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radiative forcing 3 

Mohammad Arif1, Rajesh Kumar1*, Ramesh Kumar1, Eric Zusman2, Ramesh P. Singh3 and Akhilesh 4 

Gupta4 5 

1Department of Environment Science, School of Basic Sciences and Research, Sharda University, Greater Noida 6 

India 7 

2Sustainability Governance centre, Institute for Global Environmental Strategies, Japan 8 

3School of Life and Environmental Sciences, Schmid College of Science and Technology, Chapman University, 9 

USA 10 

4Department of Science & Technology, Technology Bhawan, New Mehrauli Road, New Delhi, India 11 

Abstract 12 

Black Carbon (BC) has been widely recognized as the second largest source of territorial and global climate change 13 

as well as a threat to human health. There has been serious concern of BC emission and its impact in Indo-Gangetic 14 

Plains (IGP) due to the use of biomass and fossil fuels for cooking, transportation and industrial activities. An 15 

attempt has been made to study indoor (Liquefied Petroleum Gas- LPG & Traditional cookstoves users households) 16 

and outdoor concentrations; seasonal characteristics; radiative forcing and source of apportionment of BC in three 17 

districts (Sitapur, Patna and Murshidabad) of IGP during January to December 2016. The seasonal concentrations of 18 

BC in LPG (traditional cookstoves) users households were 3.79 ± 0.77 µgm-3(25.36 ± 5.01 µgm-3) during the  19 

winter; 2.62 ± 0.60 µgm-3 (16.36 ± 3.68 µgm-3) during the pre-monsoon; 2.02 ± 0.355 µgm-3 (8.92 ± 1.98 µgm-3) 20 

during the  monsoon and 2.19 ± 0.47 µgm-3 (15.17 ± 3.31 µgm-3) during the post-monsoon seasons. However, the 21 

outdoor BC concentrations were 24.20 ± 4.46, 19.80 ± 4.34,  8.87 ± 1.83, and 9.14 ± 1.84 µgm-3  during  winter, pre-22 

monsoon, monsoon and post-monsoon seasons respectively. The negative radiative forcing (RF) at the surface 23 

suggests a cooling effect while a warming effect appears to be occurring at the top of the atmosphere. The 24 

atmospheric forcing of BC and aerosols also show a net warming effect in the selected study areas. The analysis of 25 

BC concentrations and fire episodes indicated that the emissions from biomass burning increases the pollution 26 
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concentration. The backward trajectory analysis through the HYSPLIT model also suggests an additional source of 27 

pollutants during winter and pre-monsoon seasons from the northwest and northern region in the IGP. 28 

Keywords :  Black carbon, Biomass burning, Radiative forcing, Hotspots, Health impact, Backward trajectory, 29 

Firewood, HYSPLIT 30 

1.0 Introduction 31 

Black carbon (BC) concentrations have continuously increasing throughout the world due to growing 32 

anthropogenic activities, directly contributes to atmospheric warming and serious threat to human health 33 

(UNEP, 2011). BC plays an important role in global climate change  after CO2 (Venkataraman et al., 34 

2005; Bond et al., 2007, 2013; Forster et al., 2007; Gustafsson et al., 2009; Ramanathan and Carmichael, 35 

2008). The spatial distribution of BC has affected monsoon pattern in east/south Asia (Menon et al., 2002; 36 

Ramanathan et al., 2001, 2005; Lau et al., 2008) by heating the Himalayan-Tibetan region (Ramanathan 37 

et al., 2007; Flanner et al., 2009; Menon et al., 2010). It is also responsible for the enhanced glacier 38 

melting (Hansen and Nazarenko, 2004; Jacobson, 2004; Flanner et al., 2007; Koch et al., 2009a, Menon et 39 

al., 2010). During 1999-2004, annual average melting reached to 0.85 min Lahaul/Spiti glaciers of 915 40 

km2 in Himalaya (Berthier et al., 2007). Such accelerated melting is threat to water supplies and food 41 

security, potentially slowing the region’s socio-economic development (Lawrence and Lelieveld, 2010). 42 

The Indo-Gangetic Plain (IGP) region is home of 900 million people and one of the highly agricultural 43 

productive regions of the world. IGP is reported as one of the largest source of BC emission due to 44 

anthropogenic activities, burning of crop residue and biomass, forest fires, vehicular emission, brick kilns 45 

and coal based power plants (Prasad et al., 2006, Ramachandran and Cherian, 2008; Rehman et al., 2011; 46 

Kharol et al., 2014, Saud, et al., 2012, Pandey and Venkataraman, 2014, Kaskoutis et al., 2014, Singh and 47 

Kaskoutis, 2014, Arif et al., 2018, Chauhan and Singh 2018, Sarkar et al., 2018). Enhancement in BC 48 

concentrations were also observed during Diwali (light) festival in Greater Noida (Singh and Sharma, 49 

2012).This festival is very popular and celebrated all over India (rural or urban areas), candles are lighted 50 

in houses and people play with fire crackers, source of absorbing aerosols and soot particles.  51 
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About 90% of rural households of IGP are still using biomass (firewood, cow dung cake and crop 52 

residue) for cooking and has been recognized as one of the major sources of BC in the region. As a 53 

primary component of particulate matter, BC not only leads to indoor/outdoor air pollution but also have 54 

serious threat to human health (Mishra et al., 2005, Grahame and Schlesinger, 2010). Quantification of 55 

BC emissions from direct sources like households, transportation, industries and open biomass burning is 56 

poorly understood in semi-urban areas of IGP. Therefore, there is a need of national policy and mitigation 57 

measures to reduce impact of BC. The preparation of policy and management of BC emissions need data 58 

on causes, periodic concentrations, variations and meteorological characteristics of contaminants. Hence, 59 

an attempt has been made to study the pollution load and impacts in growing districts of IGP (Sitapur, 60 

Patna and Murshidabad) (Fig. 1) where approximately, 96% of rural families rely on biofuel cooking 61 

(firewood, crop residue, cow dung, kerosene, etc.).  In these growing districts, Patna has been ranked 62 

among the top 100 air polluted cities in the world (WHO, 2014). Here, we have carried out regular indoor 63 

and outdoor BC mass concentration measurements at 120 randomly selected households (LPG and 64 

biomass users, 60 each) in the middle of village (12 locations) as well as nearby road (6 locations) in 65 

selected districts during the period of January- December 2016. To the best of our knowledge, this is the 66 

first comprehensive study on measurements of BC concentration in rural areas. The radiative forcing and 67 

indoor/outdoor seasonal BC variations will be of great importance for policy formulation and control of 68 

air pollution in IGP. This study is focused to (1) measure indoor/outdoor BC emission, (2) investigate the 69 

seasonal and diurnal variations of BC (3) evaluate the potential sources for BC and (4) analyze radiative 70 

forcing. 71 

2. Experimental Setup 72 

2.1 Experimental sites and general meteorology 73 

Based on the biofuels use pattern and socio-economic conditions, three districts namely Sitapur (27.6°N, 74 

