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Abstract

Black Carbon (BC) has been widely recognized as#tend largest source of territorial and globmhate change
as well as a threat to human health. There has $r@us concern of BC emission and its impachaotGangetic
Plains (IGP) due to the use of biomass and fossilsffor cooking, transportation and industrialiatieés. An

attempt has been made to study indoor (LiquefiddbReim Gas- LPG & Traditional cookstoves userssedolds)
and outdoor concentrations; seasonal characteristidiative forcing and source of apportionmenB@fin three
districts (Sitapur, Patna and Murshidabad) of IGRrd) January to December 2016. The seasonal ctratiens of
BC in LPG (traditional cookstoves) users householdse 3.79 + 0.77igm>(25.36 + 5.01ugm?) during the

winter; 2.62 + 0.6Qugm™ (16.36 + 3.68ugm™) during the pre-monsoon; 2.02 + 0.3p§m* (8.92 + 1.98ugm?)

during the monsoon and 2.19 + 04dm* (15.17 #+ 3.31ugm™) during the post-monsoon seasons. However, the

outdoor BC concentrations were 24.20 + 4.46, 12.8084, 8.87 + 1.83, and 9.14 + 1.§4m™ during winter, pre-
monsoon, monsoon and post-monsoon seasons reghecliie negative radiative forcing (RF) at theface
suggests a cooling effect while a warming effecpesps to be occurring at the top of the atmosphEhe.
atmospheric forcing of BC and aerosols also showetavarming effect in the selected study areas. artaysis of

BC concentrations and fire episodes indicated thatemissions from biomass burning increases thieition
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concentration. The backward trajectory analysisugh the HYSPLIT model also suggests an additisoatce of
pollutants during winter and pre-monsoon seasam fhe northwest and northern region in the IGP.
Keywords: Black carbon, Biomass burning, Radiative forciHgtspots, Health impact, Backward trajectory,

Firewood, HYSPLIT

1.0 Introduction

Black carbon (BC) concentrations have continuourstyeasing throughout the world due to growing
anthropogenic activities, directly contributes tmaspheric warming and serious threat to humarttheal
(UNEP, 2011). BC plays an important role in globkinate change after GQVenkataraman et al.,
2005; Bond et al., 2007, 2013; Forster et al., 2@istafsson et al., 2009; Ramanathan and Carntjchae
2008). The spatial distribution of BC has affeateghsoon pattern in east/south Asia (Menon et @022
Ramanathan et al., 2001, 2005; Lau et al., 2008)aafing the Himalayan-Tibetan region (Ramanathan
et al., 2007; Flanner et al., 2009; Menon et &1@. It is also responsible for the enhanced glaci
melting (Hansen and Nazarenko, 2004; Jacobson,, Hi@dner et al., 2007; Koch et al., 2009a, Merton e
al., 2010). During 1999-2004, annual average nglteached to 0.85 min Lahaul/Spiti glaciers of 915
km? in Himalaya (Berthier et al., 2007). Such accetmtamelting is threat to water supplies and food
security, potentially slowing the region’s socic@aomic development (Lawrence and Lelieveld, 2010).
The Indo-Gangetic Plain (IGP) region is home of @@ilion people and one of the highly agricultural
productive regions of the world. IGP is reportedoag of the largest source of BC emission due to
anthropogenic activities, burning of crop residod hiomass, forest fires, vehicular emission, bkithks

and coal based power plants (Prasad et al., 2006aBhandran and Cherian, 2008; Rehman et al., 2011;
Kharol et al., 2014, Saud, et al., 2012, Pandeywenkataraman, 2014, Kaskoutis et al., 2014, Sargh
Kaskoutis, 2014, Arif et al., 2018, Chauhan andgBi2018, Sarkar et al., 2018). Enhancement in BC
concentrations were also observed during Diwadjhgli festival in Greater Noida (Singh and Sharma,
2012).This festival is very popular and celebratkaver India (rural or urban areas), candlesligrged

in houses and people play with fire crackers, svof@bsorbing aerosols and soot particles.



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

About 90% of rural households of IGP are still gsiniomass (firewood, cow dung cake and crop
residue) for cooking and has been recognized asobtiee major sources of BC in the region. As a
primary component of particulate matter, BC notydekds to indoor/outdoor air pollution but alsawda
serious threat to human health (Mishra et al., 2@%&ahame and Schlesinger, 2010). Quantification of
BC emissions from direct sources like householdssportation, industries and open biomass buriging
poorly understood in semi-urban areas of IGP. Thegethere is a need of national policy and mitaa
measures to reduce impact of BC. The preparatigolidy and management of BC emissions need data
on causes, periodic concentrations, variationsraetdorological characteristics of contaminants. déen
an attempt has been made to study the pollutioth éoal impacts in growing districts of IGP (Sitapur,
Patna and Murshidabadfrif. 1) where approximately, 96% of rural families rely biofuel cooking
(firewood, crop residue, cow dung, kerosene, ettn).these growing districts, Patna has been ranked
among the top 100 air polluted cities in the w@kidHO, 2014). Here, we have carried out regular ardo
and outdoor BC mass concentration measurement2@trandomly selected households (LPG and
biomass users, 60 each) in the middle of village Ifications) as well as nearby road (6 locations) i
selected districts during the period of Januaryeddeber 2016. To the best of our knowledge, ththas
first comprehensive study on measurements of BC€ammation in rural areas. The radiative forcing an
indoor/outdoor seasonal BC variations will be adgjrimportance for policy formulation and contrdl o
air pollution in IGP. This study is focused to (fgasure indoor/outdoor BC emission, (2) investigjage
seasonal and diurnal variations of BC (3) evaltlagepotential sources for BC and (4) analyze radiat
forcing.

