Chapman University Chapman University Digital Commons

Pharmacy Faculty Articles and Research

School of Pharmacy

4-2014

Mechanism Underlying IKK Activation Mediated by the Linear Ubiquitin Chain Assembly Complex (LUBAC)

Hiroaki Fujita *Osaka University*

Simin Rahighi *Chapman University,* rahighi@chapman.edu

Mariko Akita *Osaka University*

Ryuichi Kato High-Energy Accelerator Research Organization (KEK)

Yoshiteru Sasaki *Kyoto University*

See next page for additional authors

Follow this and additional works at: https://digitalcommons.chapman.edu/pharmacy_articles Part of the <u>Amino Acids, Peptides, and Proteins Commons, Enzymes and Coenzymes</u> <u>Commons, and the Other Pharmacy and Pharmaceutical Sciences Commons</u>

Recommended Citation

Hiroaki Fujita, Simin Rahighi, Mariko Akita, Ryuichi Kato, Yoshiteru Sasaki, Soichi Wakatsuki and Kazuhiro Iwai (2014). Mechanism underlying IKK activation mediated by the linear ubiquitin chain assembly complex (LUBAC). Mol. Cell Biol. 34 (7): 1322-1335. doi: 10.1128/MCB.01538-13

This Article is brought to you for free and open access by the School of Pharmacy at Chapman University Digital Commons. It has been accepted for inclusion in Pharmacy Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Mechanism Underlying IKK Activation Mediated by the Linear Ubiquitin Chain Assembly Complex (LUBAC)

Comments

This article was originally published in *Molecular and Cellular Biology*, volume 34, issue 7, in 2014. DOI: 10.1128/MCB.01538-13

Copyright

American Society for Microbiology

Authors

Hiroaki Fujita, Simin Rahighi, Mariko Akita, Ryuichi Kato, Yoshiteru Sasaki, Soichi Wakatsuki, and Kazuhiro Iwai

MCB Accepts, published online ahead of print on 27 January 2014 Mol. Cell. Biol. doi:10.1128/MCB.01538-13 Copyright © 2014, American Society for Microbiology. All Rights Reserved.

1	TIT	'LE

2 Mechanism underlying IKK activation mediated by the linear ubiquitin chain assembly

- 3 complex (LUBAC)
- 4

5 Running title: Mechanisms of LUBAC-mediated NF-κB activation

- 6
- 7 Hiroaki Fujita^{a, b, c}, Simin Rahighi^{d, e, 1}, Mariko Akita^a, Ryuichi Kato^d, Yoshiteru Sasaki^c, Soichi
- 8 Wakatsuki^{d, e, f}, and Kazuhiro Iwai^{a, c, 1}
- 9
- ¹⁰ ^aCell Biology and Metabolism Group, ^bDepartment of Frontier Biosciences, Graduate School of
- 11 Frontier Biosciences, Osaka University, Suita 565-0871, Japan. ^cDepartment of Molecular and
- 12 Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501,
- 13 Japan. ^dStructural Biology Research Center, Photon Factory, Institute of Materials Structure
- 14 Science, High-Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801,
- 15 Japan. ^eDepartment of Structural Biology, Stanford University School of Medicine, Stanford,
- 16 California 94305, USA. ^fSLAC National Accelerator Laboratory, Menlo Park, California 94025,

17 USA.

- 18
- 19 ¹To whom correspondence may be addressed: E-mail: kiwai@mcp.med.kyoto-u.ac.jp or
- 20 srahighi@stanford.edu.
- 21
- 22 Materials and methods: 2,118 words
- 23 Introduction, Results, and Discussion: 5,128 words

24 ABSTRACT

25	The LUBAC ubiquitin ligase complex, consisting of HOIL-1L, HOIP, and SHARPIN,
26	specifically generates linear polyubiquitin chains. LUBAC-mediated linear
27	polyubiquitination has been implicated in NF-KB activation. NEMO, a component of the IKB
28	kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism
29	underlying linear chain-mediated NF-ĸB activation has not been fully elucidated. Here, we
30	demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than
31	unanchored linear chains. In mutational analyses based on the crystal structure of the
32	complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the
33	HOIP–NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition
34	activity and prevented recognition by LUBAC synergistically suppressed signal-induced
35	NF-ĸB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP
36	NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore
37	signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2
38	involved homotypic interaction of the IKK2 kinase domain. Collectively, these results
39	demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation,
40	and that this modification involves the HOIP NZF1 domain and recognition of
41	NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex. (191/200
42	words)

INTRODUCTION 43

44	Nuclear factor κB (NF- κB) is a family of transcription factors that play essential roles in many
45	biological phenomena, including inflammatory responses, cell survival, and innate and acquired
46	immune responses (1). Because aberrant activation of NF-κB signaling is associated with many
47	pathological conditions, such as auto-inflammatory diseases and malignancies (2, 3),
48	signal-induced activation of NF- κ B has been studied extensively (4). In resting cells, inactive
49	NF- κ B resides in the cytoplasm bound to its inhibitor proteins, the inhibitors of κ B (I κ Bs).
50	Stimulation by inflammatory cytokines activates the IKK (IKB kinase) complex, composed of
51	IKK1, IKK2, and NF-κB essential modulator (NEMO). Following phosphorylation by activated
52	IKK, I κ Bs are degraded by the proteasome, leading to the release of NF- κ B, which then
53	translocates to the nucleus to induce transcription of its target genes (5).
54	The ubiquitin-conjugation system is deeply involved in the regulation of NF- κ B pathway
55	(6). Recent studies showed that the LUBAC ubiquitin ligase, which specifically generates linear
56	polyubiquitin chains, is involved in NF- κ B activation (7, 8). LUBAC is composed of three
57	subunits: HOIP, HOIL-1L, and SHARPIN. Patients lacking HOIL-1L and mice lacking SHARPIN
58	exhibit immunodeficiency and chronic inflammation, demonstrating the physiological significance
59	of LUBAC-mediated linear polyubiquitination (9-12). In cells from mice lacking HOIL-1L or
60	SHARPIN, the level of the residual LUBAC complex (consisting of the remaining two
61	components) is reduced, and TNF- α -induced NF- κ B activation is sharply attenuated (9-12).

62 Although NEMO is a target of linear polyubiquitination by LUBAC, it is not yet clear how linear polyubiquitination of NEMO triggers IKK activation. 63 64 In this study, using an *in vitro* LUBAC-mediated IKK activation assay, we found that linear diubiquitin conjugation to NEMO potently induces IKK activation. We then dissected the 65 molecular mechanism underlying linear polyubiquitination of NEMO by LUBAC, and found that 66 67 the NPL4 zinc finger 1 (NZF1) domain of HOIP is responsible for recognition of a region in the 68 coiled-coil 2 and leucine zipper (CoZi) domains of NEMO. Mutational analyses based on a 69 co-crystal structure of HOIP NZF1 and NEMO CoZi revealed that HOIP NZF1 binds to NEMO 70 and ubiquitin simultaneously, and that both interactions are involved in linear polyubiquitination of 71 NEMO, IKK activation, and subsequent activation of NF- κ B. Finally, we showed that 72 homodimerization of IKK2 is involved in linear ubiquitin chain-mediated IKK activation. Taken 73 together, our results suggest that recognition of linear polyubiquitins conjugated to NEMO, 74 possibly by NEMO in another IKK complex, triggers activation of IKK2 by trans 75 auto-phosphorylation.

76 MATERIALS AND METHODS

77

78	RT-PCR and plasmids. The open reading frames of mouse HOIP and NEMO were amplified by
79	RT-PCR of total RNA from C57BL/6 mouse liver. Other cDNAs used in this study were described
80	previously (8, 12). The following full-length proteins, deletion mutants, and fragments were
81	generated from the amplified ORF of HOIP: wild type (WT) (amino acids 1–1066), Δ all-ZFs
82	(deletion of 296–432), Δ ZF (deletion of 296–325), Δ NZF1 (deletion of 344–373), Δ NZF2
83	(deletion of 402-432), and NZF1 (amino acids 344-382). The following proteins were generated
84	from the amplified ORF of NEMO: WT (amino acids 1–412), Δ CoZi (deletion of 250–339), and
85	Δ ZF (amino acids 1–385). Mutants of HOIP (R369A, T354A, F355A, T354A/F355A), NEMO
86	(Q271A, D275A, Q271A/D275A, K278R, K302R, K278R/K302R,
87	Q271A/D275A/K278R/K302R, F305A, E313A, Q271A/D275A/F305A, Q271A/D275A/E313A)
88	and IKK2 (V229A/H232A, Y294L/G295K/P296Q) were generated by two-step polymerase chain
89	reaction (PCR). cDNAs were ligated to the appropriate epitope-tag sequences and then cloned into
90	pcDNA3.1, pcDNA3.1-MMTV (8), pMAL-c2x (New England Biolabs), pGEX-6p1 (GE
91	Healthcare), or MXs-IP (kindly provided by T. Kitamura). pGEX-I κ B α (1–54) was described
92	previously (8).
93	