80.18°E), Patna (25.35° N, 85.12° E) and Murshidabad (23.43º N, 87.49º E) were selected to study spatial 75 

distributions of BC concentrations and detailed analysis (Fig. 1). The climate of Sitapur and Patna 76 

district’s is ‘sub-tropical humid’ and considered as ‘Cwa’ kind based on the Koppen Climate 77 
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Classification (Sanderson, 1999). The summer temperature vises very high upto (40-500C) in both Sitapur 78 

and Patna districts due to the intensity of a tropical sun. The district Murshidabad is tropical and 79 

categorized as ‘Aw’ kind of climate. The annual mean temperature of Murshidabad district is 80 

approximately 27 °C and monthly mean temperature ranges from 17-35 °C. The westerly and north- 81 

westerly winds bring air mass during the pre-monsoon season; from the west/southeast during the 82 

monsoon season and from the north/northeast during the post-monsoon/winter season (Prasad et al., 2006; 83 

Moorthy et al., 2007). Hence, these locations were ideal for long-term indoor and outdoor BC 84 

measurements to understand the dynamics of aerosols and BC concentrations over the IGP (Ramanathan 85 

et al., 2005; Nair et al., 2007) and related climatic impacts (Gautam et al., 2010). 86 

2.2 Instrumentation and data analysis 87 

Six revenue blocks (2 blocks per district) were selected from the above mentioned three districts for the 88 

socio-economic survey. In six blocks, 12 villages (2 villages per block) with varying socio-economic 89 

conditions were identified through reconnaissance survey for households study (Table 1). Total 300 90 

households (25 households per village) were randomly selected from these villages to evaluate socio-91 

economic conditions, fuel consumption patterns, fuel types, health issues, barriers to clean fuel energy 92 

accessibility and adaptability of households.  93 

BC concentrations were measured in the cooking area close to traditional and LPG cookstoves in 120 94 

randomly selected households (60 LPG and 60-biomass users). Simultaneously, BC concentration 95 

measurements were also carried out in the middle of selected villages (12 locations) as well as nearby 96 

roads (6 Nos.). Measurements were done at an interval of five minutes through portable micro-97 

aethalometers (Model AE-42) and aethalometers (Model AE-33), Magee Scientific, USA (Hansen et al., 98 

1984).  The observations were made at 370, 470, 520, 590, 660, 880 and 950 nm wavelengths. The 99 

emissions of BC from fossil fuel provides peak at 830 nm wavelengths while other components of aerosol 100 

have irrelevant absorption peak at this wavelength, hence, 880 nm channel was considered for 101 

measurement of BC concentrations. The inlet pipe was 0.15 m and the instruments were fixed at 1 m 102 

aside and 1 m above the surface to receive uniformly diffused concentration from the cookstoves (indoor) 103 
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and other sources (outdoor). The flow rate of aethalometers was set at 3 L min-1 because of huge 104 

emissions at these locations. Details of instrument, uncertainties and rectifications can be referred in 105 

numerous publications (Hansen et al., 1984; Babu and Moorthy, 2002; Weingartner et al., 2003; Arnott et 106 

al., 2005; Schmid et al., 2006). 107 

2.3 Fire count analysis and transport pathway 108 

The enhanced BC concentrations in the IGP has also been reported due to the agricultural residue burning 109 

in fields and forest fire in northwest, northeast and central states of India (Singh et al., 2014, Singh and 110 

Kaskaoutis 2014, Sarkar et al. 2018). The fire spots in agriculture field and forest were counted through 111 

National Aeronautics and Space Administration’s Earth Observatory and Firms Web Fire Mapper data 112 

(Tipayarom et al., 2007). To study the effects of agricultural residue and forest fire on BC concentrations, 113 

a correlation between the fire counts from MODIS and the outdoor BC concentrations were also analyzed. 114 

The eight days backward trajectories were computed for each district by using HYSPLIT4 model (Dumka 115 

et al., 2013; Draxler and Rolph, 2014; Dumka et al., 2015; Bisht et al., 2015). The HYSPLIT4 model 116 

helped in examining the impacts of other probable sources on measured BC concentrations, local air 117 

quality and the other neighboring areas. The global reanalysis data were utilized as an input for 118 

calculating isentropic backward trajectories. In IGP, most of the farmers generally burn their agricultural 119 

straw between 18:00 to 21:00 hrs (local time) and 19:00 hrs was considered as starting time for 120 

computation of trajectories and pathways of pollutants. 121 

2.4 Estimation of radiative forcing  122 

Aerosols vary in their chemical compositions that control the radiative forcing and aerosol cloud 123 

interactions (Boucher et al., 2013). In Intergovernmental Panel on Climate Change, Fifth Assessment 124 

Report (AR5), total aerosol forcing associated with black carbon is estimated as -0.03 and +0.02 Wm-2 125 

over the periods1990-2010 and 2000-2010 respectively (Myhreet al., 2013). We have computed radiative 126 

forcing (RF) using Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model 127 

(Ricchiazzi et al., 1998, Prasad et al., 2007, Tiwari et al., 2016).The measured BC concentrations were 128 

used into the OPAC model (Hess et al., 1998) to calculate optical depth and single scattering albedo. 129 
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Further, the output of OPAC model was used in the SBDART model to assess the radiative forcing of 130 

both aerosol and BC. The radiative forcing of both aerosol and BC for atmospheric layers were computed 131 

at 5o zenith interval to compute the average diurnal forcing. The average diurnal forcing at the surface 132 

(SUR) and top of the atmosphere (TOA) were estimated separately. The atmospheric forcing (ATM) was 133 

computed as difference of TOA and SUR forcing along and beyond the elements contributing to 134 

warming.  135 

3.0 Results and Discussion 136 

3.1 Households Biofuel Consumption 137 

The study area considered in the present study shows 90-95% rural households use biofuel cooking 138 

(firewood, crop residue, cow dung cakes, coal, and kerosene). Firewood was the primary energy source 139 

for cooking in 44.93% households in Sitapur district followed by cow dung cake (26.63%), crop residue 140 

(24.16%), LPG (3.12 %) and other sources (1.12 %). In Patna district, cow dung cake was the primary 141 

source of fuel for cooking in 42.16% households followed by crop residue (30.85%), firewood (20.42%), 142 

LPG (4.14%) and other sources (2.36%). In the Murshidabad district, crop residue was the primary source 143 

for cooking in 52.24% households followed by cow dung cake (28.86 %), firewood (14.32%), LPG (2.10 144 