2. Experimental Setup

2.1 Experimental sites and general meteor ology

Based on the biofuels use pattern and socio-ecanconiditions, three districts namely Sitapur (2X,6°
80.18°E), Patna (25.35° N, 85.12° E) and Murshidg28.43° N, 87.49° E) were selected to study abati
distributions of BC concentrations and detailedlysia (Fig. 1). The climate of Sitapur and Patna

district's is ‘sub-tropical humid’ and considered &Cwa’ kind based on the Koppen Climate
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Classification (Sanderson, 1999). The summer teatpes vises very high upto (40%) in both Sitapur
and Patna districts due to the intensity of a talpisun. The district Murshidabad is tropical and
categorized as ‘Aw’ kind of climate. The annual metemperature of Murshidabad district is
approximately 27 °C and monthly mean temperaturgea from 17-35 °C. The westerly and north-
westerly winds bring air mass during the pre-monsseason; from the west/southeast during the
monsoon season and from the north/northeast dthingost-monsoon/winter season (Prasad et al.,; 2006
Moorthy et al., 2007). Hence, these locations wieal for long-term indoor and outdoor BC
measurements to understand the dynamics of aerasdIBC concentrations over the IGP (Ramanathan
et al., 2005; Nair et al., 2007) and related climampacts (Gautam et al., 2010).

2.2 Instrumentation and data analysis

Six revenue blocks (2 blocks per district) wereesidd from the above mentioned three districtdtHer
socio-economic survey. In six blocks, 12 villag@svillages per block) with varying socio-economic
conditions were identified through reconnaissanoerey for households studyf §ble 1). Total 300
households (25 households per village) were rangamlected from these villages to evaluate socio-
economic conditions, fuel consumption patterns| fypes, health issues, barriers to clean fuel ggner
accessibility and adaptability of households.

BC concentrations were measured in the cooking elese to traditional and LPG cookstoves in 120
randomly selected households (60 LPG and 60-biomsess). Simultaneously, BC concentration
measurements were also carried out in the middiselsfcted villages (12 locations) as well as nearby
roads (6 Nos.). Measurements were done at an #@itaf five minutes through portable micro-
aethalometers (Model AE-42) and aethalometers (MA&e33), Magee Scientific, USA (Hansen et al.,
1984). The observations were made at 370, 470, 520, 660, 880 and 950 nm wavelengths. The
emissions of BC from fossil fuel provides peak 3® 8m wavelengths while other components of aerosol
have irrelevant absorption peak at this wavelengdibince, 880 nm channel was considered for
measurement of BC concentrations. The inlet pipe a5 m and the instruments were fixed at 1 m

aside and 1 m above the surface to receive unijodiffused concentration from the cookstoves (imjloo
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and other sources (outdoor). The flow rate of dethaters was set at 3 L miirbecause of huge
emissions at these locations. Details of instrumantertainties and rectifications can be referired
numerous publications (Hansen et al., 1984; BalbuNmorthy, 2002; Weingartner et al., 2003; Arnditt e
al., 2005; Schmid et al., 2006).

2.3 Firecount analysisand transport pathway

The enhanced BC concentrations in the IGP hasbalso reported due to the agricultural residue bgrni

in fields and forest fire in northwest, northeastl @entral states of India (Singh et al., 2014gBiand
Kaskaoutis 2014, Sarkar et al. 2018). The fire spotagriculture field and forest were counted tigto
National Aeronautics and Space Administration’stit@bservatory and Firms Web Fire Mapper data
(Tipayarom et al., 2007). To study the effectsgriailtural residue and forest fire on BC concelitrss,

a correlation between the fire counts from MODIS #re outdoor BC concentrations were also analyzed.
The eight days backward trajectories were compigtedach district by using HYSPLIT4 model (Dumka
et al., 2013; Draxler and Rolph, 2014; Dumka et 2015; Bisht et al., 2015). The HYSPLIT4 model
helped in examining the impacts of other probalolerees on measured BC concentrations, local air
quality and the other neighboring areas. The glaleanalysis data were utilized as an input for
calculating isentropic backward trajectories. IlP|@nost of the farmers generally burn their agtical
straw between 18:00 to 21:00 hrs (local time) a®d0Q hrs was considered as starting time for
computation of trajectories and pathways of poiitga

2.4 Estimation of radiative forcing

Aerosols vary in their chemical compositions thantcol the radiative forcing and aerosol cloud
interactions (Boucher et al., 2013). In Intergoveental Panel on Climate Change, Fifth Assessment
Report (AR5), total aerosol forcing associated vitick carbon is estimated as -0.03 and +0.023Wm
over the periods1990-2010 and 2000-2010 respegt{iyhreet al., 2013). We have computed radiative
forcing (RF) using Santa Barbara DISORT AtmosphédRadiative Transfer (SBDART) model
(Ricchiazzi et al., 1998, Prasad et al., 2007, Tiwaal., 2016).The measured BC concentrationewer

used into the OPAC model (Hess et al., 1998) toutale optical depth and single scattering albedo.
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Further, the output of OPAC model was used in tBBART model to assess the radiative forcing of
both aerosol and BC. The radiative forcing of baxinosol and BC for atmospheric layers were computed
at 5 zenith interval to compute the average diurnalifaycThe average diurnal forcing at the surface
(SUR) and top of the atmosphere (TOA) were estithatparately. The atmospheric forcing (ATM) was
computed as difference of TOA and SUR forcing alamy beyond the elements contributing to
warming.

