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Locality and nonlocality in the interaction-free measurement

Daniel Rohrlich1,a, Yakir Aharonov2,3, and Tomer Landsberger2

1Department of Physics, Ben-Gurion University of the Negev, Beersheba 84105 Israel
2School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
3Department of Physics, Chapman University, Orange CA, USA

Abstract. We present a paradox involving a particle and a mirror. They exchange a non-
local quantity, modular angular momentum Lz mod 2�, but there seems to be no local
interaction between them that allows such an exchange. We demonstrate that the particle
and mirror do interact locally via a weak local current 〈Lz mod 2�〉w. In this sense, we
transform the “interaction-free measurement" of Elitzur and Vaidman, in which two local
quantities (the positions of a photon and a bomb in the two arms of a Mach-Zehnder inter-
ferometer) interact nonlocally, into a thought experiment in which two nonlocal quantities
(the weak modular angular momentum of the particle and of the mirror) interact locally.

1 The quantum Cheshire Cat

So-called “weak values" [1] have taken their place alongside eigenvalues and expectation values as
possible measured values in quantum mechanics. But while an ordinary ensemble suffices for mea-
suring eigenvalues and expectation values, weak values require a “pre- and post-selected" (PPS) en-
semble. Though unconventional, a PPS ensemble with initial state |ψin〉 and final state |ψ f in〉 is (in
principle) easy to prepare: we measure an operator that has |ψin〉 as an eigenstate, and then an operator
with |ψ f in〉 as an eigenstate, on as many systems as we like; and then we keep only those systems
with those respective eigenstates. In between, we measure whatever we like, but with a measurement
interaction weak enough to be consistent with the PPS ensemble. If the interaction is weak enough,
the result of measuring an operator A is the weak value 〈A〉w of A:

〈A〉w =
〈ψ f in|A|ψin〉
〈ψ f in|ψin〉

. (1)

In this way, weak values enable us to answer questions about quantum systems that we otherwise
cannot even ask.

An example of a weak value is the “quantum Cheshire cat" [2, 3], named after the Cheshire Cat in
Alice in Wonderland [4] who could disappear while leaving its grin behind. In the weak-value version,
a photon takes one path through a Mach-Zehnder interferometer while its net polarization vanishes on
that path but not on the other. In this experiment, the photon and its polarization separate at a well-
defined moment as the Cat passes through the first beam-splitter of the interferometer. There is also
[5] an experiment in which the separation is continuous: the Cat is confined to one side of a potential
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Figure 1. The Elitzur-Vaidman interaction-free measurement. (a) With a well defined relative phase between the
arms, photons exit the interferometer in one direction only. (b) A bomb, by not exploding, provides which-path
information.

barrier, while its grin tunnels through to the other side. Here, we apply this continuous Cheshire
Cat separation to the “interaction-free measurement" (IFM) of Elitzur and Vaidman [6], where it
challenges us to reconsider whether the effect—a paradigm of quantum nonlocality—is nonlocal after
all.

2 The Cheshire Cat and interaction-free measurements

Recall that Elitzur and Vaidman imagined a bomb so sensitive that any interaction makes it explode.
To detect such a bomb in a region S, we build a Mach-Zehnder interferometer with one of its arms
crossing the region S. Fig. 1(a) shows the interferometer with no bomb in the region S. A half-
silvered mirror splits the incident photon beam into two equal parts. The parts recombine at another
half-silvered mirror. By adjusting the length of each arm, we can make the parts of the beam interfere
constructively in one direction and destructively in the other. Then all the photons leave the interfer-
ometer in the same direction. If, however, a detector records which path the photon actually takes
through the interferometer, interference disappears (according to the complementarity principle) and
the photon may leave the interferometer in either direction. If there is a bomb in the region S and it
does not explode, it records the fact that the photon did not pass through S. The photon went through
the other arm of the interferometer. Then interference disappears and the photon may come out either
way. (See Fig. 1(b).) So if we see a single photon leave the interferometer in the direction of de-
structive interference, we have detected the bomb without exploding it. What is so striking about this
effect is that the bomb is revealed by a photon that, we can be quite sure, never came near it.