%) and other sources (2.10 %). Figure 2 shows distribution of different sources of biofuel cooking in the 145 

considered study locations. The average monthly consumption of firewood and coal was 145-154 kg, 146 

while the average monthly consumption of LPG was 10 kg for each household. It was also found that 147 

each household spends ~Rs. 470.00 per-month (US$ 7-8/month) to access clean fuel energy (LPG) and on 148 

an average of Rs. 560 per month (US$ 8-9/month) to purchase firewood and coal. One of the interesting 149 

findings from the survey is that large numbers of households are spending money to purchase traditional 150 

fuel compared to the clean energy due to cultural preferences, fuel availability, accessibility and 151 

inadequate LPG distribution centers. The average use of LPG is upto 3.12 % in rural households in these 152 

districts that needs to be enhanced to use clean fuel (LPG) to reduce BC emissions indoors as well as in 153 

outdoors. Energy and its technologies play a key role in socio-economic development of the community 154 

to the national levels to minimize threat to human health, environmental pollution and climate impacts 155 
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The primary survey results of selected districts were also compared with Census of India’s rural 156 

household fuel use data (for 2001 and 2011) to understand the fuel use pattern and validation of survey 157 

results. The decadal average percentage use of firewood in these districts has increased by 6.49% 158 

(0.649%/year) followed by LPG 2.77%, and crop residue 1.26% during 2001-11 due to increase of 5.83 159 

lakh (0.583 million) rural houses (0.583 lakh/year) (1 lakh = 105). However, there is an increase of 5.19% 160 

(@0.519%/year) use of firewood and 2.77% in LPG with the increase of 121.16 Lakh (12.116 million) 161 

rural houses (12.116 Lakh/year) during the same period in IGP, which are using large percentage of 162 

traditional sources of cooking (Table 2). 163 

As per the 2015 survey, crop residue (35.65%) was the primary fuel for cooking in rural households (Fig. 164 

3) followed by cow dung cakes (32.56 %), firewood (26.56%) and LPG (3.12%). The 2011 Census data 165 

also indicates that crop residue was the primary energy source for cooking in 34.48% of the rural 166 

households of these districts of IGP followed by firewood (31.40%), cow-dung cakes (26.25 %) and LPG 167 

(3.73%). An increase of 6.31%  use of cow dung cake (1.262%/year) and 1.17% in crop residue during 168 

2011-15 in rural households due to increase of rural houses as well as fuel availability and accessibility, 169 

however, other kind of fuels show a declining trend. Further, an average use of clean fuel is much lower 170 

in these districts (3.12-3.73%) as compared to IGP (5.68%) and Indian average (11.4%) while higher in 171 

traditional fuel, which needs to enhance the use of clean fuel (LPG) in the region to minimize the impacts 172 

of BC.  173 

3.2 Indoor BC emissions from households using traditional and LPG cookstoves 174 

The type of cooking fuel is the main contributor of increased BC concentrations. High BC concentrations 175 

were observed in both indoors and outdoors environment during cooking hours. The daily BC mass 176 

concentration in the proximity of traditional Cookstoves users varies from 0.06 to 21.86 µgm-3 in the 177 

selected households during the measurement periods. The highest average indoor BC concentrations were 178 

found during the winter season (December to February) while lowest during the monsoon (June to 179 

September) (Fig. 4a) in the study area. The indoor mean BC concentration shows highest concentration 180 

(25.36 ±5.01 µgm-3) during the winter and lowest (8.92 ± 1.98 µgm-3) during the monsoon seasons in 181 
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traditional cooking (cookstoves users). The observed BC concentrations are found to be different from 182 

earlier study by Rehman et al. (2011) in Kanpur city (it may be noted that the Kanpur is an industrial city 183 

where the economic conditions is much better than the three locations considered, many people use LPG 184 

compared to other sources of biofuel cooking). Similarly, the BC concentrations were observed maximum 185 

(3.79 ± 0.77 µgm-3) during the winter season and minimum (2.02 ± 0.355 µgm-3) during the monsoon 186 

season using LPG as source of cooking. The monthly average indoor and outdoor BC concentrations are 187 

summarised in Table 3. The seasonal concentrations in traditional cookstove user’s households were 188 

25.36 ± 5.01 µgm-3during the winter season, 16.36 ± 3.68 µgm-3 during the pre-monsoon (March to May), 189 

8.92 ± 1.98 µgm-3during the monsoon and 15.17 ± 3.31 µgm-3during the post-monsoon (October to 190 

November) (Fig. 4b). Similarly, the seasonal mean concentrations in LPG user’s households were 3.79 ± 191 

0.77 µgm-3 in the winter; 2.62 ± 0.60 µgm-3 in the pre-monsoon; 2.02 ± 0.355 µgm-3 in the monsoon and 192 

2.19 ± 0.47 µgm-3 in the post-monsoon (Fig. 4c). In Sitapur, BC concentrations vary from 1.80 to 25.36 193 

µgm−3 during the entire pre-monsoon season while, from 1.0 to 25.16 µgm−3 in Patna and 1.0 to 24.52 194 

µgm−3 in Murshidabad districts. The BC concentration was observed to be the highest (25.36 µgm−3) in 195 

cow-dung cake and crop residue user’s households as compared to firewood user’s households due to low 196 

calorific value (9.79 to 14.20 MJ/ kg) and thermal efficiency (8.90-17.10%) of cow-dung cake (Harshika 197 

et al., 2014). It has resulted in the wastage of biofuel and the huge BC emissions from the traditional 198 

cookstoves.   199 

It is noted that 90-95% rural households of selected districts are using traditional cooking fuels with high 200 

emission of BC concentrations indoor environment that leads to the indoor/outdoor air pollution and high 201 

health problems in the IGP. The Government of India has introduced several programs to reduce BC 202 

emissions from residential area such as improved cookstove program, family-size biogas plants, 203 

community biogas plants and Ujjawala scheme (distribution of LPG to poor people) for rural households 204 

and compressed natural gas in transportation sector. Still the BC emissions from residential is not 205 

reducing and making a potential area for research to understand the effectiveness of these programs.   206 
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 It is well known that while cooking, people inhale BC and particulate matters from burning of bio/fossil 207 

fuels. The health of women and children are more vulnerable due to closer and larger inhalation of fine 208 

particulate matter while cooking and being near high concentration zone. It is also well known that the 209 

emissions from biofuel cooking have serious health problems such as acute lower respiratory infections, 210 

lung cancer, blindness (cataract), tuberculosis (TB), asthma,  and chronic obstructive pulmonary disease 211 

as well as heart disease among the women and children (Smith 2000; Smith et al. 2000a; Parikh et al. 212 