3.0 Resultsand Discussion

3.1 Households Biofuel Consumption

The study area considered in the present study sl®r5% rural households use biofuel cooking
(firewood, crop residue, cow dung cakes, coal, lkerdsene). Firewood was the primary energy source
for cooking in 44.93% households in Sitapur distfidlowed by cow dung cake (26.63%), crop residue
(24.16%), LPG (3.12 %) and other sources (1.121foRatna district, cow dung cake was the primary
source of fuel for cooking in 42.16% household$ofeéd by crop residue (30.85%), firewood (20.42%),
LPG (4.14%) and other sources (2.36%). In the Mdedlad district, crop residue was the primary seurc
for cooking in 52.24% households followed by cowmdwake (28.86 %), firewood (14.32%), LPG (2.10
%) and other sources (2.10 %). Figure 2 showsiloligion of different sources of biofuel cookingtime
considered study locations. The average monthlyswmoption of firewood and coal was 145-154 kg,
while the average monthly consumption of LPG waskgdor each household. It was also found that
each household spends ~Rs. 470.00 per-month (L8&$%dnth) to access clean fuel energy (LPG) and on
an average of Rs. 560 per month (US$ 8-9/montiputchase firewood and coal. One of the interesting
findings from the survey is that large numbers afigeholds are spending money to purchase traditiona
fuel compared to the clean energy due to culturafepences, fuel availability, accessibility and
inadequate LPG distribution centers. The averageoti&€ PG is upto 3.12 % in rural households in ¢hes
districts that needs to be enhanced to use cledr(lfRG) to reduce BC emissions indoors as welhas
outdoors. Energy and its technologies play a kég/ irosocio-economic development of the community

to the national levels to minimize threat to hurhaalth, environmental pollution and climate impacts
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The primary survey results of selected districtsewalso compared with Census of India’s rural
household fuel use data (for 2001 and 2011) to nstaied the fuel use pattern and validation of surve
results. The decadal average percentage use @fobik in these districts has increased by 6.49%
(0.649%/year) followed by LPG 2.77%, and crop nesid.26% during 2001-11 due to increase of 5.83
lakh (0.583 million) rural houses (0.583 lakh/ye@dr)akh = 16). However, there is an increase of 5.19%
(@0.519%/year) use of firewood and 2.77% in LPChwtite increase of 121.16 Lakh (12.116 million)
rural houses (12.116 Lakh/year) during the samégen IGP, which are using large percentage of
traditional sources of cooking éble 2).

As per the 2015 survey, crop residue (35.65%) wagptimary fuel for cooking in rural househol@s$g

3) followed by cow dung cakes (32.56 %), firewo06.66%) and LPG (3.12%). The 2011 Census data
also indicates that crop residue was the primamsrgynsource for cooking in 34.48% of the rural
households of these districts of IGP followed WgwWiood (31.40%), cow-dung cakes (26.25 %) and LPG
(3.73%). An increase of 6.31% use of cow dung qake62%/year) and 1.17% in crop residue during
2011-15 in rural households due to increase of hoases as well as fuel availability and accebsibi
however, other kind of fuels show a declining treRdrther, an average use of clean fuel is mucketow
in these districts (3.12-3.73%) as compared to (&B8%) and Indian average (11.4%) while higher in
traditional fuel, which needs to enhance the usdeztn fuel (LPG) in the region to minimize the &afs

of BC.

3.2 Indoor BC emissions from households using traditional and L PG cookstoves

The type of cooking fuel is the main contributoriméreased BC concentrations. High BC concentration
were observed in both indoors and outdoors envissinduring cooking hours. The daily BC mass
concentration in the proximity of traditional Cotkees users varies from 0.06 to 21,8§m° in the
selected households during the measurement pefibdshighest average indoor BC concentrations were
found during the winter season (December to Felyuahile lowest during the monsoon (June to
September)Kig. 4a) in the study area. The indoor mean BC concentrathows highest concentration

(25.36 +5.01ugm®) during the winter and lowest (8.92 + 1.8m*) during the monsoon seasons in
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traditional cooking (cookstoves users). The obgkBE concentrations are found to be different from
earlier study by Rehman et al. (2011) in Kanpuy @ttmay be noted that the Kanpur is an industrigi
where the economic conditions is much better tharthree locations considered, many people use LPG
compared to other sources of biofuel cooking). Birtyi, the BC concentrations were observed maximum
(3.79 % 0.77ugm®) during the winter season and minimum (2.02 + 8.8§m") during the monsoon
season using LPG as source of cooking. The moatidyage indoor and outdoor BC concentrations are
summarised irTable 3. The seasonal concentrations in traditional cankstuser's households were
25.36 + 5.0lugm>during the winter season, 16.36 + 3;8fn°during the pre-monsoon (March to May),
8.92 + 1.98ugm>during the monsoon and 15.17 + 3.8@m>during the post-monsoon (October to
November) Fig. 4b). Similarly, the seasonal mean concentrationsRfsluser’'s households were 3.79 +
0.77 ugm?in the winter; 2.62 + 0.6Qgm*in the pre-monsoon; 2.02 + 0.355m?in the monsoon and
2.19 # 0.47ugm?in the post-monsoorf{g. 4c). In Sitapur, BC concentrations vary from 1.8®R©36
ngm 2 during the entire pre-monsoon season while, frobntd 25.16ugm  in Patna and 1.0 to 24.52
ngm 2 in Murshidabad districts. The BC concentration whserved to be the highest (25,881°) in
cow-dung cake and crop residue user’s householdsmapared to firewood user’s households due to low
calorific value (9.79 to 14.2MJ/ kg) and thermal efficiency (8.90-17.10%) of cow-dumdse (Harshika

et al., 2014). It has resulted in the wastage ofuel and the huge BC emissions from the traditiona
cookstoves.

It is noted that 90-95% rural households of setkdistricts are using traditional cooking fuelshwitigh
emission of BC concentrations indoor environmeat thads to the indoor/outdoor air pollution anghhi
health problems in the IGP. The Government of Irftha introduced several programs to reduce BC
emissions from residential area such as improveskstove program, family-size biogas plants,
community biogas plants and Ujjawala scheme (8istion of LPG to poor people) for rural households
and compressed natural gas in transportation segtdl the BC emissions from residential is not

