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Jongsoon Park1 

1. Industrial & Systems Engineering, Virginia Tech 2. School of Biomedical Engineering and 
Sciences, Virginia Tech-Wake Forest University 

 
In recent years, there has been rising interest in using accelerometers as an alternative instrument to 
measure the center of pressure. Accelerometers are inexpensive, small, sensitive, and can be readily used in 
non-laboratory environments. In addition to this, smartphones with built-in accelerometers add to their 
capability with real-time processing of data from sensors. Clinicians and researchers are currently in 
disagreement from whether these measurements provide the same physiological information about the 
participant’s balance. In this study, twelve participants were asked to wear smartphone on their right ASIS 
using a belt clip and stand still on the forceplate. The data was synchronized using a tap by the right foot 
and collected over a fifty second period for analysis. Various linear and non-linear measures were extracted 
from the time series of resultant principal component (PC) scores. The results show high correlation in the 
COP time series from the two instruments (R=0.86). 
 
 
 

Introduction 
Static balance is traditionally quantified using measures of 
sway during quiet standing. Stabilometry representing 
excursions of Center of Pressure (COP) is considered to be the 
most important measure in quantifying postural steadiness. 
Recently exploratory studies on COP from inertial sensors 
(accelerometers in particular) have been reported (Mayagoitia, 
Lotters, Veltink, & Hermens, 2002). Accelerometers being 
smaller, less expensive, and more sensitive sensors have 
potential advantages over forceplates as they have greater 
applicability outside laboratories.  Adlerton discovered that 
trunk accelerations correlated better with COP excursions 
from forceplates and increased in amplitudes during one-
legged stance fatigue (Adlerton, Moritz, & Moe-Nilssen, 
2003). Some authors have reported accelerometers to be 
highly sensitive and reliable in differentiating Parkinson’s 
disease patients and healthy controls (Mancini et al., 2011; 
Mancini et al., 2012; Rocchi, Chiari, Cappello, & Horak, 
2006) which has been validated by Mancini (Mancini et al., 
2012). Despite of the attempts by several authors to establish a 
relationship between forceplate COP and 
accelerometers(Adlerton et al., 2003; Najafi et al., 2010; 
Whitney et al., 2011), the complexity of this task is caused 
from the fact that forceplates and accelerometers have their 
own local sensitive axes, which this makes the comparison 
between the two devices difficult as the mounting of 
accelerometers and human standing foot direction with respect 
to forceplate axes needs to be accurately controlled. 
Nowadays, it is known that all the latest smartphones available 
in market are embedded with accelerometers. Smartphones 
have advantages as they can readily process the raw data and 
convert it into a clinically understandable form. Smartphone 
technology is quite promising and provides a versatile 
platform in practical usage of accelerometers for balance 
assessment, already reported to have high reliability, 
sensitivity and validity.(Mancini & Horak, 2010; Moe-
Nilssen, Nordin, Lundin-Olsson, & Work Package 3 of 

European Community Research Network Prevention of Falls 
Network, 2008), smartphone technology is quite promising 
and provides a versatile platform for research purposes.  
 
Yet in the research world there is still no consensus as to 
which sway parameter is comparable between accelerometers 
and forceplates. Some researcher emphasized on root mean 
square (RMS) of acceleration signals (Amiridis, Hatzitaki, & 
Arabatzi, 2003; Maki, Holliday, & Fernie, 1990; Prieto, 
Myklebust, Hoffmann, Lovett, & Myklebust, 1996) and 
Jerk(Mancini et al., 2011). The objective of this study is to 
establish a relationship between COP measures from 
forceplates and smartphone accelerometers. To achieve this 
goal, we measured forceplate and smartphone data 
concurrently and compared them for linear and non-linear 
physiological variable relationships. As it seemed practically 
impossible to align axes of a smartphone and that of 
forceplate, we conducted principal component analysis of the 
COP coordinates of the two systems.  
 
Methods 
Subjects 
Twelve subjects (6 males, 6 females) with no previous history 
of neurological disorders participated in this study. The 
average age of participants were 26±4 years (average± SD), 
height was 162±9 cm, and weight was 68±17 kg. The protocol 
involved three trials for each subject. All subjects had to 
provide written consent as per Virginia Tech Institutional 
Review Board (VT-IRB).  
 