But, analogously, we can consider a one-dimensional cavity of length 2L with a finite potential
barrier positioned symmetrically at its center. To the left of the barrier is, initially, a single neutron.
(See Fig. 2(a).) If the right end of the cavity were not blocked, the neutron would ultimately tunnel
through the barrier and leave the left side completely. However, the neutron reflects completely from
the right end of the cavity. Let us assume that the neutron initially approaches the potential barrier in
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Figure 2. One-dimensional cavity of length 2L with a partition at its center, (a) without and (b) with a bomb at
the right end.

a gaussian wave packet with momentum p0 which is large compared to its uncertainty: p0 � ∆p. The
neutron hits the barrier, and we can approximate its immediate evolution there via the matrix

U(ε) =
(

cos ε i sin ε
i sin ε cos ε

)
, (2)

where ε is, for now, arbitrary.1 Note that U(ε) is unitary, as it must be, and that [U(ε)]2 = U(2ε).

It is straightforward to prove, by induction, that [U(ε)]n = U(nε). This equation has the following
application. Let us assume that at time t = 0, the neutron is at the left end of the cavity. It takes
a time Lm/p0 (where m is the neutron mass) to reach the finite potential barrier. When the neutron
reaches the barrier, it passes through with amplitude i sin ε and reflects with amplitude cos ε. Both the
transmitted and reflected wave packets reflect completely off the right and left ends, respectively, of
the cavity, and meet again at the potential barrier after an additional time 2Lm/p0. They continue to
do so every 2Lm/p0, and at time tn = 2nLm/p0, the amplitude for the neutron to be at the left end
of the cavity is given by the first diagonal element of U(nε), which is cos(nε). Hence by choosing
nε = π/2, we can guarantee that the neutron will be on the right side of the potential barrier, at the
right end of the cavity; it happens at time T ≡ tN such that N = π/2ε, namely T = πLm/εp0. At time
t = 2T the neutron will again be fully at the left end of the cavity, at time t = 3T at the right end again,
and so on.

And now—continuing with the analogy—let there be a bomb at the right end of the cavity, as in
Fig. 2(b). Again, the bomb is so sensitive that any interaction makes it explode. The unitary matrix

1If the diagonal elements of U(ε) are real, then the off-diagonal elements must be imaginary, as the following argument
shows: Let the barrier be a δ-function potential located at z = 0. Without loss of generality we can let the incident neutron
wave be eikx, the reflected wave be re−ikx and the transmitted wave be teikx. Continuity of the wave function at z = 0 requires
1 + r = t. Conservation of current requires 1 = |r|2 + |t|2. Then |1 + r|2 = |t|2, hence r + r∗ = 0 and r is pure imaginary.
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Figure 3. Two parallel cavities, with a single neutron wave packet (here in the lower cavity) and a single mirror
(closing the upper cavity).

U(ε) still describes the immediate evolution when the neutron first hits the potential barrier, and we
specialize to the case where ε is very small, such that cos ε ≈ 1 − ε2/2 and sin ε ≈ ε. Now, for
each interval of time 2Lm/p0 (during which the neutron, on the left side, hits the barrier once), the
amplitude that the neutron tunnels through the barrier and hits the bomb is ε, up to a phase, and the
probability that the bomb does not explode is therefore proportional to 1 − ε2. For a given finite time
T , we can take N as large as we like; and since N = π/2ε, the total probability for the bomb not to
explode is (1− ε2)N = (1−π2/4N2)N ≈ e−π

2/4N , which approaches 1 in the limit N → ∞. So the bomb
never explodes! But—from the fact that at time T we can find the neutron on the left of the potential
barrier—we can be sure that the bomb is indeed on the right. Here is the IFM in a new guise close to
the quantum Zeno effect [7].