2001). The impact is maximum in rural areas due to lack of clean fuel, improved cookstoves and separate 213 

and ventilated cooking (kitchen) place. The primary survey conducted in selected villages, where females 214 

were also interviewed particularly on the health concerns to understand the negative health impacts 215 

associated with emissions. The survey reports found similar findings, women are cognizant of higher 216 

health impacts (both short and long-term health effects). About 26% females reported eyes watering 217 

during the cooking time followed by eyes itching (25%), asthma and respiratory problems (22%), 218 

cardiovascular disease (17%) and coughing (10%). These results were further verified with the data 219 

available at nearby community health centers. It has also been noted that these effects have immediate 220 

implications for spending per household expenditure on health (Rs. 258-275/month). It may be noted that 221 

no official data about the human health suffering were available from the rural or city hospitals, so we are 222 

not able to discuss any data. However, we consulted nearby PHC/CHC doctors about the common 223 

diseases in the area and survey results were validated with the doctors.  224 

3.2.1 Indoor Diurnal Variation of BC 225 

The hourly mean diurnal variations of BC for 120 selected households (60 biofuels and 60 LPG users) are 226 

shown in Fig.4b. In the morning cooking hours (06:00 to 09:00 hrs), indoor BC mass concentrations in 227 

biofuel cooking were observed to vary from 1.80 to 22.16µgm−3 with an average value of 12.15 µgm−3 in 228 

all selected households. While in evening cooking hours (17:00 - 20:00 hrs), BC concentrations vary in 229 

the range 1.90 to 25.36µgm−3 with an average value of 13.6 µgm−3.. However, at LPG cooking loctions, 230 

indoor BC concentrations vary in the range 0.26-3.19 µgm−3 with an average value of 1.62 µgm−3in the 231 

morning cooking hours and in the range 0.13-3.79 µgm−3 in the evening cooking hours with an average 232 
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value of 1.45 µgm−3 in all selected households (Fig.4c). The seasonal analysis of BC concentrations 233 

shows that  the biomass user’s households were  exposed to 25.36 ± 3.12 µgm-3 (3.79 ± 0.58 µgm-3) 234 

during  the winter; 15.15 ± 1.45 µgm-3 (2.38 ± 0.45 µgm-3) during the pre-monsoon; 8.40 ± 0.75 µgm-3 235 

(2.02 ± 0.28 µgm-3) during the monsoon and 13.69±1.25 µgm-3 (1.99 ± 0.17 µgm-3) during the post-236 

monsoon season in the morning cooking. While during the evening cooking, the mass concentrations 237 

were about 19.31 ± 2.82 µgm-3 (3.24 ± 0.76 µgm-3); 14.59 ± 2.29 µgm-3 (2.47 ± 0.40 µgm-3); 8.29 ± 1.51 238 

µgm-3 (1.47 ± 0.29 µgm-3) and 13.45 ± 2.18 µgm-3 (1.98 ± 0.32 µgm-3) during the winter, pre-monsoon, 239 

monsoon and post-monsoon seasons, respectively. The indoor BC concentrations  in LPG user’s 240 

households was ten times (90.3%) lower in LPG cooking compared to biofuels cooking during entire 241 

study periods due to high calorific value (46.1 MJ/kg) of LPG and thermal efficiency of LPG gas stove 242 

(64%). It is pertinent to mention here that only 3.12 -3.73 % households use  LPG as a cooking fuel 243 

source that makes the  region vulnerable to both health and climate impacts. 244 

3.3 Outdoor BC Concentrations in the center of village 245 

The BC measurements (outdoor) were also carried out in the center of village to compare the impact of 246 

indoor BC emissions and other sources. During morning cooking hours, outdoor BC mass concentrations 247 

varies in the range of 4.39 -24.20 µgm−3 with an average value of 18.51 µgm−3 while in the evening hours, 248 

BC concentrations vary in the range of 8.06 -21.72 µgm−3 with an average value of 16.07 µgm−3. To 249 

analyse the variation of BC, it is essential to understand the influence of the local, regional and national  250 

emission sources. The daily BC mass concentration in the vicinity of designated sites vary in the range of  251 

0.98-24.20 µgm-3 during the whole study period. BC concentrations vary in the range of 0.98-24.20 µgm−3 252 

in Sitapur, 1.70-24.10 µgm−3 in Patna and 1.0-23.1 µgm−3 in Murshidabad districts throughout the 253 

monitoring period (over the year).  254 

The highest average outdoor BC concentrations were observed during the winter season while lowest 255 

during the monsoon season (Fig. 4a). The mean mass concentration of BC was at its maximum (24.20 ± 256 

4.46 µgm-3) during  the winter season while minimum (8.67 ± 1.83 µgm-3) during the monsoon season 257 

because of rainfall. The BC concentrations show maxima peak  (24.20 ± 4.46 µgm-3)  in the month of 258 
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January because of lower planetary boundary layer (PBL), increased biofuel burning and brick kilns 259 

activities. The seasonal outdoor BC concentrations were 24.20 ± 4.46 µgm-3during the winter season, 260 

19.80 ± 4.34 µgm-3 during the pre-monsoon, 8.87 ± 1.83 µgm-3 during the monsoon and 9.14 ± 1.84 µgm-3 261 

during the post-monsoon seasons (Fig. 5a). Apart from the local emissions and meteorological 262 

conditions,  long-range pollutants from crop residue burning, forest fires and dusts from Thar and Arabia 263 

peninsula further change the particles size, mixing of the dust and BC influencing the climatic conditions 264 

(Dey et al., 2004, Prasad and Singh, 2007, Gautam et al. 2010).  265 

The diurnal variation of BC concentrations at local scale is important to understand the local emission 266 

variability that helps us to calculate regional and national emissions (Tiwari et al., 2013). The outdoor BC 267 

diurnal variations presented a similar pattern as indoor concentrations with the peaks in the morning and 268 

evening food cooking cycles that suggest the strong impact of indoor cooking on outdoor BC mass 269 

concentrations. BC concentrations start increasing before sunrise, with large peaks in morning hours due 270 

to high BC emissions from other local emissions. The high BC concentrations observed during evening 271 

hours as compared to the morning hours with BV values greater than 18 µgm−3 in outdoor environment. 272 

The ratio of BC mass concentrations were approximately 35% higher during 19:00 to 22:00 hrs in 273 

outdoor environment, showing emissions from local households and other sources. The maxima peaks are 274 

attributed mainly due to local (residential and industrial), traffic and crop residue burning that do not 275 

change in these months. The enhanced mass concentrations in the residual layer enhanced mass 276 

concentrations at the surface during burning period.  277 

The wind speed and height of the atmospheric boundary layer show an important role in the diurnal 278 

variation of concentrations and dispersion of pollutants. To recognize the significance of deviations in the 279 

boundary layer height on diurnal concentrations, the relationship between BC and mixing layer depth 280 