reducing and making a potential area for researcimtlerstand the effectiveness of these programs.
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It is well known that while cooking, people inh&€ and particulate matters from burning of bicgibs
fuels. The health of women and children are moleerable due to closer and larger inhalation oé fin
particulate matter while cooking and being neahhigncentration zone. It is also well known that th
emissions from biofuel cooking have serious hepitiblems such as acute lower respiratory infections
lung cancer, blindness (cataract), tuberculosis)(88thma, and chronic obstructive pulmonary disea
as well as heart disease among the women and ehil@mith 2000; Smith et al. 2000a; Parikh et al.
2001). The impact is maximum in rural areas duedk of clean fuel, improved cookstoves and separat
and ventilated cooking (kitchen) place. The primsuyey conducted in selected villages, where femal
were also interviewed particularly on the healtmaarns to understand the negative health impacts
associated with emissions. The survey reports faindlar findings, women are cognizant of higher
health impacts (both short and long-term healtlect$). About 26% females reported eyes watering
during the cooking time followed by eyes itchingb%?), asthma and respiratory problems (22%),
cardiovascular disease (17%) and coughing (10%&sé&hesults were further verified with the data
available at nearby community health centers. # &lso been noted that these effects have immediate
implications for spending per household expendianédnealth (Rs. 258-275/month). It may be noted tha
no official data about the human health sufferiragavavailable from the rural or city hospitalsysmare

not able to discuss any data. However, we consuistby PHC/CHC doctors about the common
diseases in the area and survey results were tedigdth the doctors.

3.2.1 Indoor Diurnal Variation of BC

The hourly mean diurnal variations of BC for 126ested households (60 biofuels and 60 LPG usees) ar
shown inFig.4b. In the morning cooking hours (06:00 to 09:00 hisjloor BC mass concentrations in
biofuel cooking were observed to vary from 1.8@2016:gm ° with an average value of 12.1§m > in

all selected households. While in evening cookingrh (17:00 - 20:00 hrs), BC concentrations vary in
the range 1.90 to 25.8§m ° with an average value of 13.@m>. However, at LPG cooking loctions,
indoor BC concentrations vary in the range 0.2®3dm > with an average value of 1.@m ’in the

morning cooking hours and in the range 0.13-3:@®81 2 in the evening cooking hours with an average
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value of 1.45ugm? in all selected householdEi@.4c). The seasonal analysis of BC concentrations
shows that the biomass user's households wereosegpto 25.36 + 3.1agm* (3.79 + 0.58 pgi)
during the winter; 15.15 + 1.45gm?® (2.38 + 0.45 pgi) during the pre-monsoon; 8.40 * 0.4gm*
(2.02 + 0.28 pg) during the monsoon and 13.69+1.2§m> (1.99 + 0.17 pgr) during the post-
monsoon season in the morning cooking. While duthey evening cooking, the mass concentrations
were about 19.31 + 2.8&ym* (3.24 + 0.76 pgiM); 14.59 + 2.2gm* (2.47 + 0.40 pgi); 8.29 + 1.51
ngm? (1.47 + 0.29 pgm) and 13.45 + 2.1@gm* (1.98 + 0.32 pgr) during the winter, pre-monsoon,
monsoon and post-monsoon seasons, respectively.indmor BC concentrations in LPG user's
households was ten times (90.3%) lower in LPG ampkiompared to biofuels cooking during entire
study periods due to high calorific value (46.1 kgJ/of LPG and thermal efficiency of LPG gas stove
(64%). It is pertinent to mention here that onl§2-3.73 % households use LPG as a cooking fuel
source that makes the region vulnerable to bagtthhand climate impacts.

3.3 Outdoor BC Concentrationsin the center of village

The BC measurements (outdoor) were also carriednailite center of village to compare the impact of
indoor BC emissions and other sources. During mgroeboking hours, outdoor BC mass concentrations
varies in the range of 4.39 -24.26m > with an average value of 18.5@ym >while in the evening hours,
BC concentrations vary in the range of 8.06 -21ug@gi°® with an average value of 16.Qgm > To
analyse the variation of BC, it is essential toansthnd the influence of the local, regional antional
emission sources. The daily BC mass concentratidhe vicinity of designated sites vary in the raid
0.98-24.2Qugm® during the whole study period. BC concentratioms/yn the range of 0.98-24.2@m™

in Sitapur, 1.70-24.1Qugm® in Patna and 1.0-23.figm™ in Murshidabad districts throughout the
monitoring period (over the year).

The highest average outdoor BC concentrations wbserved during the winter season while lowest
during the monsoon seasdfid. 4a). The mean mass concentration of BC was at itsmmanr (24.20 +
4.46 ngm®) during the winter season while minimum (8.67 .83lugm?) during the monsoon season

because of rainfall. The BC concentrations showimaxpeak (24.20 + 4.46gm>) in the month of
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January because of lower planetary boundary lay8L), increased biofuel burning and brick kilns
activities. The seasonal outdoor BC concentrativese 24.20 + 4.4Gigm°during the winter season,
19.80 + 4.341igm" during the pre-monsoon, 8.87 + 1,88 during the monsoon and 9.14 + 1,8mn"
during the post-monsoon seasori§g( 5a). Apart from the local emissions and meteoroldgica
conditions, long-range pollutants from crop residiwirning, forest fires and dusts from Thar andoisra
peninsula further change the particles size, mixihthe dust and BC influencing the climatic coratis
(Dey et al., 2004, Prasad and Singh, 2007, Gautat 2010).

The diurnal variation of BC concentrations at losaale is important to understand the local emissio
variability that helps us to calculate regional amational emissions (Tiwari et al., 2013). The oadBC
diurnal variations presented a similar patternna®dr concentrations with the peaks in the mormind
evening food cooking cycles that suggest the stiomgact of indoor cooking on outdoor BC mass
concentrations. BC concentrations start increasafgre sunrise, with large peaks in morning howrs d
to high BC emissions from other local emissionse ilgh BC concentrations observed during evening
hours as compared to the morning hours with BV eslgreater than 18gm  in outdoor environment.
The ratio of BC mass concentrations were approxinad5% higher during 19:00 to 22:00 hrs in
outdoor environment, showing emissions from loaaldeholds and other sources. The maxima peaks are
attributed mainly due to local (residential andustlial), traffic and crop residue burning that rimt
change in these months. The enhanced mass conergran the residual layer enhanced mass
concentrations at the surface during burning period