3 A local IFM?

To test further the notion that the IFM can be local, let us now consider a variation of this experiment.
Let there be two one-dimensional cavities, identical to the one above, parallel to each other and to the
z axis, symmetrically above and below the z axis, both having length 2L and a barrier in the middle.
(See Fig. 3.) However, these two cavities differ from the one cavity in the following respect: although
the left ends (at z = −L) of the cavities are closed, and the neutron reflects perfectly from them, the
right ends (at z = L) are open.

We now “populate" the two cavities with a single neutron (with horizontal coordinate z) and a
single mirror (with horizontal coordinate Z) that is much heavier that the neutron and perfectly reflects
it. We define neutron states ψ(ν)

U (z) and ψ(ν)
D (z) to have support only for z ≈ 0 and only in the upper

and lower cavities, respectively. Likewise, we define mirror states ψ(µ)
U (Z) and ψ(µ)

D (Z) to have support
only for Z ≈ 0 and only in the upper and lower cavities, respectively.

In particular, if the the neutron is in a state ψ(ν)
U (z + L), i.e. in the left (closed) end of the upper

cavity, and the mirror is in the state ψ(µ)
U (Z − L), i.e. in the right (open) end of the upper cavity, then

we can ignore the lower cavity, and the physics reduces to the physics of the single cavity above. But
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suppose we prepare the neutron and mirror in an initial state Ψin(z, Z, 0), where

Ψin(z, Z, 0) =
1
2

[
ψ(ν)

U (z + L) + ψ(ν)
D (z + L)

] [
ψ

(µ)
U (Z − L) + ψ(µ)

D (Z − L)
]
. (3)

Now Ψin(z, Z, 0) is a product of the neutron and mirror wave functions, and is invariant un-
der interchange of U and D, both for the wave functions

[
ψ(ν)

U (z + L) + ψ(ν)
D (z + L)

]
/
√

2 and[
ψ

(µ)
U (Z − L) + ψ(µ)

D (Z − L)
]
/
√

2 of the neutron and mirror separately, and for their product. Formally,

we can write eiL(ν)
z π/�Ψin(z, Z, 0) = Ψin(z, Z, 0) = eiL(µ)

Z π/�Ψin(z, Z, 0) where L(ν)
z and L(µ)

Z are the angular
momentum operators for the neutron and mirror, respectively. We denote the total angular momentum
as Lz = L(ν)

z +L(µ)
Z and define a modular [8] angular momentum Lz mod �. Since eiL(ν)

z π/�eiL(µ)
Z π/� applied

to Ψin(z, Z, 0) equals Ψin(z, Z, 0), we obtain that Lz mod 2� = 0.
How does the state Ψin(z, Z, 0) evolve in time? In particular, what is the state of the neutron

and mirror at time T ≡ tN = πLm/εp0? The answer to this question is contained in our previous
calculations. Expanding the product in Ψin(z, Z, 0), we get a sum of four terms:

Ψin(z, Z, 0) = 1
2 ψ(ν)

U (z + L)ψ(µ)
U (Z − L) +

1
2
ψ(ν)

U (z + L)ψ(µ)
D (Z − L)

+
1
2
ψ(ν)

D (z + L)ψ(µ)
U (Z − L) +

1
2
ψ(ν)

D (z + L)ψ(µ)
D (Z − L) . (4)

Each term tells a story, and the first and last term tell similar stories that differ qualitatively from the
stories of the intermediate two terms. For in the first and last terms, there is a mirror at the right end
of the cavity to reflect the neutron; and in such cases, as we know, the chance of finding the neutron in
the left half of the cavity, whether the upper or the lower, vanishes at time T . For the inner two terms,
the mirror is located where it has no influence on the neutron—which therefore can eventually escape
from whichever cavity it initially inhabited. But the neutron escapes on a time scale much longer than
T , namely N2ε2, which is of order NT . At time t = T , the neutron is virtually assured to be at the
left end of the cavity. Thus a natural post-selection is a projection of Ψin(z, Z, T ) onto the left side of
either cavity, i.e. the projection

Ψ f in(z, Z, T ) = ψ(ν)
U (z + L)ψ(µ)

D (Z − L)/
√

2 + ψ(ν)
D (z + L)ψ(µ)

U (Z − L)/
√

2 , (5)

which leaves the neutron entangled with the mirror. But note, the post-selection did not create the
entanglement: the neutron and the mirror states were entangled already before the post-selection, as a
result of their evolution in time.