(MLD) was analyzed around monitoring sites with the NOAA HYSPLIT model 281 

(https://www.ready.noaa.gov/HYSPLIT_traj.php). The mixing layer heights were calculated from the 282 

impending temperature profile by detecting the height of an eminent inversion at each point. The average 283 

mixing height was found to be lower (30%) in the evening compared to the daytime. It is important to 284 
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note that BC concentrations were decreased (~2.45 µg m−3) at 15:00 hrs associated with the high wind 285 

speed, temperature, allow fast dispersion horizontal and vertical direction of pollutants during the pre-286 

monsoon season. The BC concentrations found to increase further after 16:00 hrs in the study region (Fig. 287 

5b). The ratios of BC mass concentrations were approximately 35% higher during 19:00 to 22:00 hrs in 288 

outdoor environment due to reduced wind speed, low temperature, lower mixing layer and high use of 289 

traditional fuel for cooking is an indicative of high local emission from households influenced by 290 

meteorological factors. The BC values again gradually fall after 22: 00 hrs due to reduced domestic 291 

emissions. It is found that diurnal deviation of BC concentrations attributed to the higher use of biofuels 292 

for cooking and other purposes. The observed BC concentrations were similar to BC concentrations 293 

measured in Varanasi (Singh and Rai, 2014) and slightly high from Gorakhpur (Vaishya et al., 2017), 294 

Ballia (Tiwari et al., 2016), Kanpur (Kanawade et al., 2014) and Agra (Safai et al., 2008) (Table 4). 295 

These findings confirm that rural and small cities are major contributors of BC emission as in the case of 296 

large cities in IGP, affecting poor air quality, warming of the region and threat to human health. 297 

3.4 BC emissions from the transportation sector 298 

BC emissions in the study area are not only attributed to residential area but also from other sources like 299 

transportation. Hence, the emission from transport (highway) were also measured at the NH-30 (Lucknow 300 

to Shajahanpur road at Sitapur), SH-21 (Sitapur-Lakhimpur Khiri road at Laharpur), NH-22 (at Patna), 301 

NH-431 (Patna - Fatuha Road at Fatuha), NH-114A (Behrampure - Jalangi Road at Behrampur) and NH-302 

12 (Farakka - Malda Road at Farakka). The main findings of the monitoring of mobile sources is that BC 303 

concentrations during the morning and evening hours show similar trend as observed in the centre of the 304 

village. During morning time (05:00 to 10:00 hrs), BC concentrations were observed from 3.13 to 305 

19.85µgm−3 with an average value of 9.44 µgm−3 while during evening hours (17:00 to 22:00 hrs), the BC 306 

emissions vary in the range of 3.48 to 20.82µgm−3 with an average value of 9.60 µgm−3. The monthly 307 

average of BC concentrations was observed to be highest level (20.82 ± 4.76 µgm-3) during winter and 308 

pre-monsoon seasons while lowest (8.92 ± 1.98 µgm-3) during monsoon season (Fig. 6). BC 309 

concentrations are washed out due to  precipitation. Higher BC concentrations in the month of  January is 310 
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also associated with the higher bio/fossil fuel burning for cooking as well as heating, municipal waste 311 

burning, brick kilns activities, and lower PBL depth/ mixing height.  312 

The seasonal concentrations of BC were 20.82 ± 4.76 µgm-3 during winter, 14.97 ± 3.34 µgm-3  during pre-313 

monsoon, 8.92 ± 1.98 µgm-3 during monsoon and 10.71 ± 2.38 µgm-3 during post-monsoon seasons. The 314 

diurnal variations show minimum BC concentration (1.68 µgm−3) at NH-431 (Fatuha) and highest 315 

(19.55µgm-3) at NH-30 (Sitapur) due to heavy traffic flow (550 vehicles/hrs). BC mass concentrations 316 

start to increase before sunrise and reach at the maximum level during 06:00 - 09:00 hrs and show low 317 

values around 15:00 hrs. This pattern suggests that indoor BC emissions also affect the on road BC 318 

concentrations. It is noted that the roadside BC mass concentrations were drastically reduced in mid-319 

afternoon (15:00 hrs) due to reduced vehiclar movement, high speed, low emission and negligible 320 

cooking activities as well as the vertical and horizontal dispersion of the atmospheric BC. In evening, the 321 

mean BC concentrations increased due to increased vehicular movement and cooking activities and 322 

reduction in vertical mixing. 323 

3.4.1 The effect of weekend on black carbon emissions 324 

The dynamics of BC concentrations were studied on the weekdays and weekends. Earlier studies (Zhang 325 

et al., 2009; Sahu et al., 2011; Mascia et al., 2016) have shown that the particulates and gaseous pollutants 326 

depend upon the location due to diverse surroundings and atmospheric settings. In the large cities, offices, 327 

academic institutions and other business activities (industrial and commercial) remain close during the 328 

weekend. However, in the rural areas, activities remain same except the movement of vehicles on the 329 

highways and nearby other roads. Pronounced reduction in aerosol optical depth and mass concentration 330 

of aerosol has been observed in Bangalore city (Satheesh et al., 2011) during the weekend. To quantify 331 

the findings, the effect of change in anthropogenic events, industrial activities and traffic flow on BC 332 

concentrations were examined during weekdays and weekend near NH-30 (Sitapur), SH-21 (Laharpur), 333 

NH-22 (Patna), NH-431 (Fatuha), NH-114A (Behrampure) and NH-12 (Farakka). The average evening 334 

peak of BC concentrations were observed between 1.68 to 19.55 µgm-3 in weekdays and 3.91 to 5.86 335 

µgm-3 in weekends. The diurnal variations show minimum concentrations on weekends, particularly on 336 
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Saturday at NH-431 (3.91 µgm-3) and NH-114A (3.95 µgm-3). However, high BC concentrations were 337 

observed on the weekend at NH-30 (4.78 µgm-3) and NH-22 (5.86 µgm-3) due to heavy traffic movement 338 

in the weekend. These roads were very close to state capital and district headquarters. 339 

3.4 The role of agriculture biomass burning 340 

Substantial increases in agriculture residue burning have been reported over the northwestern parts of 341 

India (Singh et al., 2014, Singh and Kaskaoutis 2014, Sarkar et al. 2018). Recent study by Sarkar et al., 342 

(2018) has shown that the crop residue burning influences greater parts of India. Chauhan and Singh, 343 

(2017) has reported that Diwali festival and crop burning severely impacted weather conditions, air 344 

quality and visibility of National Capital Region of India for a week. However, the National Green 345 