The wind speed and height of the atmospheric baynidger show an important role in the diurnal
variation of concentrations and dispersion of galtis. To recognize the significance of deviationthe
boundary layer height on diurnal concentrations, thlationship between BC and mixing layer depth
(MLD) was analyzed around monitoring sites with th&lOAA HYSPLIT model
(https://www.ready.noaa.gov/HYSPLIT traj.php). Thexing layer heights were calculated from the
impending temperature profile by detecting the hie@ an eminent inversion at each point. The ayera

mixing height was found to be lower (30%) in theseing compared to the daytime. It is important to
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note that BC concentrations were decreased (~2y4%i°) at 15:00 hrs associated with the high wind
speed, temperature, allow fast dispersion horizamd vertical direction of pollutants during theep
monsoon season. The BC concentrations found teaserfurther after 16:00 hrs in the study regkg.
5b). The ratios of BC mass concentrations were apmprately 35% higher during 19:00 to 22:00 hrs in
outdoor environment due to reduced wind speed,temperature, lower mixing layer and high use of
traditional fuel for cooking is an indicative ofghi local emission from households influenced by
meteorological factors. The BC values again grdguall after 22: 00 hrs due to reduced domestic
emissions. It is found that diurnal deviation of B@centrations attributed to the higher use ofueis

for cooking and other purposes. The observed BCGeammations were similar to BC concentrations
measured in Varanasi (Singh and Rai, 2014) antitblidnigh from Gorakhpur (Vaishya et al., 2017),
Ballia (Tiwari et al., 2016), Kanpur (Kanawade &t 2014) and Agra (Safai et al., 2008)able 4).
These findings confirm that rural and small cits&e major contributors of BC emission as in theeaafs
large cities in IGP, affecting poor air quality, mang of the region and threat to human health.

3.4 BC emissions from the transportation sector

BC emissions in the study area are not only atieidtio residential area but also from other soulikes
transportation. Hence, the emission from transfghway) were also measured at the NH-30 (Lucknow
to Shajahanpur road at Sitapur), SH-21 (Sitapuflrakur Khiri road at Laharpur), NH-22 (at Patna),
NH-431 (Patna - Fatuha Road at Fatuha), NH-114Au@mwapure - Jalangi Road at Behrampur) and NH-
12 (Farakka - Malda Road at Farakka). The mainirilof the monitoring of mobile sources is that BC
concentrations during the morning and evening hehiesv similar trend as observed in the centre ef th
village. During morning time (05:00 to 10:00 hr&C concentrations were observed from 3.13 to
19.85ugm™ with an average value of 9.44m > while during evening hours (17:00 to 22:00 hris§ BC
emissions vary in the range of 3.48 to 2Q@®° with an average value of 9.6@m ™. The monthly
average of BC concentrations was observed to deekidevel (20.82 + 4.76gm*) during winter and
pre-monsoon seasons while lowest (8.92 + 1,88n°) during monsoon seasorFig. 6). BC

concentrations are washed out due to precipitakidggher BC concentrations in the month of Janusry
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also associated with the higher bio/fossil fuelrting for cooking as well as heating, municipal wast
burning, brick kilns activities, and lower PBL dbpimixing height.

The seasonal concentrations of BC were 20.82 +git6® during winter, 14.97 + 3.3dgm* during pre-
monsoon, 8.92 + 1.98gm* during monsoon and 10.71 + 2.88m™ during post-monsoon seasons. The
diurnal variations show minimum BC concentration6@lugm®) at NH-431 (Fatuha) and highest
(19.55ugn) at NH-30 (Sitapur) due to heavy traffic flow (55@hicles/hrs). BC mass concentrations
start to increase before sunrise and reach at thémmm level during 06:00 - 09:00 hrs and show low
values around 15:00 hrs. This pattern suggestsiildaior BC emissions also affect the on road BC
concentrations. It is noted that the roadside BGamaoncentrations were drastically reduced in mid-
afternoon (15:00 hrs) due to reduced vehiclar m@&rgmhigh speed, low emission and negligible
cooking activities as well as the vertical and honital dispersion of the atmospheric BC. In evenihg
mean BC concentrations increased due to increashtutar movement and cooking activities and
reduction in vertical mixing.

3.4.1 The effect of weekend on black carbon emissions

The dynamics of BC concentrations were studiechennteekdays and weekends. Earlier studies (Zhang
et al., 2009; Sahu et al., 2011; Mascia et al.6phave shown that the particulates and gaseous @olut
depend upon the location due to diverse surrousdamgl atmospheric settings. In the large citid&;as,
academic institutions and other business activifiedustrial and commercial) remain close during th
weekend. However, in the rural areas, activitienai@ same except the movement of vehicles on the
highways and nearby other roads. Pronounced rexuictiaerosol optical depth and mass concentration
of aerosol has been observed in Bangalore cityhégah et al., 2011) during the weekend. To quantify
the findings, the effect of change in anthropogenients, industrial activities and traffic flow &C
concentrations were examined during weekdays arekevel near NH-30 (Sitapur), SH-21 (Laharpur),
NH-22 (Patna), NH-431 (Fatuha), NH-114A (Behrampumed NH-12 (Farakka). The average evening
peak of BC concentrations were observed betweed tb.6.9.55 pugm in weekdays and 3.91 to 5.86

pgm? in weekends. The diurnal variations show minimwnaentrations on weekends, particularly on
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Saturday at NH-431 (3.91 pginand NH-114A (3.95 ugi). However, high BC concentrations were
observed on the weekend at NH-30 (4.78 fgamd NH-22 (5.86 pgii) due to heavy traffic movement

in the weekend. These roads were very close te stgtital and district headquarters.