94 Antibodies and reagents. The following antibodies were used: FLAG (M2) (Stratagene); TNFR1

95	(ab19139) (Abcam); ubiquitin (sc-8017), HA (sc-805), Glutathione S-transferase (GST) (sc-459),
96	maltose binding protein (MBP) (sc-13564), TRADD (sc-7868), and NEMO (sc-8330) (Santa Cruz
97	Biotechnology); FLAG (F7425) (Sigma); T7 (69522) (Novagen); NEMO (K0159-3) (MBL); and
98	pIKK1/2 (#2078), RIP1 (#3493), pIκBα (#9246), and IκBα (#4812) (Cell Signaling).
99	His ₆ -HA-Ub ₂ , linear di- and tetra-ubiquitins and FLAG-His ₆ -TNF- α (FH-TNF- α) were expressed
100	in E. coli. K63 diubiquitin and polyubiquitin chains (Ub ₁₋₇ , Lys63-linked) were purchased from
101	Boston Biochem. Other antibodies and reagents were generated in our laboratory, as described
102	previously (7, 8, 12).
103	
104	Coll lines coll cultures and transfection NEMO deficient MEEs N 1 colls (12) HEK202T
104	Cen mies, cen cultures, and it ansiection. NEMO-dencient mers, N-1 cens (15), HER2951
104	cells, and HOIP Δ linear MEFs, which were established from mice that express a truncated HOIP
104 105 106	cells, and HOIP Δ linear MEFs, which were established from mice that express a truncated HOIP (HOIP Δ linear) that lacks the C-terminal catalytic region, were grown in Dulbecco's modified
104 105 106 107	cells, and HOIP Δ linear MEFs, which were established from mice that express a truncated HOIP (HOIP Δ linear) that lacks the C-terminal catalytic region, were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU/ml penicillin,
104 105 106 107 108	cells, and HOIP Δ linear MEFs, which were established from mice that express a truncated HOIP (HOIP Δ linear) that lacks the C-terminal catalytic region, were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU/ml penicillin, and 100 µg/ml streptomycin. NEMO-deficient MEFs were kindly provided by Dr. H. Kamata
104 105 106 107 108 109	cells, and HOIP Δ linear MEFs, which were established from mice that express a truncated HOIP (HOIP Δ linear) that lacks the C-terminal catalytic region, were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU/ml penicillin, and 100 µg/ml streptomycin. NEMO-deficient MEFs were kindly provided by Dr. H. Kamata (Hiroshima University). NEMO-deficient MEFs stably expressing NEMO WT or mutants were
104 105 106 107 108 109 110	cells, and HOIP Δ linear MEFs, which were established from mice that express a truncated HOIP (HOIP Δ linear) that lacks the C-terminal catalytic region, were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU/ml penicillin, and 100 µg/ml streptomycin. NEMO-deficient MEFs were kindly provided by Dr. H. Kamata (Hiroshima University). NEMO-deficient MEFs stably expressing NEMO WT or mutants were selected with 150 µg/ml hygromycin B (Wako) after transfection with WT or mutant
104 105 106 107 108 109 110 111	cells, and HOIP Δ linear MEFs, which were established from mice that express a truncated HOIP (HOIP Δ linear) that lacks the C-terminal catalytic region, were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU/ml penicillin, and 100 µg/ml streptomycin. NEMO-deficient MEFs were kindly provided by Dr. H. Kamata (Hiroshima University). NEMO-deficient MEFs stably expressing NEMO WT or mutants were selected with 150 µg/ml hygromycin B (Wako) after transfection with WT or mutant pcDNA3.1-MMTV-FLAG-NEMO constructs. N-1 cells stably expressing NEMO WT or mutants,
104 105 106 107 108 109 110 111 112	cells, and HOIP Δ linear MEFs, which were established from mice that express a truncated HOIP (HOIP Δ linear) that lacks the C-terminal catalytic region, were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 IU/ml penicillin, and 100 µg/ml streptomycin. NEMO-deficient MEFs were kindly provided by Dr. H. Kamata (Hiroshima University). NEMO-deficient MEFs stably expressing NEMO WT or mutants were selected with 150 µg/ml hygromycin B (Wako) after transfection with WT or mutant pcDNA3.1-MMTV-FLAG-NEMO constructs. N-1 cells stably expressing NEMO WT or mutants, and HOIP Δ linear MEFs stably expressing HOIP WT, Δ NZF1, R369A, or T354A/F355A, were

115 Transfections were performed using Lipofectamine 2000 (Invitrogen).

116

117 Immunoprecipitation and immunoblotting. Cells were lysed with lysis buffer containing 50 mM 118 Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100, 2 mM PMSF, and protease inhibitor cocktail 119 (Sigma-Aldrich); lysates were clarified by centrifugation at 15,000 rpm for 20 min at 4°C. For hot 120 lysis, cells were lysed with lysis buffer containing 1% SDS in phosphate-buffered solution (PBS), 121 and then heated at 95°C for 10 min to disrupt non-covalent interactions. After heating, lysates were 122 sheared with a 25G needle and centrifuged at 15,000 rpm for 5 min at room temperature; the 123 resultant supernatant was diluted to 0.1% SDS with lysis buffer containing 50 mM Tris-HCl (pH 124 7.5), 150 mM NaCl, and 1% Triton X-100. For immunoprecipitations, lysates were incubated with 125 the appropriate antibodies for 2 h on ice, and then immobilized on rmp-Protein A Sepharose beads 126 (GE Healthcare). The beads were washed five times with buffer containing 50 mM Tris-HCl (pH 127 7.5), 150 mM NaCl, and 1% Triton X-100. In immunoprecipitations of HA-HOIP, to digest the 128 polyubiquitin chains conjugated to NEMO, the beads were washed two more times with buffer 129 containing 50 mM HEPES-HCl (pH 7.5) and 150 mM NaCl, and then incubated with 50 µg/ml 130 UPS2cc (kindly provided by Dr. Rohan Baker (14)) for 1 h at 37°C in buffer containing 50 mM 131 HEPES-HCl (pH 7.5), 150 mM NaCl, and 5 mM DTT. Samples were separated by SDS-PAGE and 132 then transferred to PVDF membranes. After blocking in Tris-buffered saline (TBS) containing

133	0.1% Tween-20 and 5% (w/v) nonfat dry milk, the membranes were incubated with the appropriate
134	primary antibodies, followed by incubation with secondary antibodies. Membranes were
135	visualized using enhanced chemiluminescence and analyzed on a LAS4000mini (Fuji Film).
136	
137	Protein expression and purification. GST-fused mouse HOIP (amino acids 344-382),
138	MBP-fused mouse NEMO (full-length), and mutants derived from either of these fusion proteins
139	were expressed in E. coli. Fusion proteins were purified using glutathione-Sepharose (GST-HOIP
140	and derivatives) or amylose resin (MBP-NEMO and derivatives). Recombinant E1, UbcH5c,
141	His ₆ -HOIP-HOIL-1L-Myc-SHARPIN complex, GST-IKBa (1-54), linear diubiquitin, and
142	tetra-ubiquitin were prepared, as described previously (7, 8, 15). IKK complex containing
143	HA-IKK1, IKK2, and FLAG-His ₆ -tagged NEMO (WT or R316A/R319A/E320A) were purified
144	using the baculovirus expression system. IKK complexes were prepared from High Five cells
145	infected with appropriate combinations of baculoviruses, and the complexes were then purified on
146	Ni-nitrilotriacetic acid (Ni-NTA) agarose. After incubation with Ni-NTA agarose, bead-bound
147	proteins were treated with 100 units of calf intestinal alkaline phosphatase (New England BioLabs)
148	for 30 min at 37°C; beads were washed with ten column volumes of 5 mM imidazole; and bound
149	proteins were eluted with 300 mM imidazole.
150	For crystallization, mouse NEMO CoZi (amino acids 250-339) and human HOIP NZF1
151	(amino acids 350-379) proteins were expressed and purified separately, and mixed at the proper