Tribunal, of India has banned agricultural biomass burning but this practice is still going on in north, 346 

north-west and central regions of India. Farmer’s burn their wheat crop residue during the May-June, 347 

mid-October and mid-November after the harvesting of rice crop. During the mid-October and 348 

November, temperature is rather cool. So the severe impact of crop burning is observed over Delhi and its 349 

surrounding areas. However, burning of wheat crop is not a severe problem in summer due to the warmer 350 

weather conditions and mixing height that result into a fast dispersion of air pollutants (Singh and 351 

Kaskoutis, 2014). This crop burning is a source of large amount of carbonaceous aerosols in the IGP 352 

(Venkataraman et al., 2006; Kaskoutis et al., 2014, Singh and Kaskoutis, 2014) and a serious threat to 353 

human health like asthma, respiratory, heart and lung diseases. To understand their effects of biomass 354 

burning on BC concentrations, we have used the MODIS-derived fire products (http://modis-355 

fire.umd.edu/index.php). The weekly number of fire counts and average BC concentrations were 356 

correlated and is shown in Fig. 7a. The BC mass concentrations increase up to 24.20 µgm-3 during winter 357 

and pre-monsoon seasons as a result of crop burning and forest fires in the study areas and surroundings. 358 

The monthly average BC mass concentrations at Sitapur and Patna are found to be high (24.20 µgm-3) as 359 

compared to Murshidabad (23.10 µgm-3) during the winter and pre-monsoon seasons. The BC mass 360 

concentrations during the June - October are found to be much lower (almost half of the BC 361 
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concentrations during the winter and pre-monsoon seasons) with the reductions in forest fires and 362 

agricultural crop burning.  363 

The inter-relationship between the monthly fire counts and monthly average BC concentrations are also 364 

examined (Tipayarom et al., 2007) that shows a relatively better linear relationship (R2= 0.564).  This 365 

relationship suggests that agricultural residue burning during winter and pre-monsoon season is one of the 366 

major causes for increase in BC concentrations (Fig. 7b) because of great pressure, rigorous 367 

photochemistry and absence of a removal procedure (Zhang and Kim Oanh, 2002).  368 

3.5 Aerosol radiative forcing 369 

Daily radiative forcing (RF) over IGP was also estimated for BC and composite aerosols shown though 370 

Figure 8. The seasonal TOA radiative forcing of aerosols and BC was found to be 20.6 and 18.5 Wm-2 371 

respectively during winter season; 25.5 and 21.1 Wm-2 during  pre-monsoon; 21.6 and 17.2 Wm-2 during  372 

monsoon and 16.8 and 6.87 Wm-2 during  post-monsoon season. The SUR forcing due to aerosol was -373 

50.8, -40.2, -20.7 and -10.2 Wm-2 and due to BC was -19.5, -22.0 -13.5 and -5.86 Wm-2 respectively 374 

during winter, pre-monsoon, monsoon and post-monsoon. An inconsistency was observed in the radiative 375 

forcing over study area due to the inconsistent presence of absorbent particles due to burning of fossil fuel 376 

and biofuels. The atmospheric radiative forcing for aerosols and (BC) was estimated as +75.8 (+39.7), 377 

+77.1(+42.1), +34.7 (+20.8) and +25.1 (+10.2) Wm-2 during the winter, pre-monsoon, monsoon and post-378 

monsoon respectively. ATM, TOA, positive radiative forcing of BC and aerosol particles are indicative of 379 

a warming effect  while the SUR radiative forcing shows a cooling effect in the study areas. These results 380 

are quite high in these semi-urban areas and large differences were observed in the radiative forcing at 381 

surface, atmosphere and top of the atmosphere due to the presence of absorbing aerosols. These radiative 382 

forcing may be high due to influence of dust particles and BC emission from western region of IGP 383 

during the winter and pre-monsoon season (Dey et al., 2004, Singh et al., 2004). Many researcher in the 384 

Indo-Gangetic plains (Prasad et al., 2007, Day and Tripathi, 2008; Gautam et al., 2010, Tiwari et al., 385 

2016) also found similar results. The impact of high radiative forcing is also clearly visible over the 386 

Himalayas and Tibetan Plateau (Zhang et al., 2015). 387 
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3.6 Role of long-range transport of dust  388 

The dominant westerly winds transport dust to a long range from Thar Desert and Arabia Peninsula in the 389 

Indo-Gangetic plains.  The dusts are transported up to the eastern parts of the IGP depending upon the 390 

meteorological conditions and wind speed during pre-monsoon season (Dey et al., 2004, Gautam et al., 391 

2009, Srivastava et al., 2010b) and transport to central and eastern parts of IGP.  Apart from the dust from 392 

the desert,  the impact of emissions from the open burning of crops/ forest fires from the north/central 393 

region of India and black smoke consists of carbon particles from coal based power plants were also 394 

observed over IGP (Ramachandran and Cherian, 2008, Prasad et al., 2009, Sarkar et al. 2018). The 395 

emissions from these sources located in the nearby areas and long-range transport of pollutants are likely 396 

to influence our BC measurements. The resident time of BC in atmosphere is ~1 week to 10 days (Reddy 397 

and Venkataraman, 1999), so 8 days isentropic backward trajectories were examined by using HYSPLIT 398 

model to know pollutants transport pathways. The NOAA HYSPILT backward trajectories show 399 

directions of the air mass reaching at different measuring locations (Fig. 9). 400 

During the winter and pre-monsoon seasons, BC concentrations varies in the range 20.1-24.82 µgm-3 due 401 

to transport of air mass from western parts of IGP. About 90% of the backward trajectories reach Sitapur 402 

from the northwestern regions and 10% from western areas. At Patna, dominant air mass comes from 403 

north-west parts and less from southeast region (Fig. 9). Similarly, about 98% of the trajectories bring air 404 

mass from northwest and western parts  at Murshidabad that carry dust from Thar Desert (located in the 405 

western parts of India, however dust observed in the IGP are mainly from Arabia peninsula (Dey et al., 406 

2004). Long-range transport of dust mixes with anthropogenic emissions along the track of dust, 407 

enhancing local BC concentrations (Bhattacharjee et al., 2007). Similar findings were also reported at 408 

Peshawar (Khan et al., 2015), Iran (Shahsavani et al., 2012) and Beijing (Zhao et al., 2009). During 409 

monsoon season, the pollutants were washed out from the atmosphere as a result BC concentrations 410 

reduced upto 36% compared to other season, mainly from local indoor emissions from cooking. These 411 

kinds of emission flow patterns not only have implications on the human health but also on the crop 412 
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production and local/regional climate (Auffhammer et al., 2006). The pollutants carried from the other 413 

surrounding of IGP do affect the eastern region of IGP and eastern countries.  414 

4.0 Conclusions 415 

BC measurements were carried out in both indoor (LPG and traditional cookstoves users) outdoor 416 