Note that our post-selection, which projected the entangled state onto the left side of either cavity,
could not have affected either L(ν)

z mod 2� and L(µ)
Z mod 2�, since it commutes with them. Explicitly,

let us define two projection operators, ΠUL and ΠDL, that project the neutron wave function onto the
left side (from the left wall to the barrier) of the upper and lower cavities, respectively. Then we have
eiL(ν)

z π/�ΠUL = ΠDL and eiL(ν)
z π/�ΠDL = ΠUL, hence eiL(ν)

z π/� and Lνz mod 2� commute with ΠUL + ΠDL.
At the same time, eiL(µ)

Z π/� and LµZ mod 2� commute with ΠUL + ΠDL because they act on orthogonal
subspaces. (LµZ does not act on the neutron at all.) Therefore projection of the overall state onto the
left side of the cavities cannot affect its symmetry under the operators eiL(ν)

z π/� and eiL(µ)
Z π/� in any way,

and non-conservation of Lνz mod 2� and LµZ mod 2� could not be traced to post-selection of the left
side of the cavities.

Thus, what is striking about this result is that the entangled state is not an eigenstate of the modular
angular momentum of either the neutron or the mirror, i.e. it is not an eigenstate of either eiL(ν)

z π/� or
eiL(µ)

Z π/�; but it is still an eigenstate of the total modular angular momentum Lz mod 2�. We thus



6

EPJ Web of Conferences 182, 02105 (2018)	  https://doi.org/10.1051/epjconf/201818202105
ICNFP 2017

EPJ Web of Conferences

conclude that L(ν)
z mod 2� and L(µ)

Z mod 2� were not separately conserved during the interaction of the
neutron and the mirror, yet their sum was conserved. This conclusion would not be a paradox if it were
not for the fact that, according to the post-selection, the neutron and mirror could never have met; for
while the mirror was stationed at the right end of the cavity, the neutron was confined to the left end! If
the neutron and the mirror did interact—as apparently they did, since they exchanged modular angular
momentum—they apparently did so nonlocally—which challenges our proposed local interpretation
of interaction-free measurements.

Here is a contrasting experiment. Equations (2-3) define the state Ψin(z, Z, 0), i.e. the combined
state of the neutron and mirror at time t = 0. This state is an eigenvector of eiL(ν)

z π/� and of eiL(µ)
z π/�,

both with eigenvalue 1. What is Ψin(z, Z, 2T ), i.e. their combined state at time t = 2T? At that time,
we know, the neutron has either never leaked to the right (for the two middle terms of Eq. (4)) or has
leaked to the right and leaked back to the left. So does Ψin(z, Z, 2T ) equal Ψin(z, Z, 0), up to an overall
phase? No, it does not, because the first and fourth terms have acquired a phase factor of −1. That
is, t = 2T corresponds to n = 2N = π/ε, hence cos(nε) = cos π = −1. Combining the four terms of
Ψin(z, Z, 2T ) into a product, we obtain

Ψin(z, Z, 2T ) =
1
2

[
ψ(ν)

U (z + L) − ψ(ν)
D (z + L)

] [
ψ

(µ)
U (Z − L) − ψ(µ)

D (Z − L)
]
, (6)

i.e. it is an eigenvector of eiL(ν)
z π/� and of eiL(µ)

z π/�, both with eigenvalue −1. Thus indeed the neutron
and the mirror have exchanged modular Lz (subject to the constraint of conservation of total modular
Lz). There is no paradox here, because the neutron has reached the mirror and returned. But how do
we explain the exchange of modular Lz when we post-select the state Ψ f in(z, Z, T ) at time T?