153	NEMO CoZi was cloned into pGEX-4T-1 (GE Healthcare) and HOIP NZF1 was cloned into
154	pGEX-6p-1. The resultant vectors were transformed into E. coli BL21, and overexpression of the
155	GST-tagged proteins was induced by addition of 0.5 mM IPTG. After overnight incubation at 25°C,
156	cells were collected and lysed by sonication. The supernatants were applied to
157	glutathione-Sepharose 4B columns (GE Healthcare). The GST tags were cleaved using
158	thrombin/PreScission protease, and proteins were eluted from the columns with PBS buffer.
159	Further purification of the proteins was performed by gel-filtration chromatography in a buffer
160	containing 150 mM NaCl and 50 mM Tris-HCl (pH 8.0).
161	
162	Crystallization, data collection, and structure determination of the NEMO CoZi/ HOIP
163	NZF1 complex. Immediately before crystallization, mNEMO CoZi and hHOIP NZF1 were mixed
163 164	NZF1 complex. Immediately before crystallization, mNEMO CoZi and hHOIP NZF1 were mixed in a 2:1 molar ratio (the sequence similarity between human and mouse HOIP is illustrated in Fig.
163 164 165	NZF1 complex. Immediately before crystallization, mNEMO CoZi and hHOIP NZF1 were mixed in a 2:1 molar ratio (the sequence similarity between human and mouse HOIP is illustrated in Fig. 3J). Co-crystals were obtained after 6 days of incubation at 20°C in 20% (w/v) PEG-3350 and 0.2
163 164 165 166	NZF1 complex. Immediately before crystallization, mNEMO CoZi and hHOIP NZF1 were mixed in a 2:1 molar ratio (the sequence similarity between human and mouse HOIP is illustrated in Fig. 3J). Co-crystals were obtained after 6 days of incubation at 20°C in 20% (w/v) PEG-3350 and 0.2 M DL-malic acid (pH 7.0). Single anomalous diffraction (SAD) data were collected to a resolution
163 164 165 166 167	NZF1 complex. Immediately before crystallization, mNEMO CoZi and hHOIP NZF1 were mixed in a 2:1 molar ratio (the sequence similarity between human and mouse HOIP is illustrated in Fig. 3J). Co-crystals were obtained after 6 days of incubation at 20°C in 20% (w/v) PEG-3350 and 0.2 M DL-malic acid (pH 7.0). Single anomalous diffraction (SAD) data were collected to a resolution of 2.0 Å at the Zn atom absorption edge at a wavelength of 1.28 Å. The data were collected at 100
 163 164 165 166 167 168 	NZF1 complex. Immediately before crystallization, mNEMO CoZi and hHOIP NZF1 were mixed in a 2:1 molar ratio (the sequence similarity between human and mouse HOIP is illustrated in Fig. 3J). Co-crystals were obtained after 6 days of incubation at 20°C in 20% (w/v) PEG-3350 and 0.2 M DL-malic acid (pH 7.0). Single anomalous diffraction (SAD) data were collected to a resolution of 2.0 Å at the Zn atom absorption edge at a wavelength of 1.28 Å. The data were collected at 100 K at the beamline NW-12A of the KEK Photon Factory (Tsukuba, Japan) using HKL2000 (16), and
 163 164 165 166 167 168 169 	NZF1 complex. Immediately before crystallization, mNEMO CoZi and hHOIP NZF1 were mixed in a 2:1 molar ratio (the sequence similarity between human and mouse HOIP is illustrated in Fig. 3J). Co-crystals were obtained after 6 days of incubation at 20°C in 20% (w/v) PEG-3350 and 0.2 M DL-malic acid (pH 7.0). Single anomalous diffraction (SAD) data were collected to a resolution of 2.0 Å at the Zn atom absorption edge at a wavelength of 1.28 Å. The data were collected at 100 K at the beamline NW-12A of the KEK Photon Factory (Tsukuba, Japan) using HKL2000 (16), and processed by iMosflm (17). Because SAD using the anomalous signal from the single zinc atom

ratio immediately before crystallization (see next section). To generate expression constructs,

171	using MOLREP (18) from the CCP4 package (Collaborative Computational Project, Number 4,
172	1994). The structures of NEMO CoZi (PDB entry 3FX0) (19) and TAB2 NZF (PDB entry 2WX0)
173	(20) were used as search models for MR. One complex containing two NEMO molecules (as a
174	dimer) and one HOIP NZF1 molecule was found in each asymmetric unit of the crystal, which
175	belonged to the $P6_5$ space group. The anomalous signal from Zn atoms was used to confirm the
176	position of the Zn atom in the complex structure solved by MR. The model was further built and
177	refined using COOT (21) and REFMAC5 (22, 23). After the final refinement, NEMO CoZi amino
178	acids 252–336 and 251–337 (from the two protomers) and HOIP NZF1 amino acids 351–379 were
179	clearly visible in the electron density map. Data collection and refinement statistics are
180	summarized in Table 1. All structure figures were prepared using PyMOL (DeLano Scientific;
181	http://www.pymol.org).
182	
183	In vitro IKK activation assay. Twenty-microliter samples containing 50 mM Tris-HCl (pH 7.5), 5
184	mM MgCl ₂ , 1 mM DTT, 2 mM ATP, 10 mM creatine phosphate, 50 μ g/ml creatine phosphokinase,
185	phosphatase inhibitor cocktail (Nacalai Tesque), 5 μ g/ml E1, 20 μ g/ml UbcH5c, 10 μ g/ml of
186	LUBAC, 5 μ g/ml GST-I κ B α (1–54); 250 μ g/ml ubiquitin or 10, 50, or 250 μ g/ml His ₆ -HA-Ub ₂
187	(Fig. 1C); and 0.5, 2.5, or 5 μ g/ml (Fig. 1A) or 1 μ g/ml (Figs. 1B and C) IKK complex were
188	incubated for 1 h at 30°C.
189	In Figure 1B, the first ubiquitination reaction was performed in a reaction mixture containing 50

190	mM Tris-HCl (pH 7.5), 5 mM MgCl ₂ , 1 mM DTT, 10 mM creatine phosphate, 50 μ g/ml creatine
191	phosphokinase, 5 μ g/ml E1, 20 μ g/ml UbcH5c, 10 μ g/ml LUBAC, and 375 μ g/ml ubiquitin in the
192	presence or absence of 2 mM ATP. The reaction ran for 90 min at 30°C; after the first reaction was
193	stopped by addition of EDTA (10 mM) and DTT (5 mM), and the reaction mixture was incubated
194	for 15 min at room temperature to release ubiquitin from E1, E2, and LUBAC. N-ethylmaleimide
195	(NEM: 20 mM final concentration) was then added, and the reaction was incubated for 15 min at
196	room temperature to inactivate E1, E2, and LUBAC, after which DTT (10 mM final concentration)
197	was added to inactivate excess NEM. Samples were then dialyzed against buffer containing 50 mM
198	Tris-HCl (pH 7.5) and 5 mM MgCl ₂ to remove NEM, DTT, and EDTA. In the second-step reaction,
199	the dialyzed mixture containing 0.2, 1, or 5 μ g of ubiquitin or linear ubiquitin chains was incubated
200	with 1 μ g/ml IKK complex and 5 μ g/ml GST-I κ B α (1–54) in a reaction mixture containing 50 mM
201	Tris-HCl (pH 7.5), 5 mM MgCl ₂ , 1 mM DTT, 2 mM ATP, 10 mM creatine phosphate, and 50 μ g/ml
202	creatine phosphokinase in the presence or absence of 5 μ g/ml E1, 20 μ g/ml UbcH5c, and 10 μ g/ml
203	LUBAC.
204	
205	GST and MBP pull-down assays. Five micrograms of GST-fused WT and mutant HOIP NZF1

proteins were immobilized on glutathione-Sepharose FF beads, and then incubated for 1 h at 4°C
with 1 µg of K63 diubiquitin or linear tetra-ubiquitin in buffer containing 20 mM Tris-HCl (pH 7.5),
40 µM zinc chloride, 1 mM DTT, 150 mM NaCl, and 0.1% Triton X-100. The beads were washed

three times with the same buffer.