3.4 Therole of agriculture biomass burning

Substantial increases in agriculture residue bgrtiave been reported over the northwestern parts of
India (Singh et al., 2014, Singh and Kaskaoutis42@arkar et al. 2018). Recent study by Sarkat. et a
(2018) has shown that the crop residue burningiémites greater parts of India. Chauhan and Singh,
(2017) has reported that Diwali festival and crapning severely impacted weather conditions, air
quality and visibility of National Capital Regiorf ¢ndia for a week. However, the National Green
Tribunal, of India has banned agricultural biombssning but this practice is still going on in rort
north-west and central regions of India. Farmensnbtheir wheat crop residue during the May-June,
mid-October and mid-November after the harvestirfigrioe crop. During the mid-October and
November, temperature is rather cool. So the sexgract of crop burning is observed over Delhi #ad
surrounding areas. However, burning of wheat csamot a severe problem in summer due to the warmer
weather conditions and mixing height that resutbia fast dispersion of air pollutants (Singh and
Kaskoutis, 2014). This crop burning is a sourcdanfie amount of carbonaceous aerosols in the IGP
(Venkataraman et al., 2006; Kaskoutis et al., 2@idgh and Kaskoutis, 2014) and a serious threat to
human health like asthma, respiratory, heart and Wiseases. To understand their effects of biomass
burning on BC concentrations, we have used the M&d@rived fire products (http:/modis-
fire.umd.edu/index.php). The weekly number of feceunts and average BC concentrations were
correlated and is shown Fig. 7a. The BC mass concentrations increase up to 2429’ during winter

and pre-monsoon seasons as a result of crop busnishdorest fires in the study areas and surrogsdin
The monthly average BC mass concentrations atBitapd Patna are found to be high (24.20 Plgas
compared to Murshidabad (23.10 pignduring the winter and pre-monsoon seasons. ThenBSs

concentrations during the June - October are fotowdbe much lower (almost half of the BC
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concentrations during the winter and pre-monsoams@ss) with the reductions in forest fires and
agricultural crop burning.

The inter-relationship between the monthly fire misuand monthly average BC concentrations are also
examined (Tipayarom et al., 2007) that shows dively better linear relationship (R 0.564). This
relationship suggests that agricultural residuaimgrduring winter and pre-monsoon season is omnkeof
major causes for increase in BC concentratioRsy. (7b) because of great pressure, rigorous
photochemistry and absence of a removal procedinang and Kim Oanh, 2002).

3.5 Aerosol radiative forcing

Daily radiative forcing (RF) over IGP was also ewtted for BC and composite aerosols shown though
Figure 8. The seasonal TOA radiative forcing ofoaets and BC was found to be 20.6 and 18.53Wm
respectively during winter season; 25.5 and 21.13doring pre-monsoon; 21.6 and 17.2 Wduring
monsoon and 16.8 and 6.87 Wmuring post-monsoon season. The SUR forcing dueetosol was -
50.8, -40.2, -20.7 and -10.2 Wrnand due to BC was -19.5, -22.0 -13.5 and -5.86'meectively
during winter, pre-monsoon, monsoon and post-mansén inconsistency was observed in the radiative
forcing over study area due to the inconsisterggamree of absorbent particles due to burning oflfous

and biofuels. The atmospheric radiative forcing derosols and (BC) was estimated as +75.8 (+39.7),
+77.1(+42.1), +34.7 (+20.8) and +25.1 (+10.2) Wauring the winter, pre-monsoon, monsoon and post-
monsoon respectively. ATM, TOA, positive radiatfeecing of BC and aerosol particles are indicatife

a warming effect while the SUR radiative forcifgpw/s a cooling effect in the study areas. Thesdtes
are quite high in these semi-urban areas and Riffprences were observed in the radiative foramng
surface, atmosphere and top of the atmosphereodibe fpresence of absorbing aerosols. These ragiati
forcing may be high due to influence of dust p#&tcand BC emission from western region of IGP
during the winter and pre-monsoon season (Dey.ef@04, Singh et al., 2004). Many researcher én th
Indo-Gangetic plains (Prasad et al., 2007, Day Bmglathi, 2008; Gautam et al., 2010, Tiwari et al.,
2016) also found similar results. The impact ofhhigdiative forcing is also clearly visible overeth

Himalayas and Tibetan Plateau (Zhang et al., 2015).

15



388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

3.6 Role of long-range transport of dust

The dominant westerly winds transport dust to g lange from Thar Desert and Arabia Peninsulaén th
Indo-Gangetic plains. The dusts are transportetbupe eastern parts of the IGP depending upon the
meteorological conditions and wind speed duringrmpomsoon season (Dey et al., 2004, Gautam et al.,
2009, Srivastava et al., 2010b) and transport iirgkand eastern parts of IGP. Apart from thet éhasn

the desert, the impact of emissions from the dpeming of crops/ forest fires from the north/cahtr
region of India and black smoke consists of carparticles from coal based power plants were also
observed over IGP (Ramachandran and Cherian, 2®@&ad et al., 2009, Sarkar et al. 2018). The
emissions from these sources located in the neadas and long-range transport of pollutants &edyli

to influence our BC measurements. The resident ¢ifi8&C in atmosphere is ~1 week to 10 days (Reddy
and Venkataraman, 1999), so 8 days isentropic backivajectories were examined by using HYSPLIT
model to know pollutants transport pathways. The AROHYSPILT backward trajectories show
directions of the air mass reaching at differenasoeing locationsHig. 9).

During the winter and pre-monsoon seasons, BC ctrat®ns varies in the range 20.1-24.82 [igime

to transport of air mass from western parts of IGBout 90% of the backward trajectories reach $itap
from the northwestern regions and 10% from westgaas. At Patna, dominant air mass comes from
north-west parts and less from southeast rediog ). Similarly, about 98% of the trajectories bririg a
mass from northwest and western parts at Murshidiahat carry dust from Thar Desert (located in the
western parts of India, however dust observed énl@P are mainly from Arabia peninsula (Dey et al.,
2004). Long-range transport of dust mixes with espbgenic emissions along the track of dust,
enhancing local BC concentratiorBhattacharjee et al., 200&imilar findings were also reported at
Peshawar (Khan et al., 2015), Iran (Shahsavanl.e@12) and Beijing (Zhao et al., 2009). During
monsoon season, the pollutants were washed out finenatmosphere as a result BC concentrations
reduced upto 36% compared to other season, maimhy focal indoor emissions from cooking. These

kinds of emission flow patterns not only have irogtions on the human health but also on the crop
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production and local/regional climate (Auffhammerag, 2006). The pollutants carried from the other

surrounding of IGP do affect the eastern regiolséf and eastern countries.