4 Nonlocal modular currents

Local or nonlocal? In this section we will show explicitly how the neutron and mirror exchange
modular momentum—and revisit the question of whether the exchange is local or nonlocal.

As noted in the previous section, the sum of the modular angular momenta of the neutron and
the mirror, expressed as eiπL(ν)

z /�eiπL(µ)
z /�, is always conserved; both the pre- and post-selected states are

eigenstates of this operator, with eigenvalue 1. In addition, the pre-selected state is trivially an eigen-
state of both eiπL(ν)

z /� and eiπL(µ)
z /� separately, while the post-selected state is an eigenstate of neither,

since either operator turns the post-selected state

Ψ f in(z, Z, T ) = ψ(ν)
U (z + L)ψ(µ)

D (Z − L)/
√

2 + ψ(ν)
D (z + L)ψ(µ)

U (Z − L)/
√

2 , (7)

into
ψ(ν)

U (z + L)ψ(µ)
U (Z − L)/

√
2 + ψ(ν)

D (z + L)ψ(µ)
D (Z − L)/

√
2 , (8)

which is orthogonal to Ψ f in(z, Z, T ). Thus the weak expectation values of both eiπL(ν)
z /� and eiπL(µ)

z /�

vanish, indicating total uncertainty about both L(ν)
z mod 2� and L(µ)

z mod 2�, although their sum is
still 0 mod 2�. Since, at the pre-selection, both the neutron and the mirror had well defined modular
angular momenta and, at the post-selection, neither did, they must have exchanged uncertain quantities
of modular angular momentum. But how?

A first glimpse of how to resolve this paradox comes if we consider the post-selected state and
its time evolution. The post-selected state represents a neutron at the left end of one cavity times a
mirror at the right end of the other cavity (and superposes the two ways this product state can arise).
Since, in each term, the neutron is to the left of the barrier and there is no mirror to the right of the
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the neutron and the mirror did interact—as apparently they did, since they exchanged modular angular
momentum—they apparently did so nonlocally—which challenges our proposed local interpretation
of interaction-free measurements.

Here is a contrasting experiment. Equations (2-3) define the state Ψin(z, Z, 0), i.e. the combined
state of the neutron and mirror at time t = 0. This state is an eigenvector of eiL(ν)

z π/� and of eiL(µ)
z π/�,

both with eigenvalue 1. What is Ψin(z, Z, 2T ), i.e. their combined state at time t = 2T? At that time,
we know, the neutron has either never leaked to the right (for the two middle terms of Eq. (4)) or has
leaked to the right and leaked back to the left. So does Ψin(z, Z, 2T ) equal Ψin(z, Z, 0), up to an overall
phase? No, it does not, because the first and fourth terms have acquired a phase factor of −1. That
is, t = 2T corresponds to n = 2N = π/ε, hence cos(nε) = cos π = −1. Combining the four terms of
Ψin(z, Z, 2T ) into a product, we obtain

Ψin(z, Z, 2T ) =
1
2

[
ψ(ν)

U (z + L) − ψ(ν)
D (z + L)

] [
ψ

(µ)
U (Z − L) − ψ(µ)

D (Z − L)
]
, (6)

i.e. it is an eigenvector of eiL(ν)
z π/� and of eiL(µ)

z π/�, both with eigenvalue −1. Thus indeed the neutron
and the mirror have exchanged modular Lz (subject to the constraint of conservation of total modular
Lz). There is no paradox here, because the neutron has reached the mirror and returned. But how do
we explain the exchange of modular Lz when we post-select the state Ψ f in(z, Z, T ) at time T?