210	Ten micrograms of MBP-fused WT and mutant NEMO proteins were immobilized on
211	amylose resin, and then incubated with 1 μg of K63-diubiquitin in the presence or absence of 1 μg
212	of GST-NZF1, 5 μ g of linear tetra-ubiquitin, or 1 μ g of K63-Ub ₁₋₇ for 1 h at 4°C in buffer
213	containing 20 mM Tris-HCl (pH 7.5), 1 mM DTT, 150 mM NaCl, and 0.1% Triton X-100. The
214	beads were washed three times with the same buffer, boiled in SDS sample buffer, and analyzed by
215	immunoblotting.
216	
217	In vitro ubiquitination assay. Twenty-microliter samples containing 50 mM Tris-HCl (pH 7.5), 5
218	mM MgCl ₂ , 1 mM DTT, 2 mM ATP, 10 mM creatine phosphate, 50 μ g/ml creatine phosphokinase,
219	5 μ g/ml E1, 20 μ g/ml UbcH5c, 0.5 μ g/ml LUBAC, 1 μ g/ml MBP-NEMO WT or Q271A/D275A,
220	and 50 μ g/ml ubiquitin were incubated at 37°C for 1 h. The reaction mixtures were subjected to
221	immunoblotting with anti-MBP antibody.
222	
223	Luciferase assays. HEK293T cells were transfected with pGL4.32 (Luc2p/NF-KB-RE/Hygro) and
224	pGL4.74 (hRLuc/TK) (Promega), along with expression plasmids for WT or mutant HA-HOIP,
225	Myc-HOIL-1L, and T7-SHARPIN. Twenty-four hours after transfection, cells were lysed, and
226	luciferase activities were measured on a Lumat Luminometer (Berthold) using the Dual-Luciferase
227	reporter assay system (Promega). N-1 cells were transfected with reporter plasmids, as described

228	above, along with pcDNA3.1-MMTV expression plasmid for WT or mutant NEMO. Sixteen hours
229	after transfection, cells were stimulated with IL-1 β (1 ng/ml) for 8 h, and luciferase activities were
230	measured as described above.
231	
232	In vitro IKK kinase assay. NEMO-deficient MEFs stably expressing NEMO WT or
233	Q271A/D275A were treated with TNF- α (10 ng/ml) and lysed. IKK complexes were
234	immunoprecipitated with anti-NEMO antibody. The anti-NEMO immunoprecipitates were
235	incubated with GST-I κ B α (1–54) for 2 h at 30°C in kinase buffer (50 mM Tris-HCl [pH 7.5], 5 mM
236	MgCl ₂ , 2 mM ATP, 10 mM creatine phosphate, 50 μ g/ml creatine kinase, and phosphatase inhibitor
237	cocktail). The reaction mixtures were subjected to immunoblotting with anti-pI κ B α , anti-NEMO,
238	and anti-GST.
239	
240	TNFR1 immunoprecipitation . HOIP Δ linear MEFs retrovirally expressing HOIP WT, Δ NZF1,
241	R369A, or T354A/F355A were treated with FH-TNF- α (3 µg/ml); cells were lysed with lysis
242	buffer containing 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.2% NP-40, 10% glycerol, 2 mM
243	PMSF, and protease inhibitor cocktail (Sigma-Aldrich), followed by centrifugation at 10,000 $ imes$ g
244	for 20 min at 4°C. The TNFR1 complex was immunoprecipitated by incubation with 30 μ l of M2

- 245 antibody-coupled Dynabeads Protein G (Novex by Life Technologies) at 4° C for 90 min. The
- 246 precipitates were washed five times with the same lysis buffer. The immunoprecipitated TNFR1

- 247 complex was eluted by incubation at 37° C for 40 min in 30 µl of TBS buffer containing 400 ng/µl
- 248 $3 \times$ FLAG peptide (Sigma), and then analyzed by western blotting.

249 **RESULTS**

250 IKK is effectively activated by linear polyubiquitin conjugated to NEMO, but not by

251 unanchored linear polyubiquitin.

252 To investigate in detail the roles of linear polyubiquitination of NEMO in IKK activation, we

- 253 established an *in vitro* IKK activation assay using purified proteins. In this assay,
- 254 baculovirus-purified IKK complex containing NEMO WT, or a NEMO mutant in which the critical
- 255 residues for ubiquitin-binding activity were mutated to Ala (R316A/R319A/E320A in human

256 NEMO, equivalent to R309A/R312A/E313A in mouse NEMO) (24), was incubated with

- 257 GST-IκBα (1–54), E1, E2, and ubiquitin in the presence or absence of LUBAC (Fig. 1A). When
- 258 incubated with the IKK complex containing NEMO WT, LUBAC generated unanchored linear
- 259 chains, conjugated these linear chains to NEMO, and promoted the phosphorylation of $I\kappa B\alpha$.
- 260 Phosphorylation of IκBα was also induced when a high concentration of IKK containing NEMO
- 261 WT was incubated without LUBAC, possibly due to partial activation of the IKK complex during
- 262 purification. However, in the presence of IKK complex containing NEMO R316A/R319A/E320A,
- 263 no detectable IKK activity was induced, although generation of unconjugated linear chains was not
- affected by the mutation. Although the NEMO mutant was linearly ubiquitinated much more
- 265 weakly than NEMO WT, we could detect linear ubiquitination when a high concentration of the
- 266 NEMO mutant was incubated. These results indicated that the ubiquitin-binding activity of NEMO
- 267 is involved in IKK activation, but it remains unclear why the linear ubiquitination of NEMO was

268 suppressed by the R316A/R319A/E320A mutation.

269	Both unanchored linear ubiquitin chains and linearly ubiquitinated NEMO were generated
270	when IKK complex containing NEMO WT was activated (Fig. 1A). Therefore, to determine
271	whether unanchored linear ubiquitin chains and/or linearly ubiquitinated NEMO are involved in
272	IKK activation, we incubated E1, E2, LUBAC, and ubiquitin in the presence or absence of ATP,
273	followed by treatment with DTT, EDTA, and NEM to inactivate E1, E2, and LUBAC and
274	disassemble E1- and UbcH5c-ubiquitin (Fig. 1B). After incubation with DTT to inactivate excess
275	NEM, and dialysis to remove NEM, DTT, and EDTA, the mixture was incubated with the IKK
276	complex and GST-I κ B α (1–54) in the presence or absence of E1, E2, and LUBAC. I κ B α
277	phosphorylation was not induced when neither unanchored nor NEMO-conjugated linear chains
278	were generated (lanes 5–7), but efficient I κ B α phosphorylation was observed in samples in which
279	both unconjugated and NEMO-conjugated linear chains were generated in the second-step reaction
280	(lanes 8–10). However, I κ B α was not efficiently phosphorylated in samples in which unanchored
281	linear chains, but not NEMO-conjugated linear chains, were generated in the first-step reaction
282	(lanes 2-4). The unanchored linear chains generated in the first-step reaction appeared to be intact
283	because they could bind the ubiquitin-binding domain of NEMO (data not shown); moreover,
284	ubiquitin contains no Cys residues, and therefore cannot be modified by NEM. In our previous
285	analyses, unanchored linear diubiquitin weakly activated IKK in vitro (15). To confirm that linear
286	chains conjugated to NEMO activate the IKK complex much more efficiently than unanchored

287	linear polyubiquitin, and to determine the length of linear chains that is sufficient to activate IKK,
288	we incubated N-terminally His ₆ -HA-tagged diubiquitin (His-HA-Ub ₂), instead of ubiquitin
289	monomers, in the presence or absence of E1, E2, and LUBAC (Fig. 1C). His-HA-Ub ₂ can be
290	recognized by the ubiquitin-binding domain of NEMO, and then conjugated to substrates, but
291	cannot generate linear chains longer than diubiquitin because of its N-terminal His ₆ -HA tag (25).
292	Free His-HA-Ub ₂ did not overtly activate IKK (lanes 3–5), indicating that unanchored diubiquitin
293	cannot activate IKK effectively. However, IKK was effectively activated when His-HA-Ub ₂ was
294	conjugated to NEMO by LUBAC (lanes 6-8). This result confirmed that linear chains conjugated
295	to NEMO activate the IKK complex much more effectively than unanchored linear chains, and that
296	conjugation of linear diubiquitin to NEMO is sufficient to activate IKK.
297	
298	The HOIP NZF1 domain is involved in the recognition of NEMO by LUBAC.
299	Because ubiquitination often requires substrate binding by E3 enzymes (26), we hypothesized that

LUBAC may also recognize NEMO prior to linear polyubiquitination of the protein. To dissect the
molecular mechanism underlying linear polyubiquitination of NEMO, we probed the region of the
LUBAC ligase complex that is critical for recognition of NEMO. To this end, we first expressed
each subunit of LUBAC (HOIL-1L, HOIP, and SHARPIN) in HEK293T cells, with or without
NEMO. Consistent with our observations in a previous study (8), HOIP co-immunoprecipitated

with NEMO (Fig. 2A, lane 5). In the earlier study, deletion of the zinc finger region, containing the

306	zinc finger (ZF), NZF1, and NZF2 domains, attenuated the interaction between HOIP and NEMO,
307	although HOIP Δ all-ZFs could still bind to NEMO when the two proteins were co-expressed with
308	HOIL-1L. By contrast, in this study, HOIP Δ all-ZFs did not efficiently interact with NEMO even in
309	the presence of HOIL-1L and SHARPIN (Figs. 2B and C, lane 4). The discrepancy between these
310	observations might be attributed to the amounts of plasmids used in the transfections: in the
311	previous study, we introduced larger amounts of the plasmids into cells than in this study.
312	To precisely determine the roles played by the three domains of the HOIP ZF region in the
313	interaction with NEMO, we co-transfected WT or mutant HOIP (Fig. 2B) into HEK293T cells
314	along with HOIL-1L, SHARPIN, and NEMO, and assessed the binding between NEMO and HOIP
315	(Fig. 2C). Among the three domains in the zinc finger region, deletion of HOIP NZF1, but not
316	deletion of ZF or NZF2, attenuated NEMO binding (lanes 5–7). Conversely, among HOIP mutants
317	possessing only one of the three zinc finger domains, mutants containing NZF1, but not ZF or
318	NZF2, could bind NEMO (lanes 8–10). These results strongly indicated that HOIP NZF1 is
319	sufficient for the recognition of NEMO. To characterize the region of NEMO that is recognized by
320	HOIP, we introduced NEMO mutants into HEK293T cells together with HOIL-1L, HOIP, and
321	SHARPIN (data not shown); these experiments confirmed our previous observation (8) that
322	NEMO lacking the CoZi region failed to bind LUBAC.
323	
324	Crystal structure of NEMO CoZi in complex with HOIP NZF1.