(middle of village, roadside of the village and highways) to study diurnal and seasonal characteristics; 417 

radiative forcing; source of apportionment over the three districts of IGP. Following conclusions are 418 

drawn from our present study: 419 

i. Crop residue (35.65 %) was the primary fuel for cooking in rural households followed by cow 420 

dung cakes (32.56 %), firewood (26.56 %) and LPG (3.12 %). Use of cow dung has enhanced up 421 

to 6.31% (1.262%/year) and 1.17% crop residue during 2011- 2015 in rural households while 422 

other means of cooking have declined.  Each household spends ~Rs. 470.00 per-month (US$ 7-423 

8/month) to access clean fuel energy (LPG) while an average of Rs. 560 per month (US$ 8-424 

9/month) to purchase traditional fuel and coal. The use of LPG is restricted in these rural areas 425 

due to economic conditions and accessibility of LPG. The present Government policy to use 426 

clean energy and provide free access to LPG in rural area may reduce BC emissions.   427 

ii. The peak values of BC are observed during morning and evening hours. In the indoor 428 

environment, BC concentrations vary in the range 1.80 to 22.16 µgm−3 during morning hours and 429 

1.90 to 25.36 µgm−3 in the evening. Similarly, use of LPG reduces indoor BC concentrations, 430 

0.26 to 3.19 µgm−3 during morning hours and 0.13 to 43.79 µgm−3 during evening hours. 431 

Pronounced reduction in BC concentrations upto 90.3% was found with the use of LPG during 432 

both morning and evening hours in all three districts. 433 

iii. The seasonal mean mass concentration of BC were  25.36 ± 5.01, 16.36 ± 3.68, 8.92 ± 1.98 and 434 

15.17 ± 3.31 µgm-3 with the biomass indoor use  during winter, pre-monsoon, monsoon and post-435 

monsoon respectively. Similarly, the seasonal mean concentrations with LPG use were 3.79 ± 436 

0.77, 2.62 ± 0.60, 2.02 ± 0.355 and 2.19 ± 0.47 µgm-3 during winter, pre-monsoon, monsoon and 437 

post-monsoon respectively. LPG use are able to reduce the BC concentration by 85, 84, 77 and 86 438 
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percent during winter, pre-monsoon, monsoon and post-monsoon respectively in case of indoor 439 

BC concentration.  440 

iv. The outdoors, concentrations vary in the range 4.39-24.20 µgm−3 in the morning and 8.06-21.72 441 

µgm−3 in the evening hours while the seasonal mass concentrations of BC were 24.20 ± 4.46, 442 

19.80 ± 4.34, 8.87 ± 1.83 and 9.14 ± 1.84 µgm-3 during winter, pre-monsoon, monsoon and post-443 

monsoon respectively. 444 

v. The BC concentrations was highest (~35%) during evening (19:00 to 22:00hrs) as compared to 445 

morning due to the contribution of BC emissions from agriculture biomass burning.  446 

vi. The correlation between the weekly number of fire episodes and average BC concentrations show 447 

a linear relationship (R2= 0.564)suggesting that the burning of agricultural residue during the 448 

winter and pre-monsoon season worsen the air quality in the IGP, and some study (Sarkar et al. 449 

2018) reported the impacts to a greater parts of India.  450 

vii. ATM and TOA positive radiative forcing of BC and aerosol particles show a net warming impact 451 

in the study area while the SUR radiative forcing shows a cooling effect.  452 

viii. The backward trajectories analysis helped in understanding the source and the region of the 453 

pollution.  The biomass burning in Pakistan and Afghanistan, Punjab, Haryana and Uttar 454 

Pradesh), dust aerosols from Gulf countries and Western states of India and industrial pollution 455 

from highly industrialized northern parts of India are responsible for the high BC concentrations 456 

(40-45 µgm-3) during the winter and pre-monsoon.   457 

ix. The health impacts of BC are severe and affects people to suffer with the eyes watering (26%), 458 

itchy eyes (25%), asthma and respiratory problems (22%), cardiovascular disease (17%) and 459 

coughing (10%). These impacts tend to be particularly large in rural India since households often 460 

lack ventilation in cooking areas, even in rural areas people used to sleep in the cooking place. 461 

Our present results will be of great help to the Ministry of Environment, Forest and Climate Change, 462 

India, World Health Organization (WHO), Environmental Protection Agency (EPA) and other global and 463 
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National agencies to formulate policy to limit BC emissions and follow clean air act to save millions of 464 

lives.  465 
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Table 1: Survey and BC monitoring Locations 
State District Block Town/Village Geo-coordinates 

Uttar Pradesh Sitapur 
Khalilabad 

Sitapur Town 27o 33’ 26.5” N, 80o39’ 50.4”E 
Iqri 27o 24’ 52.7” N, 80o34’ 11.5”E 

Laharpur 
Laharpur 27o 42’ 46.53” N, 80o 54’ 40.19”E 
Bilariya 27o 46’ 59.9” N, 80o 55’ 11.7”E 

Bihar Patna 
Fatuha 

Maksoodpur 25o 24’ 42.9” N, 85o 17’ 24.3”E 
Shukalpur 25o 32’ 25.9” N, 85o 15’ 57.0”E 

Patna Sadar 
Meethapur 25o 35’ 24.9” N, 85o 08’ 08.9”E 

Mohanpur Kachhuara 25o 33’ 21.89” N, 84o 11’ 01.30”E 

West Bengal Murshidabad 
Behrampur 

Basudevkali 24o 04’ 22.8” N, 88o 13’ 19.0”E 
Harishpur 24o 09’ 17.5” N, 88o 20’ 49.5”E 

Farakka Tildanga 24o 47’ 28.5” N, 87o 52’ 24.9”E 
 Amtala 24o 43’ 32.6” N, 870 54’ 04.0”E 

 
 

Table 2: Average fuel used in Indian Households and IGP locations 

Fuel Type 

Average Percentage of Fuel used for cooking 
Census 1991 Census 2001 Census 2011 

Primary 
Survey, 

2016 
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ts
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 Decadal Change 

(Decrease/Increase) 

A
ll 

In
di

a
 

IG
P

 

S
el

ec
te

d 
di

st
ric

ts
 Decadal Change 

(Decrease/Increase) 

IGP 
Selected 
districts IGP 

Selected 
districts 

Firewood 71.69 48.81 31.71 64.1 41.6 24.91 -7.21 -6.8 62.55 46.79 31.4 5.19 6.49 26.56 

Crop 
residue 

--   --  -- 13.1 23.82 33.22 100  100  12.33 22.07 34.48 -1.75 1.26 35.65 

Cow-dung  19.6 37.79 43.99 12.8 26.23 32.62 -11.56 -11.37 10.87 21.84 26.25 -4.39 -6.37 32.56 

