 

Severity values were based on % of fruit surface showing flat areas: 0 (no damage), 1 (1-4%), 2 (5-8%), 3 (9-12%), 4 (13-

15%), and 5 (>16%). Data represent the mean values ± the standard error. Mean values in the same column for every 

irradiation dose connected by the same letter are not significantly different. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.  
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Fig. 2 
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Fig. 3 
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Fig. 4 
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