325	To obtain further insight into the recognition of NEMO by HOIP, we determined the crystal
326	structure of the complex between the NEMO CoZi and HOIP NZF1 domains (Table 1). The crystal
327	structure contains one complex per asymmetric unit, in which NEMO and HOIP are present in 2:1
328	stoichiometry, i.e., each NEMO dimer binds one NZF1 molecule (Fig. 3A). Despite the
329	symmetrical surface on either side of NEMO, each NEMO dimer binds only one HOIP NZF1. This
330	appears to be due to crystal packing effects, because another HOIP NZF1 of a symmetry-related
331	molecule occupies the second possible binding site on NEMO. This binding mode includes weak
332	interactions between NEMO and another surface of HOIP centered on residues Thr360 and Phe361,
333	which, according to our mutational analyses, are not biologically relevant (see below, Fig. 7C).
334	However, this observation does not exclude the possibility of symmetrical binding of two HOIP
335	NZF1 molecules to NEMO in solution or <i>in vivo</i> , which might be influenced by factors such as the
336	local concentration of proteins (27). In the context of the full-length proteins, however, it seems
337	more likely that binding of a large LUBAC complex would hinder binding of a second HOIP NZF1
338	domain to a NEMO molecule. In fact, due to the transient nature of these interactions, to date we
339	have been unable to measure the stoichiometry of NEMO CoZi/HOIP NZF-1 binding using the
340	isolated domains in solution.
341	In the crystal structure, HOIP NZF1 forms a compact structure typical of NZF domains (Fig.
342	3A) (28), with a single zinc ion coordinated by four conserved cysteine residues: Cys356, Cys359,
343	Cys370, and Cys373. As shown previously, NEMO CoZi forms a coiled-coil homo-dimeric

344	structure (19, 24). Although NEMO CoZi bound to HOIP NZF1 retains a conformation similar to
345	that of the free domain, the overall structures do not superimpose well, as indicated by the RMS
346	deviation of 2.6 Å for superimposition of the C α atoms of residues 255–335 (Fig. 3B). This
347	structural difference appears to be due to the presence of a proline residue (Pro292) in the CoZi
348	domain, which introduces a kink into the coiled-coil structure (24). Consistent with this
349	explanation, the two regions N-terminal and C-terminal to Pro292 (amino acids 255-291 and
350	293–335, respectively) superimpose more precisely (RMS deviation of 1.1 Å and 1.3 Å,
351	respectively) (Figs. 3C and D).
352	The HOIP NZF1 binding site on NEMO is located on the CC2 domain, and covers a surface
353	area of 447.3 $Å^2$. The binding region includes amino acid residues from Gln259 to Lys270 and
354	Glu264 to Asp275 on different protomers within the NEMO dimer (Figs. 3E and F). This surface is
355	located at the N terminus of NEMO CoZi and does not overlap with the ubiquitin-binding domain
356	(UBAN) (24). Thus, interaction with HOIP does not sterically hinder binding of NEMO to linear
357	ubiquitin chains (Fig. 3A).
358	A hydrophobic surface on the NZF1 domain, formed by the side chains of Ala366, Val368,
359	Leu369, Pro376, Leu378, and Ala379, serves as the major interacting partner for NEMO by
360	contacting Ala263, Ala266, Leu267, Val268, and aliphatic portions of Gln259, Lys270, and
361	Gln271 (Figs. 3G and H). Furthermore, Glu374, Arg375, and Arg377 from HOIP are engaged in
362	electrostatic interactions with Lys270, Asp275, and Glu264, respectively. The NE atom of NEMO

505	Sin259 forms a nyarogen bond with the main chain carbonyr oxygen of Ma505 (11g. 50).
364	Although it is not conserved among other NZF domains, the NEMO-binding surface on HOIP
365	NZF1 is highly conserved among HOIP proteins from different species (Figs. 3I and J).
366	
367	Gln271 and Asp275 of NEMO are involved in LUBAC-mediated linear polyubiquitination.
368	Our structural analysis indicated that Gln271 and Asp275 of mouse NEMO are involved in the
369	interaction with the HOIP NZF1 domain (Fig. 3). To confirm the importance of NEMO recognition
370	by HOIP in linear polyubiquitination of NEMO, we generated the NEMO mutants Q271A, D275A,
371	and Q271A/D275A and introduced them into HEK293T cells together with HOIP, HOIL-1L, and
372	SHARPIN. Whereas NEMO WT efficiently co-immunoprecipitated with HOIP, the interactions
373	between HOIP and the NEMO Q271A, D275A, and Q271A/D275A mutants were significantly
374	attenuated (Fig. 4A), suggesting that Gln271 and Asp275 of NEMO are involved in recognition by
375	HOIP in vivo. We also confirmed that NEMO Q271A/D275A could efficiently form the canonical
376	IKK complex with IKK1 and IKK2 (Fig. 4B). The ubiquitin-binding activity of NEMO plays
377	essential roles in NF-κB activation (24). Therefore, we compared the abilities of NEMO WT,
378	Q271A, D275A, and Q271A/D275A to bind linear and Lys63-linked polyubiquitins. All three of
379	these NEMO mutants interacted with both linear tetra-ubiquitin and Lys63-linked ubiquitin chains
380	as efficiently as NEMO WT, which can bind both linear and Lys63 chains (longer than four
381	ubiquitin moieties) (Figs. 4C and D) (29). These results confirmed the finding that Gln271 and

382	Asp275 are not located in the ubiquitin-binding domain of NEMO (Fig. 3A).
383	We next assessed the effect of Gln271 and/or Asp275 mutations of NEMO on its linear
384	polyubiquitination in an <i>in vitro</i> ubiquitination assay, and found that NEMO Q271A/D275A was
385	not efficiently ubiquitinated by LUBAC (Fig. 4E). To confirm the attenuation of linear
386	polyubiquitination of NEMO mutants that failed to interact efficiently with HOIP in cells, we
387	introduced NEMO WT or mutants along with the components of LUBAC into HEK293T cells, and
388	then performed hot lysis to remove proteins non-covalently associated with NEMO (Fig. 4F).
389	Although NEMO WT was efficiently linearly polyubiquitinated by LUBAC, linear
390	polyubiquitination of NEMO Q271A, D275A, and Q271A/D275A was significantly attenuated.
301	
591	
392	Involvement of both linear chain conjugation to NEMO and linear chain recognition by
392 393	Involvement of both linear chain conjugation to NEMO and linear chain recognition by NEMO in IKK activation.
391392393394	Involvement of both linear chain conjugation to NEMO and linear chain recognition by NEMO in IKK activation. Because the NEMO mutants (Q271A, D275A and Q271A/D275A) could not be recognized or
 391 392 393 394 395 	Involvement of both linear chain conjugation to NEMO and linear chain recognition by NEMO in IKK activation. Because the NEMO mutants (Q271A, D275A and Q271A/D275A) could not be recognized or linearly polyubiquitinated by LUBAC, but could form IKK complexes with IKK1 and IKK2 and
 392 393 394 395 396 	Involvement of both linear chain conjugation to NEMO and linear chain recognition byNEMO in IKK activation.Because the NEMO mutants (Q271A, D275A and Q271A/D275A) could not be recognized orlinearly polyubiquitinated by LUBAC, but could form IKK complexes with IKK1 and IKK2 andbind to ubiquitin chains as well as NEMO WT, they appeared to be suitable tools for probing the
 391 392 393 394 395 396 397 	Involvement of both linear chain conjugation to NEMO and linear chain recognition by NEMO in IKK activation. Because the NEMO mutants (Q271A, D275A and Q271A/D275A) could not be recognized or linearly polyubiquitinated by LUBAC, but could form IKK complexes with IKK1 and IKK2 and bind to ubiquitin chains as well as NEMO WT, they appeared to be suitable tools for probing the roles of linear polyubiquitination of NEMO in signal-induced NF-κB activation. We therefore
 392 393 393 394 395 396 397 398 	Involvement of both linear chain conjugation to NEMO and linear chain recognition by NEMO in IKK activation. Because the NEMO mutants (Q271A, D275A and Q271A/D275A) could not be recognized or linearly polyubiquitinated by LUBAC, but could form IKK complexes with IKK1 and IKK2 and bind to ubiquitin chains as well as NEMO WT, they appeared to be suitable tools for probing the roles of linear polyubiquitination of NEMO in signal-induced NF-κB activation. We therefore transiently introduced NEMO WT or mutants, together with the 5× NF-κB luciferase reporter, into
 392 393 393 394 395 396 397 398 399 	Involvement of both linear chain conjugation to NEMO and linear chain recognition byNEMO in IKK activation.Because the NEMO mutants (Q271A, D275A and Q271A/D275A) could not be recognized orInearly polyubiquitinated by LUBAC, but could form IKK complexes with IKK1 and IKK2 andbind to ubiquitin chains as well as NEMO WT, they appeared to be suitable tools for probing theroles of linear polyubiquitination of NEMO in signal-induced NF-κB activation. We thereforetransiently introduced NEMO WT or mutants, together with the 5× NF-κB luciferase reporter, intoa NEMO-deficient subclone (N-1) of the Rat-1 fibroblast line. Luciferase assays revealed that the