4 Nonlocal modular currents

Local or nonlocal? In this section we will show explicitly how the neutron and mirror exchange
modular momentum—and revisit the question of whether the exchange is local or nonlocal.

As noted in the previous section, the sum of the modular angular momenta of the neutron and
the mirror, expressed as eiπL(ν)

z /�eiπL(µ)
z /�, is always conserved; both the pre- and post-selected states are

eigenstates of this operator, with eigenvalue 1. In addition, the pre-selected state is trivially an eigen-
state of both eiπL(ν)

z /� and eiπL(µ)
z /� separately, while the post-selected state is an eigenstate of neither,

since either operator turns the post-selected state

Ψ f in(z, Z, T ) = ψ(ν)
U (z + L)ψ(µ)

D (Z − L)/
√

2 + ψ(ν)
D (z + L)ψ(µ)

U (Z − L)/
√

2 , (7)

into
ψ(ν)

U (z + L)ψ(µ)
U (Z − L)/

√
2 + ψ(ν)

D (z + L)ψ(µ)
D (Z − L)/

√
2 , (8)

which is orthogonal to Ψ f in(z, Z, T ). Thus the weak expectation values of both eiπL(ν)
z /� and eiπL(µ)

z /�

vanish, indicating total uncertainty about both L(ν)
z mod 2� and L(µ)

z mod 2�, although their sum is
still 0 mod 2�. Since, at the pre-selection, both the neutron and the mirror had well defined modular
angular momenta and, at the post-selection, neither did, they must have exchanged uncertain quantities
of modular angular momentum. But how?

A first glimpse of how to resolve this paradox comes if we consider the post-selected state and
its time evolution. The post-selected state represents a neutron at the left end of one cavity times a
mirror at the right end of the other cavity (and superposes the two ways this product state can arise).
Since, in each term, the neutron is to the left of the barrier and there is no mirror to the right of the

ICNFP 2017

Figure 4. (a) A term in the post-selected state Ψ f in(z, Z, T ) of Eq. (5). Since no mirror is present to reflect the
neutron from the right end of the cavity, the wave packets to the right of the partition have amplitudes of order ε
and move away from the partition. (In the time-reversed account, they approach the partition.) (b) A term in the
evolution of the pre-selected state Ψin(z, Z, 0) of Eq. (4). The mirror reflects the neutron which, over a time T ,
passes completely through the partition.

same barrier, we know from the previous sections that a series of wave packets will “leak" through
the barrier and escape from the right of the same cavity; but since the amplitude of each “leakage" is
of order ε, it proves to be negligible over the time scale T we consider. (See Fig. 4.) However, it is
worth noting that the time evolution relevant to our calculation is not only the evolution forwards in
time after t = T , but also the evolution backwards in time for t ≤ T . This evolution must be the time
reverse of the evolution we considered in previous sections; in particular, it must include wave packets
entering the cavity from the right (wherever there is no mirror in the way) and approaching the barrier
from the right. For concreteness, it is useful to break up the evolution into pairs of time intervals of
duration Lm/p0. In the forward time evolution, a neutron on the right of the barrier approaches the
barrier in the first of these two intervals, and leaves the barrier, moving to the right, in the second
interval. By contrast, a neutron on the left end of the cavity produces order-ε wave packets only in the
second of the two Lm/p0 intervals; in the first interval, it is still on the way to the barrier on its right.

Now the forwards evolution of the post-selected state in the second interval translates into a back-
wards evolution of the post-selected state in the first interval, with order-ε wave packets moving to
the left. Thus in the first interval of each pair of intervals, we have a coincidence between an order-
ε wave packet moving to the left in one cavity and a generally larger wave packet moving to the
left in the other cavity. These wave packets have the same z coordinate. Since they are in differ-
ent cavities, the weak value of the projection on each wave packet’s position vanishes, but the weak
value of eiπL(ν)