 
Equipment 
 The experimental set-up consisted of three 60 seconds trials 
for each subject. Subject stood on a forceplate, with eyes-
open, looking forward towards a target 4m away from the 
subject. 
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In the first 10 seconds of data collection, the participants were 
asked to tap their right foot. Both the forceplate and 
accelerometer data were not filtered. From the output signals 
of the smartphone and forceplate, the signals were matched at 
the peaks and truncated 50 seconds after the tapping peak. The 
sampling frequency of the forceplate was kept as 100Hz and 
smartphone at 30Hz. The forceplate data was resampled to 
30Hz for further analysis. From the truncated data (50 
seconds), the two COP coordinates were computed in anterior-
posterior (AP) and medio-lateral (ML) directions for 
forceplates (COPx and COPy) and accelerometers (Acc COPx 
and Acc COPy).   
 
Principal component Analysis (PCA) 
 
It seemed practically impossible to align local axes of 
smartphone and that of forceplate. PC were more meaningful 
than COP trajectories since they were aligned with the 
maximum variability of human sway (figure 1). The PCA 
procedure was applied to COP coordinates from both 
forceplates and accelerometers. The covariance matrix was 
used to estimate Principal Components (PCs). The two eigen 
vectors were used as new directions. These directions 
depended on maximum variability (higher eigen value) 
direction of the COP. As the sway data was collected 
concurrently from the two instruments it can be assumed that 
both smartphone and forceplates have a common direction of 
maximum sway variability. Thus in this study we calculated 
resultant PC score as defined below 
 

 
(1) 

 
The times series of resultant PC score from both instruments 
were used for further analysis. 
 
Results  
 
All the results were derived using time series of resultant 
principal component score from the two systems as derived in 
equation 1. The results show high correlation in the COP time 
series from the two instruments (R=0.86)(figure 2). Mean 
radius, area and total excursion path of the stabilogram using 
resultant PC scores was found to be higher for the smartphone 
than that of forceplate (p<0.01). A higher frequency was found 
in the forceplate signals than in smartphone for the same 
physiological signals. Non-linear analysis of signals revealed 
that there was no significant difference in scaling exponent 
(alpha) found in signals between the forceplate and 
smartphone. However, the sample entropy (complexity) was 
higher in forceplate signals than in smartphone signals.  
 
 
 
 
 
 
 
 

Table 1: Various parameters derived from forceplate and 
smartphone time series 

 

Figure 1: Sample data of a participant’s stabilogram from (a) 
smartphone and (b) forceplate and principal components (c) 
smartphone and (d) forceplate system 

 
Figure 2: Sample data of cross-correlation between resultant 
PC signals from smartphone and forceplate  
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Figure 3: Sample data of the participant’s resultant PC score 
signals and its power spectrum  
 
 
Discussion 
 
To our knowledge there has been no previous studies 
examining concurrent intra-individual relationship between 
COP derived from accelerometer and forceplate. COP 
measurement can be time consuming to administer using both 
forceplates and accelerometers, this may require specialist 
training. On the other hand smartphone could be a viable 
alternative in the measurement of COP. The preliminary 
results indicate the feasibility of using calculated parameter 
resultant PC score. The resultant PCs that were derived from 
the collected time series data from two systems were highly 
correlated (R=0.86)(figure 2). Linear measures such as mean 
radius, area and total excursion path of stabilogram using 
resultant PC scores were found to be higher for smartphone 
than  from the forceplate, which may be attributed to the high 
level of noise in smartphone signals (figure 3). It was also 
seen that higher frequencies were found in forceplate signals 
than in smartphone for the same physiological signals 
collected simultaneously. This can be explained to some 
extent by the position of smartphone, situated at waistline and 
our propensity to maintain body orientations for head 
stabilization (Assaiante & Amblard, 1993; Bril & Ledebt, 
1998; Pozzo, Berthoz, & Lefort, 1990). This may also be 
partially explained by the fact that the forceplate data was 
collected at 100Hz and higher frequency signals could have 
been sampled versus the 30Hz of the smartphone. Non-linear 
analysis revealed that complexity of signals from the 
forceplate was higher, which may be attributed to the presence 
of higher degrees of freedom from joints such as knee, ankle 
and hip. The traditional approaches for the analysis of center 
of pressure are focused on linear variables such as COP path 
length and area. These variables show changes as function of 
manipulations in environmental and organismic constraints 
but fail to reveal time evolutionary properties of center of 
pressure. The non-linear measures such as sample entropy and 

scaling exponent were determined for time series signals from 
both instruments. One of the challenges that arise is the 
alignment of axes in forceplate and smartphone for standing 
human postures. In order to align axes between the two 
instruments, we conducted principal component analysis of 
the COP coordinates of the two systems. Both systems showed 
higher correlation in resultant PC score time series signals for 
both linear and non-linear sway information.  
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