401	activation (Fig. 5A, upper). The introduced NEMO WT and mutant proteins were expressed at
402	almost identical levels (Fig. 5A, lower) that were slightly lower than the level of endogenous
403	NEMO expression in the parental Rat-1 cells (data not shown). When NEMO WT or
404	Q271A/D275A was retrovirally introduced into the NEMO-defective N-1 cells, IL-1 β -induced
405	linear polyubiquitination and $I\kappa B\alpha$ phosphorylation were significantly attenuated by
406	Q271A/D275A mutation (Fig. 5B). We also stably introduced NEMO WT or Q271A/D275A into
407	the NEMO-deficient MEFs; these proteins were expressed at levels comparable to, or slightly
408	lower than, that of endogenous NEMO in WT MEFs (data not shown). In the NEMO-deficient
409	MEFs complemented with NEMO WT, treatment with TNF- α induced phosphorylation and
410	degradation of I κ B α (Fig. 5C). By contrast, in cells expressing NEMO Q271A/D275A,
411	TNF- α -mediated phosphorylation and degradation of I κ B α were significantly attenuated (Fig. 5C).
412	Furthermore, TNF- α induced the IKK activity in anti-NEMO immunoprecipitates from cells
413	expressing NEMO WT, whereas TNF- α did not overtly induce IKK activity in NEMO
414	Q271A/D275A-expressing cells (Fig. 5D).
415	Lys278 and Lys302 of mouse NEMO, which are equivalent to Lys285 and Lys309 of
416	human NEMO, are major sites of linear polyubiquitination by LUBAC (8). The UBAN motif, the
417	major ubiquitin-binding site of NEMO, preferentially binds to linear diubiquitin relative to
418	Lys63-linked diubiquitin. Within this motif, Phe305 is involved in the binding of both linear and
419	Lys63-linked diubiquitin, whereas Glu313 is specifically involved in linear diubiquitin recognition

420	(24). To investigate the functional interaction between HOIP binding and linear polyubiquitination
421	of, or recognition of linear ubiquitin chains by, NEMO, we transiently expressed the NEMO
422	mutants indicated in Figure 6A in N-1 cells and assessed IL-1 β -induced NF- κ B activation by
423	luciferase assays. The introduced NEMO WT and mutants were expressed at almost identical
424	levels (Fig. 6A) that were slightly lower than the endogenous NEMO expression level in the
425	parental Rat-1 cells (data not shown). Introduction of mutations at the major polyubiquitination
426	sites, K278R/K302R (QDKK/AARR), into NEMO Q271A/D275A failed to further suppress
427	IL-1 β -induced NF- κ B activation attenuated by Q271A/D275A mutation, thus confirming that the
428	NEMO recognition by NZF1 of HOIP attenuates LUBAC-induced linear polyubiquitination of the
429	protein. Mutation of Glu313 to Ala (NEMO E313A) marginally suppresses NF-κB activation by
430	partially impairing linear chain binding (24), an observation confirmed in this study (Fig. 6A). To
431	investigate whether impaired recognition of linear ubiquitin chains and NEMO would additively
432	suppress IL-1 β -induced NF- κ B activation, we generated NEMO Q271A/D275A/E313A
433	(QD/AA/E313A). This triple mutant attenuated IL-1 β -induced NF- κ B activation to a greater
434	extent than NEMO Q271A/D275A or NEMO E313A. However, the NEMO F305A mutant, which
435	abolishes NEMO binding to both linear and Lys63-linked chains almost completely (24), strongly
436	suppressed IL-1 β -induced NF- κ B activation, confirming the importance of ubiquitin binding by
437	NEMO for NF-κB activation. These results suggested that conjugation of linear chains to NEMO,
438	and recognition of linear ubiquitin chains by NEMO, are synergistically involved in signal-induced

439 NF-κB activation.

440	IKK2, a crucial kinase within the IKK complex that phosphorylates $I\kappa B\alpha$, homodimerizes
441	via its kinase domain (KD), leading to activation of IKK via <i>trans</i> auto-phosphorylation (30). We
442	examined the involvement of KD homodimerization of IKK2 in the activation of IKK provoked by
443	linearly ubiquitinated NEMO. Val229, His232, Tyr294, Gly295, and Pro296 of human IKK2 are
444	involved in the KD-KD interaction of IKK2 (30). Therefore, we mutated Val229 and His232 to Ala
445	(V229A/H232A); in another construct, Tyr294, Gly295, and Pro296 were mutated to Leu, Lys, and
446	Gln, respectively, the corresponding amino acids in IKK1 (Y294L/G295K/P296Q) (30). IKK
447	becomes constitutively active when Ser177 and Ser181 in the activation loop of IKK2 are mutated
448	to phosphomimetic Glu (S177E/S181E) (30). IKK2 V229A/Y232A and Y294L/G295K/P296Q
449	with the S177E/S181E mutations can effectively phosphorylate I κ B α (30), suggesting that both of
450	these IKK2 mutants can function as a kinase when specific Ser residues are phosphorylated.
451	NEMO-Ub ₂ , a NEMO mutant with uncleavable linear di-ubiquitin at the C-terminus, mimics
452	linearly ubiquitinated NEMO, and the introduction of NEMO-Ub ₂ alone to HEK293T cells induces
453	IKK activation (15). With these observations in mind, we evaluated mutations of IKK2 that abolish
454	the KD-KD interaction upon NEMO-Ub2-mediated activation of IKK. Because IKK2 can be
455	activated even when transiently introduced alone (30), we introduced smaller amounts of IKK2
456	plasmids into HEK293T cells than in previous reports. As expected, under these assay conditions,
457	IKK2 WT or mutants were not activated when IKK2 was introduced alone (Fig. 6B). When

458	introduced together with NEMO, IKK2 WT was weakly phosphorylated in its activation loop;
459	because IKK2 in NEMO-deficient cells is not effectively activated (31), this phosphorylation may
460	have been due to an IKK2-NEMO interaction. We have observed that NEMO-Ub ₂ induces
461	phosphorylation of IKK2 WT much more efficiently than NEMO. However, NEMO-Ub ₂ failed to
462	induce phosphorylation of IKK2 V229A/Y232A or Y294L/G295K/P296Q, indicating that the
463	KD-KD interaction is necessary for the activation of IKK2 by NEMO-Ub ₂ . Because IKK2
464	V229A/Y232A and Y294L/G295K/P296Q could form complexes with NEMO and NEMO-Ub ₂ , as
465	well as IKK2 WT (Fig. 6C), these observations indicate that recognition of the linear chain
466	conjugated to NEMO, possibly by another NEMO molecule, plays crucial roles in IKK activation
467	and subsequent NF-KB activation by inducing <i>trans</i> auto-phosphorylation of IKK2.
468	
469	The NEMO- and ubiquitin-binding activities of HOIP NZF1 are both involved in NF- κB
470	activation by LUBAC.
471	Our crystallographic analyses revealed that HOIP NZF1 is involved in NEMO recognition, and
472	that Arg369 in the NZF1 domain of mouse HOIP (equivalent to Arg375 in human HOIP, used for
473	the crystallographic analyses described above) contributes significantly to interaction with NEMO
474	(Fig. 3G). However, NZF domains are classified as potential ubiquitin-binding modules (28, 32)
475	and HOIP NZF1 has also been reported to bind ubiquitin (11). The highly conserved TF/ Φ motif of
476	NZF domains (Φ indicates a hydrophobic residue that is separated from TF (Thr-Phe) by ten