z /� does not vanish! A “weak" current of modular angular momentum flows from the
right end of the cavities towards the barrier! Here is a qualitative explanation of how the mirror
and the neutron can exchange modular angular momentum, even when the neutron never reaches the
mirror. Can we make this qualitative explanation quantitative? To show that we can, let us calcu-
late the change in modular angular momentum to the left of the barrier during each paired interval.
The pre-selected state evolves forward in time such that the weak value of eiπL(ν)

z /�, calculated over
the wave packet to the left of the barrier (in the closed cavity), is cos(nε) at time tn = 2nLm/p0.
Thus during every interval of time tn+1 − tn = 2Lm/p0, the region to the left of the barrier gains
cos([n+1]ε)− cos(nε) = cos(nε) cos(ε)− sin(nε) sin(ε)− cos(nε), which equals −ε sin(nε) up to terms
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of order ε2. During the same interval of time, the weak value of eiπL(ν)
z equals the weak value of eiπL(µ)

z /�

since, as noted above, both operators turn the post-selected state Ψ f in(z, Z, T ) of Eq. (5) into the state
of Eq. (6). However, if we want to localize the modular angular momentum, i.e. to determine its lo-
cation, then we can multiply eiπL(ν)

z /� (or eiπL(µ)
z /�) by an operator that projects onto a region of interest.

In fact, we have already done so above, in calculating the modular angular momentum to the left of
the barrier, onto which we implicitly projected eiπL(ν)

z /�. Two additional regions are relevant. First, in
the region to the right of the barrier there is a time-dependent region of overlap between the order-ε
wave packet in the channel without a mirror and the sin(nε) wave packet in the channel with a mirror.
Multiplying them together in the formula for the local weak value of eiπL(ν)

z /� (i.e. the weak value at the
location of the wave packet), we obtain ε sin(nε), which precisely accounts for the change in modular
momentum to the left of the barrier. Second, there is the region at the right end of the channel, the
(possible) location of the mirror. The wave function of the mirror has support only there, near Z = L.
Since this is also the third region of interest, the entire wave function of the mirror is included, and
projection onto that region changes nothing. Also, the inner product of ψ(µ)

U (Z − L) or ψ(µ)
D (Z − L) with

itself yields only a factor 1. However, the weak value of eiπL(µ)
z /� depends also on the pre- and post-

selected states of the neutron; these are the same pre- and post-selected states as in the calculation
of eiπL(ν)

z /�. Consequently, the weak value of eiπL(µ)
z /� must always equal the weak value of eiπL(ν)

z /�. At
first, this result may seem to be a contradict conservation of modular Lz: how can the sum of L(ν)

z and
L(µ)

z be invariant if they are the same? But it is conservation of modular Lz that requires this result.
Namely, conservation of L(ν)

z +L(µ)
z mod 2� requires that cos

(
π[L(ν)

z + L(µ)
z ]/�

)
always vanish (mod 2�),

hence L(ν)
z = −L(µ)

z (mod 2�), i.e. they have opposite signs; but since the cosine function ignores the
sign of the arguments, eiπL(ν)

z /� and eiπL(µ)
z /� are the same [9]. For the same reason, the modular angular

momentum of the mirror can decrease while the modular angular momentum of the neutron increases,
even though the weak values of eiπL(ν)

z /� and eiπL(µ)
z /� both increase.

We conclude that, in the sense of this current of modular Lz mediating locally between the neutron
and the mirror, the “interaction-free measurement" is local; but what is local here is a nonlocal dynam-
ical quantity—modular angular momentum—that has itself become disconnected from the neutron
and the mirror! No measurements in either cavity alone could ever reveal the value of the conserved
current of Lz mod 2�. In this sense, we have inverted the interaction-free measurement of Elitzur and
Vaidman [6]: in their original thought experiment, two local quantities (the positions of a photon and
a bomb in the two arms of a Mach-Zehnder interferometer) interact nonlocally; in the present thought
experiment, two nonlocal quantities (the modular angular momentum of a neutron and of a mirror)
interact locally via their weak currents.
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