4.0 Conclusions

BC measurements were carried out in both indoorG(Lldhd traditional cookstoves users) outdoor

(middle of village, roadside of the village and igays) to study diurnal and seasonal charactesjstic

radiative forcing; source of apportionment over theee districts of IGP. Following conclusions are

drawn from our present study:

Crop residue (35.65 %) was the primary fuel forkiog in rural households followed by cow
dung cakes (32.56 %), firewood (26.56 %) and LPG236). Use of cow dung has enhanced up
to 6.31% (1.262%/year) and 1.17% crop residue duidll- 2015 in rural households while
other means of cooking have declined. Each holdeipends ~Rs. 470.00 per-month (US$ 7-
8/month) to access clean fuel energy (LPG) whileawerage of Rs. 560 per month (US$ 8-
9/month) to purchase traditional fuel and coal. Tke of LPG is restricted in these rural areas
due to economic conditions and accessibility of LA®e present Government policy to use
clean energy and provide free access to LPG i anea may reduce BC emissions.

The peak values of BC are observed during morning avening hours. In the indoor
environment, BC concentrations vary in the ran@® 1o 22.16.gm ® during morning hours and
1.90 to 25.36ugm® in the evening. Similarly, use of LPG reduces mmdBC concentrations,
0.26 to 3.19ugm° during morning hours and 0.13 to 43.F§m° during evening hours.
Pronounced reduction in BC concentrations upto%0was found with the use of LPG during
both morning and evening hours in all three ditgric

The seasonal mean mass concentration of BC wer86 255.01, 16.36 + 3.68, 8.92 + 1.98 and
15.17 + 3.3Iugm* with the biomass indoor use during winter, preasamn, monsoon and post-
monsoon respectively. Similarly, the seasonal maarcentrations with LPG use were 3.79 +
0.77, 2.62 + 0.60, 2.02 + 0.355 and 2.19 + Qugit® during winter, pre-monsoon, monsoon and

post-monsoon respectively. LPG use are able tcceethe BC concentration by 85, 84, 77 and 86
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Vi.

Vii.

viii.

percent during winter, pre-monsoon, monsoon and-poesisoon respectively in case of indoor
BC concentration.

The outdoors, concentrations vary in the range-2890ugm ® in the morning and 8.06-21.72
ugm 2 in the evening hours while the seasonal mass otrations of BC were 24.20 + 4.46,
19.80 £+ 4.34,8.87 +1.83 and 9.14 + 1;E§]4cn'3 during winter, pre-monsoon, monsoon and post-
monsoon respectively.

The BC concentrations was highest (~35%) duringuiene(19:00 to 22:00hrs) as compared to
morning due to the contribution of BC emissionsyfragriculture biomass burning.

The correlation between the weekly number of fpesedes and average BC concentrations show
a linear relationship (R 0.564)suggesting that the burning of agricultuesdidue during the
winter and pre-monsoon season worsen the air gualithe IGP, and some study (Sarkar et al.
2018) reported the impacts to a greater partsdéin

ATM and TOA positive radiative forcing of BC andrasol particles show a net warming impact
in the study area while the SUR radiative forcihgwes a cooling effect.

The backward trajectories analysis helped in utdeding the source and the region of the
pollution. The biomass burning in Pakistan and hafgjstan, Punjab, Haryana and Uttar
Pradesh), dust aerosols from Gulf countries andtéestates of India and industrial pollution
from highly industrialized northern parts of Indiee responsible for the high BC concentrations
(40-45 pgnt) during the winter and pre-monsoon.

The health impacts of BC are severe and affectplpao suffer with the eyes watering (26%),
itchy eyes (25%), asthma and respiratory problep2846), cardiovascular disease (17%) and
coughing (10%). These impacts tend to be partityularge in rural India since households often

lack ventilation in cooking areas, even in ruraaa people used to sleep in the cooking place.

Our present results will be of great help to thenistry of Environment, Forest and Climate Change,

India, World Health Organization (WHO), EnvironmainProtection Agency (EPA) and other global and
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National agencies to formulate policy to limit B@igsions and follow clean air act to save milliarfis
lives.
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Table 1. Survey and BC monitoring Locations