477	residues (33)), is crucial for the ubiquitin-binding activity (33). Because Thr354 and Phe355 of
478	TF/ Φ motif in mouse HOIP NZF1 (equivalent to Thr360 and Phe361 in human HOIP) are highly
479	conserved (Fig. 3J), it is reasonable to speculate that HOIP NZF1 might exhibit the
480	ubiquitin-binding activity as well as NEMO-binding activity. To confirm the ability of NZF1 to
481	bind ubiquitin, we generated the mouse HOIP NZF1 mutants R369A, T354A, F355A, and
482	T354A/F355A. GST pull-down assays revealed that the T354A, F355A, and T354A/F355A
483	mutations, but not R369A, attenuated binding of HOIP NZF1 to not only Lys63-linked diubiquitin
484	but also linear tetra-ubiquitin (Figs. 7A and B). To investigate the effect of T354A, F355A, and
485	T354A/F355A mutations on NEMO binding, we co-transfected HOIP WT or mutants into
486	HEK293T cells along with HOIL-1L, SHARPIN, and NEMO. HOIP WT, T354A, F355A, and
487	T354A/F355A efficiently co-immunoprecipitated with NEMO, whereas HOIP Δ NZF1 and R369A
488	mutants failed to interact with NEMO (Fig. 7C). From these results, we draw the following
489	conclusions: NZF1 can bind to both ubiquitin and NEMO; Arg369 of HOIP NZF1 is involved in
490	NEMO recognition but not ubiquitin binding; and T354 and F355 are involved in ubiquitin
491	recognition but not NEMO binding. Furthermore, the <i>in vitro</i> binding assay using purified proteins
492	revealed that NZF1 and Lys63-linked diubiquitin were both pulled down with MBP-NEMO,
493	indicating that NZF1 bound simultaneously to Lys63-linked diubiquitin and NEMO (Fig. 7D).
494	To probe the roles of the ubiquitin- and NEMO-binding activities of NZF1 of HOIP in
495	LUBAC-mediated NF- κ B activation, we used luciferase assays to evaluate NF- κ B activation

496	mediated by exogenously introduced LUBAC. LUBAC-mediated NF-KB activation was
497	suppressed in HEK293T cells transfected with HOIP R369A or HOIP Δ NZF1. Introduction of
498	HOIP T354A/F355A also suppressed LUBAC-mediated NF-KB activation, but the suppression
499	was significantly weaker than that mediated by HOIP R369A (Fig. 7E). To further examine the
500	roles of the ubiquitin- and NEMO-binding activities of HOIP NZF1 in TNF- α -mediated NF- κB
501	activation, we introduced WT or HOIP mutants into HOIP Δ linear MEFs; the HOIP mutants were
502	expressed at levels identical to or a little higher than that of HOIP WT (data not shown). In cells
503	expressing HOIP R369A or T354A/F355A, I κ B α degradation was slower than in HOIP
504	WT-expressing cells; the extent of the delay in these two mutants was similar to that expressing
505	HOIP Δ NZF1 (Figs. 7F and G). The ubiquitin-binding activity of HOIP has been implicated in the
506	recruitment of LUBAC to the activated TNF-R1 signaling complex (TNF-RSC) (34). Δ NZF and
507	T354A/F355A mutations of HOIP attenuated TNF- α -induced recruitment of HOIP to TNF-RSC,
508	but the R369A mutation did not overtly suppress HOIP recruitment to the activated receptor
509	complex (Fig. 7H). Importantly, HOIP WT and R369A mutant were recruited to TNF-RSC at
510	similar levels, but ubiquitination of NEMO was significantly abrogated by the R369A mutation.
511	These results strongly indicated that NZF1 of HOIP can simultaneously bind both NEMO
512	and ubiquitin, and that both interactions are involved in TNF- α -mediated NF- κ B activation. Loss
513	of NEMO binding impairs linear polyubiquitination of NEMO, whereas loss of ubiquitin binding
514	impairs recruitment of LUBAC to TNF-RSC. However, loss of NEMO binding by HOIP NZF1

515	appears to exert a more profound effect on LUBAC-mediated NF-κB activation than loss of
516	ubiquitin binding. Although the interaction between HOIP NZF1 and NEMO was abolished almost
517	completely by the mutations described above, neither TNF- α - nor LUBAC-mediated NF- κ B
518	activation was completely suppressed in cells expressing these mutants. We propose mechanisms
519	that might underlie this residual NF- κ B activation in the Discussion section.

DISCUSSION

522	In this study, we showed that recognition of linear ubiquitin chains by NEMO and conjugation of
523	those chains to NEMO are synergistically involved in IKK activation. The IKK complex is
524	activated by phosphorylation of the IKK2 subunit (35). In general, phosphorylation of kinases is
525	mediated either by <i>trans</i> auto-phosphorylation or by upstream kinases (36). The crystal structure of
526	Xenopus IKK2, determined recently, reveals that IKK2 contains a dimerization domain (31);
527	dimerization-defective IKK2 mutants fail to be activated. Furthermore, analysis of the crystal
528	structure of human IKK2 revealed that homotypic interaction of the IKK2 KD is crucial for IKK2
529	activation (30). We also showed here that IKK2 mutants that are defective in KD-KD interaction
530	could not be activated by NEMO-Ub ₂ , which mimics linearly ubiquitinated NEMO. These results
531	strongly indicate that IKK2 activation mediated by linear chains requires trans
532	auto-phosphorylation; thus it seems plausible that linear chains conjugated to NEMO by LUBAC
533	are recognized by NEMO in trans on another IKK complex, thereby inducing multimerization of
534	IKK complexes. Upon multimerization, IKK2 could dimerize and <i>trans</i> auto-phosphorylate (Fig.
535	8). It is possible that binding of ubiquitin to the UBAN domain induces conformational changes in
536	NEMO, thereby changing the positions of IKK1 and IKK2, leading to phosphorylation of IKK2.
537	However, considering the results of structural analyses of IKK2, together with our observations,
538	the former scenario seems more likely (37).

539	We have probed the interactions between HOIP and NEMO by solving a co-crystal
540	structure of NZF1 of human HOIP and CoZi of mouse NEMO while our mutational studies have
541	been performed using mouse HOIP. However, the surface residues from HOIP that interact with
542	NEMO are fully conserved in human and mouse species (Fig. 3J). Our mutational analyses based
543	on the structure of the co-crystal show that direct recognition of NEMO by HOIP plays a major role
544	in NF- κ B activation following conjugation of linear chains to NEMO. Although the
545	RING-IBR-RING region of HOIP is the catalytic center for linear polyubiquitination by LUBAC
546	(7), recent results obtained using an <i>in vitro</i> ubiquitin assay have suggested that the RING2 domain
547	of HOIL-1L plays a role in linear polyubiquitination of NEMO (38). However, given that the
548	HOIP-SHARPIN complex effectively linearly polyubiquitinates NEMO in vitro and activates
549	NF-κB in cells (12), any involvement of the RING2 domain of HOIL-1L in linear
550	polyubiquitination of NEMO and NF- κ B activation seems likely to be marginal. Thus, HOIP plays
551	central roles in LUBAC-mediated NF- κ B activation via direct recognition of linear polyubiquitin
552	and conjugation of this molecule to NEMO. However, neither NF-KB activation nor linear
553	polyubiquitination of NEMO was completely abolished in NEMO Q271A/D275A, which evades
554	recognition by LUBAC. We suspect that the residual activation might be caused by the presence of
555	one or more additional NEMO recognition sites. Consistent with this idea, the NEMO-LUBAC
556	interaction cannot be completely abolished by mutations in HOIP NZF1, although HOIP NZF1
557	does appear to be the primary NEMO recognition site. In support of this possibility, in our previous

228	report (8), we observed that HOIP lacking NZF1 could bind NEMO in the presence of high levels
559	of HOIL-1L. Alternatively, in light of observations that the linear polyubiquitination activity of
560	LUBAC is dispensable for NF- κ B activation via B-cell antigen receptor (39), residual NF- κ B
561	activation might be mediated by other IKK activation pathways. The kinase TAK1 has been
562	suggested to activate IKK2 (40); specifically, TAK1-mediated IKK activation has been proposed to
563	involve the Lys63 chain-binding activity of TAB2 and TAB3, which form a complex with TAK1
564	(41). Recently, Lys63 and linear hybrid chains have been implicated in IKK activation (42). It is
565	hypothesized that both the TAK1 and IKK complexes bind simultaneously to one hybrid chain
566	composed of Lys63 and linear linkages, generated upon IL-1 β stimulation, thereby inducing
567	phosphorylation of IKK2 (42). In addition to the UBAN motif that preferentially binds linear
568	chains, NEMO possesses another ubiquitin-binding domain, the ZF domain, in its C-terminus.
569	NEMO can bind longer Lys63-linked chains by utilizing both the UBAN and ZF domains,
570	potentially inducing IKK activation by multimerizing the IKK complex. Because the
571	NEMO-LUBAC interaction appears dispensable for the generation of the Lys63 and Lys63/linear
572	hybrid chains, the residual NF- κ B activation in NEMO Q271A/D275A-expressing cells might be
573	attributed to these ubiquitin chains, as distinct from linear chains. However, considering our results
574	described here, together with the previous observation that Lys63-linked chains are dispensable for
575	TNF- α -mediated NF- κ B activation (43), it seems likely that linear chain-mediated <i>trans</i>
576	auto-phosphorylation of IKK2 plays a major role in NF- κ B activation, at least in the case of