LPG 1.22 0.82 0.26 5.7 2.91 1.43 2.09 1.17 11.4 5.68 3.73 2.77 2.3 3.12 

Other 
(Coal & 
Charcoal, 
Kerosene, 
Electricity, 
Biogas) 

7.46 12.53 23.99 4.3 5.2 7.49 -7.33 -16.5 2.61 3.45 3.97 -1.75 -3.52 1.86 

 

Table 3: Monthly average indoor, outdoor and on road BC concentrations during January, 2015 to 
December 2016 

Month 

Sitapur Patna Murshidabad 

 BC in 
Biomass 

Users 
Househol
d (µgm-3) 

BC in 
LPG 
Users 

Househol
d (µgm-3) 

Outdoo
r 

(Middle 
of 

Village
s) BC 

(µgm-3) 

BC on 
Highwa
ys (µgm-

3) 

 BC in 
Biomass 

Users 
Househol
d (µgm-3) 

BC in 
LPG 
Users 

Househol
d (µgm-3) 

Outdoo
r 

(Middle 
of 

Village
s) BC 

(µgm-3) 

BC on 
Highwa
ys (µgm-

3) 

 BC in 
Biomass 

Users 
Househol
d (µgm-3) 

BC in 
LPG 
Users 

Househol
d (µgm-3) 

Outdoo
r 

(Middle 
of 

Village
s) BC 

(µgm-3) 

BC on 
Highwa
ys (µgm-

3) 

January 21.68 1.82 16.50 16.5 23.68 2.89 20.69 16.98 21.58 1.36 18.46 15.46 

February 19.19 1.96 11.57 11.57 21.19 2.70 21.25 19.71 17.49 1.87 19.46 17.18 

March 14.42 1.60 11.66 11.66 15.42 1.70 12.65 24.15 14.56 1.67 14.58 21.46 

April 11.88 2.27 10.63 10.63 12.88 2.20 13.50 21.16 11.15 1.87 14.69 17.46 

May 6.85 1.85 6.70 6.7 8.85 1.79 9.45 16.25 7.36 1.45 8.42 14.18 

June 5.85 1.81 4.02 5.14 6.85 1.85 6.15 18.45 5.32 1.85 5.16 12.16 

July 5.90 2.23 3.89 5.89 5.99 2.24 7.56 13.14 4.49 1.26 4.46 6.18 
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August 7.91 1.94 4.17 5.17 7.99 1.68 5.24 12.15 6.87 1.87 2.16 4.46 

Septemb
er 9.91 

2.17 5.25 7.25 
10.91 

1.30 6.14 11.5 
11.15 

1.36 3.14 5.16 

October 11.72 1.82 5.98 5.98 11.10 1.86 7.89 16.34 13.58 1.75 4.69 6.87 

Novemb
er 8.89 

2.00 7.44 9.8 
9.89 

2.15 12.58 17.69 
16.48 

1.98 7.46 9.14 

Decembe
r 16.74 

2.47 10.87 13.45 
20.74 

3.01 14.26 18.45 
22.15 

2.01 14.15 17.58 

 
 

Table 4: Measured BC mass concentrations from various locations in the IGP 

Location Sampling Period 

BC in Biomass 
Users 

Household 
(µgm-3) 

BC in LPG 
Users 

Household 
(µgm-3) 

Outdoor BC  
(µgm-3) 

References 

Sitapur 
January-December, 2016 

1.80 - 25.36 0.09-3.79 2.99-23.68 
Present study Patna 1.0 - 25.16 0.10-3.10 3.25-24.20 

Murshidabad 1.0 - 24.52 0.07-2.99 1.25-21.-35 
Patna January- to December, 2015 - - 21.86 ±3.48 Arif et al. 2018 

Gorakhpur 2013-2015 - 
- 

19 ± 14 
Vaishya, A.  et al, 

2016 
Balia June- to August, 2014 - - 4.03 Tiwari et al, 2016 

Pantnagar 
2009–2012  - 

- 
4.8 ± 3.6 

Joshi, H., et al, 
2015 

Varanasi 
October 2008 to May 2009  - 

- 
2.2–19.6 

Singh and Rai, 
2014 

Kanpur Sept. to Nov., 2009,  
60.0 (in morning) 

 
30.0 (in morning) 

Rehman et al, 
2011 

Delhi January 2006 to January 2007  - - 14.75 Bano et al., 2011 
Agra December, 2004 - - 10.5–17.4 Safai et al., 2008 
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Figure 1: Black Carbon monitoring and survey locations in three districts of IGP (Indian Part) 
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Figure 2: Different sources of  biofuel  used for cooking in Sitapur, Patna and Murshidabad 
(Primary Survey, 2015) 
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Figure 3: Variety of fuel used (in percentage) in Indian households as per the census and primary survey 

(2015) in representative districts of IGP  
 

 

Figure 4a: The monthly average indoor (LPG & biomass users) and outdoor concentrations of BC 
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 Figure 4b: Average daily seasonal indoor black carbon concentration in biofuel user’s 
households during January to December, 2016 

 
 

 

 
Figure 4c: Average daily seasonal indoor black carbon concentration in LPG user’s households 

during January to December, 2016 
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Figure 5a: Average daily seasonal outdoor black carbon concentration during January to December, 
2016 

 
 

 
 

Figure 5b: Diurnal profiles of average indoor and outdoor BC concentrations during January to 
December, 2016 
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Figure 6: Seasonal averaged diurnal variation of BC concentrations at highways during January to 

December, 2016 
 
 
 

 
 

Figure 7a: weekly number of fire counts and average BC concentrations during January to December, 
2016 
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Figure 7b: A comparative plot of hotpots and daily average outdoor BC concentrations during January to 

December, 2016 
 
 
 

 
 
Figure 8: Composite aerosol and BC radiative forcing at the top of the atmosphere (TOA), surface (SUR) 
and atmosphere (ATM) over study area  
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Winter Season 

   
Pre-Monsoon Season 

   
Monsoon Season 

   
Post-Monsoon Season 

   
Figure 9a: 8-day’s backward trajectories for four different seasons are arriving from northwest and west 
regions of IGP at Sitapur, Patna and Murshidabad which raise the surface BC concentrations level during 
the January-December, 2016 
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Highlights 
 

• BC concentrations in LPG user’s households was 90.3% lower than biofuels user’s families.  
• Diurnally the mass concentration of BC was highest (~35%) in the evening.  
• Both ATM and TOA positive radiative forcing of BC and aerosol particles are showing a net warming 

effect on the study area while the SUR radiative forcing shows chilling effect.  
• HYSPLIT modeling suggest that the smoke from biomass burning contribute significantly to air pollution 

levels in the cities. 
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