State District Block Town/Village Geo-coordinates
. Sitapur Town 2733 26.5" N, 8039’ 50.4’E
Khalilabad - ; m ; -
. Igri 27° 24’ 52.7" N, 8034’ 11.5°E
Uttar Pradesh | Sitapur ; m ; W
Laharpur Laharpur 2742 46.53" N, 8054’ 40.19"E
Bilariya 27 46 59.9" N, 8055’ 11.7'E
Fatuha Maksoodpur 2524’ 42.9" N, 8817’ 24.3'E
Bihar Patna Shukalpur 2532’ 25.9” N, 8515’ 57.0°E
Patna Sadar Meethapur 2535’ 24.9" N, 8808’ 08.9'E
Mohanpur Kachhuara| 2%33'21.89” N, 8411’ 01.30"E
Basudevkali 2204 22.8" N, 8813’ 19.0’E
Behrampur - ; - ; m
. Harishpur 2409’ 17.5" N, 8820’ 49.5"E
West Bengal Murshidabad - ; b ; =
Farakka Tildanga 247 28.5" N, 8752’ 24.9'E
Amtala 24 43' 32.6" N, 8754’ 04.0"E
Table 2: Average fuel used in Indian Households antGP locations
Average Percentage of Fuel used for cooking
Census 1991 Census 2001 Census 2011
- - Decadal Change - Decadal Change
g e | 2 g & R £ | (Decrease/increase) & 0 |2 4 | (Decrease/increase) Primary
=] 0] L5 | £ [0) L5 = o oE Survey,
= T 83| = = 182 Selected | = = 1 8L Selected| 2016
Fuel Type IGP districts IGP districts
Firewood | 71.69 | 4881 3171 641 41 2491 7.24 -6.8 62586.79 | 314 5.19 6.49 26.56
Crop 13.1| 2382 3324 100 100 12.33  2200B448 | -1.75 1.26 35.65
residut
Cow-dung | 196 | 37.79] 4399 128 2628 3242 -11.56 -11.37] 870. 21.84| 26.25 -4.39 -6.37 32.56
LPG 122 | 082 026 57| 291 143 2.09 1.17 114 5F8 733 277 2.3 3.12
Other
(Coal &
Charcoal, | - o | 1553 2309 43| 52| 749 73 165 261 3Ws397 | 175 352 1.86
Kerosene,
Electricity,
Biogas)
Table 3: Monthly average indoor, outdoor and on rod BC concentrations during January, 2015 to
December 2016
Sitapur Patna Murshidabad
Outdoo Outdoo Outdoo
BC in BCin r BC on BCin BCin r BC on BCin BCin r BC on
Month Biomass LPG (Middle Hi Biomass LPG (Middle : Biomass LPG (Middle ’
ighwa Highwa Highwa
Users Users of s (ugn Users Users of s (g Users Users of s (ugm
Househol | Househol | Village Y 3)9 Househol | Househol | Village b 3)9 Househol | Househol | Village y 3)9
d@ugm®) | d@gm® | s)BC d@gm®) | d@gm® | s)BC d(ugm®) | d@gm® | s)BC
(ugm’®) (ngm?®) (ngm®)
January 21.68 1.82 16.50 16.5 - 2.89 20.69 1698 | 515 1.36 18.46 15.46
February | 1919 1.96 11.57 1157 | 119 2.70 21.25 1971 | 1749 1.87 19.46 17.18
March 14.42 1.60 11.66 1166 | 1c 40 1.70 12.65 2415 | 4e5 1.67 14.58 21.46
April 1188 227 10.63 1063 | 1,88 2.20 13.50 2116 | 4445 1.87 14.69 17.46
May 6.85 1.85 6.70 6.7 .85 1.79 9.45 16.25 736 1.45 8.42 14.18
June 585 1.81 4.02 5.14 6.85 1.85 6.15 18.45 530 1.85 5.16 12.16
July 5.90 223 3.89 5.89 5.99 2.24 7.56 13.14 4.49 1.26 4.46 6.18




August _— 1.94 417 5.17 799 1.68 5.24 12.15 6.87 1.87 2.16 4.46
greptemb 001 217 5.25 7.25 10,01 1.30 6.14 115 1115 1.36 3.14 5.16
October 11.72 1.82 5.98 5.98 11.10 1.86 7.89 16.34 1358 1.75 4.69 6.87
Ero"emb 8.80 2.00 7.44 9.8 0.80 2.15 12.58 1769 | 1448 1.98 7.46 9.14
Decembe
; 1674 247 10.87 13.45 2074 3.01 14.26 18.45 2215 2.01 14.15 1758
Table 4: Measured BC mass concentrations from varigs locations in the IGP
BC in Biomass BCin LPG
Location Sampling Period Users Users Outdoor BC References
Household Household (ugm®)
(ngm®) (ngm®)
Sitapu 1.8(-25.3¢ 0.0¢-3.7¢ 2.96-23.6¢
Patna January-December, 2016 1.0-25.16 0.10-3.10 3.25-24.20 Present study
Murshidaba 1.0-24.5; 0.07-2.9¢ 1.25-21-35
Patna January- to December, 2015 - - 21.86 £3.48 if efal. 2018
Gorakhpur 2013-2015 - - 19+14 Va'Shé"z‘)'lﬁ' etal,
Balia June- to August, 2014 - - 4.03 Tiwari et24l16
- Joshi, H., et al,
Pantnagar 2002012 ) 48+3.6 2015
. - Singh and Rai,
Varanasi | 5010ner 2008 to May 20! ; 22-19.6 201
Rehman et al,
Kanpur Sept. to Nov., 2009, 60.0 (in morning) 30.0 (in morning) 2011
Delhi January 2006 to January 2( - - 14.7¢ Bano et al., 201
Agra December, 2004 - - 10.5-17.4 Safai et al.82(
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Figure 1. Black Carbon monitoring and survey locations ireénhdistricts of IGP (Indian Part)
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Figure 2: Different sourcesof biofuel used for cookingin Sitapur, Patna and Mur shidabad

(Primary Survey, 2015)
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Figure 3: Variety of fuel used (in percentage) in Indian rehusds as per the census and primary survey
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Figure 4a: The monthly average indoor (LPG & biomass userd)arndoor concentrations of BC
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Figure 4b: Average daily seasonal indoor black carbon cona#atr in biofuel user's
households during January to December, 2016
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Figure 4c: Average daily seasonal indoor black carbon conagatrin LPG user’s households
during January to December, 2016
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Figure 5a: Average daily seasonal outdoor black carbon conaton during January to December,
2016
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Figure5b: Diurnal profiles of average indoor and outdoor Bfi@entrations during January to
December, 2016
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Figure 6: Seasonal averaged diurnal variatiolBB@f concentrations at highways during January to
December, 2016
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Figure 7a: weekly number of fire counts and average BC comagahs during January to December,
2016
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Highlights

» BC concentrations in LPG user’s households was%0d8ver than biofuels user’s families.

» Diurnally the mass concentration of BC was higl{e86%) in the evening.

« Both ATM and TOA positive radiative forcing of B(hé aerosol particles are showing a net warming
effect on the study area while the SUR radiativeifg shows chilling effect.

 HYSPLIT modeling suggest that the smoke from biesrasrning contribute significantly to air pollution
levels in the cities.
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