577	activation mediated by the TNF receptor family. In further support of this notion, we observed
578	previously that CD40-mediated NF- κ B activation is almost completely abolished in B-cells from
579	mice lacking the linear polyubiquitination activity of LUBAC (39). Further dissection of the
580	mechanism underlying IKK activation via LUBAC-mediated linear polyubiquitination will be
581	needed to clarify the involvement of linear chain-mediated dimerization of IKK2 in NF- κ B
582	activation induced by various stimuli, including IL-1 β .
583	We also showed here that HOIP NZF1 simultaneously binds NEMO and ubiquitin (Fig.
584	7D). The TF/ Φ motifs of the HOIP NZF domains, which are crucial for ubiquitin binding by NZFs,
585	are highly conserved. Consistent with this, the T354A, F355A, and T354A/F355A mutants of
586	HOIP NZF1 failed to bind ubiquitin. By contrast, NZF1 R369A could bind ubiquitin as efficiently
587	as WT NZF1 (Figs. 7A and B). Recruitment of LUBAC to TNF-RSC upon TNF- α stimulation is a
588	prerequisite for TNF- α -mediated NF- κ B activation, and the ubiquitin-binding activity of LUBAC
589	is required for this recruitment (34). We observed in this study that the T354A/F355A double
590	mutation, but not the R369A mutation, of HOIP attenuated TNF- α -induced recruitment of HOIP to
591	TNF-RSC (Fig. 7H). Furthermore, we observed that both HOIP R369A and T354A/F355A
592	attenuated TNF- α -induced NF- κ B activation at a level comparable to that of HOIP Δ NZF1 when
593	expressed in HOIP Alinear MEFs (Figs. 7F and G). However, the luciferase assays revealed that
594	HOIP R369A, but not T354A, F355A, or T354A/F355A, significantly suppressed NF-κB
595	activation induced by the introduction of LUBAC components (Fig. 7E). Recruitment of LUBAC

597	for NF- κ B activation provoked by the exogenous introduction of LUBAC components; this may
598	explain why the R369A mutation of HOIP suppressed LUBAC-mediated NF- κ B activation more
599	severely than the T354A/F355A mutation.
600	In summary, we dissected the roles of linear polyubiquitination in NF-KB activation and
601	showed that recognition of linear polyubiquitin conjugated to NEMO, possibly by NEMO in
602	another IKK complex, induces trans auto-phosphorylation of IKK2 and subsequent activation of
603	NF-κB. The NZF1 domain of HOIP is involved in the linear polyubiquitination of NEMO by
604	recognizing NEMO, leading to the homo-dimerization of IKK2. In addition to NEMO recognition,
605	HOIP NZF1 plays another role in signal-induced NF-KB activation: the recruitment of LUBAC to
606	the activated receptor complexes via its ubiquitin-binding activity (Fig. 8). Amino acid residues
607	crucial for ubiquitin binding are conserved in HOIP NZF1 (Fig. 3I), whereas other residues are not
608	conserved in other human NZFs. By contrast, the NEMO-binding surface on HOIP NZF1 is highly
609	conserved in NZF1s of vertebrate HOIP proteins (Fig. 3J). Because HOIP NZF1 can bind to both
610	ubiquitin and NEMO simultaneously (Fig. 7D), we conclude that HOIP NZF1 plays a critical role
611	in signal-induced activation by recruiting LUBAC to the site of function and ubiquitinating
612	substrate to activate NF-κB on site.

to TNF-RSC is a prerequisite for TNF- α -mediated NF- κB activation, but is apparently not required

613

596

614 Accession code. Atomic coordinates and structure factors of the NEMO CoZi/HOIP NZF1

615 complex structure have been deposited in the Protein Data Bank under accession code 404M.

616

617 ACKNOWLEDGEMENTS

- 618 We thank Dr. T. Kitamura, Dr. R. Baker, and Dr. H. Kamata for providing pMX-IP, USP2cc, and
- 619 NEMO-deficient MEFs, respectively. This work was partly supported by the Targeted Proteins
- 620 Research Program (TPRP) and grants from the Ministry of Education, Culture, Sports, Science,
- and Technology of Japan to K.I. and S.W.. S.R. was a recipient of the JSPS Invitation Fellowship
- 622 for Research in Japan (Long-term).

624 **REFERENCES**

625	1.	Vallabhapurapu S, Karin M. 2009. Regulation and function of NF-κB transcription
626		factors in the immune system. Annu. Rev. Immunol. 27:693-733.
627	2.	Karin M. 2006. Nuclear factor-KB in cancer development and progression. Nature
628		441: 431-436.
629	3.	Li Q, Verma IM. 2002. NF-κB regulation in the immune system. Nat. Rev. Immunol.
630		2: 725-734.
631	4.	Baltimore D. 2011. NF-κB is 25. Nat. Immunol. 12:683-685.
632	5.	Hayden MS, Ghosh S. 2008. Shared principles in NF-κB signaling. Cell 132:344-362.
633	6.	Skaug B, Jiang X, Chen ZJ. 2009. The role of ubiquitin in NF-κB regulatory pathways.
634		Annual. Rev. Biochem. 78:769-796.
635	7.	Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F,
636		Tanaka K, Iwai K. 2006. A ubiquitin ligase complex assembles linear polyubiquitin
637		chains. EMBO J. 25: 4877-4887.
638	8.	Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato
639		M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K. 2009.
640		Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat. Cell Biol.
641		11: 123-132.
642	9.	Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, Xu Z, Abhyankar A,

643		Israel L, Trevejo-Nunez G, Bogunovic D, Cepika AM, MacDuff D, Chrabieh M,
644		Hubeau M, Bajolle F, Debre M, Mazzolari E, Vairo D, Agou F, Virgin HW, Bossuyt X,
645		Rambaud C, Facchetti F, Bonnet D, Quartier P, Fournet JC, Pascual V, Chaussabel
646		D, Notarangelo LD, Puel A, Israel A, Casanova JL, Picard C. 2012. Immunodeficiency,
647		autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC
648		deficiency. Nat. Immunol. 13: 1178-1186.
649	10.	Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI,
650		Rickard JA, Anderton H, Wong WW, Nachbur U, Gangoda L, Warnken U, Purcell
651		AW, Silke J, Walczak H. 2011. Linear ubiquitination prevents inflammation and regulates
652		immune signalling. Nature 471: 591-596.
653	11.	Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk
654		SJ, Goswami P, Nagy V, Terzic J, Tokunaga F, Androulidaki A, Nakagawa T,
655		Pasparakis M, Iwai K, Sundberg JP, Schaefer L, Rittinger K, Macek B, Dikic I. 2011.
656		SHARPIN forms a linear ubiquitin ligase complex regulating NF- κ B activity and apoptosis.
657		Nature 471: 637-641.
658	12.	Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K,
659		Nakano H, Iwai K. 2011. SHARPIN is a component of the NF-κB-activating linear
660		ubiquitin chain assembly complex. Nature 471: 633-636.
661	13.	Saito N, Courtois G, Chiba A, Yamamoto N, Nitta T, Hironaka N, Rowe M, Yamaoka

662		S. 2003. Two carboxyl-terminal activation regions of Epstein-Barr virus latent membrane
663		protein 1 activate NF- κ B through distinct signaling pathways in fibroblast cell lines. J. Biol.
664		Chem. 278: 46565-46575.
665	14.	Catanzariti AM, Soboleva TA, Jans DA, Board PG, Baker RT. 2004. An efficient
666		system for high-level expression and easy purification of authentic recombinant proteins.
667		Protein Sci. 13: 1331-1339.
668	15.	Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. 2012. Analysis of nuclear
669		factor- κB (NF- κB) essential modulator (NEMO) binding to linear and lysine-linked
670		ubiquitin chains and its role in the activation of NF-κB. J. Biol. Chem. 287: 23626-23634.
671	16.	Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in
672		oscillation mode. Methods Enzymol. 276:307-326.
673	17.	Leslie AW, Powell H. 2007. Processing diffraction data with mosflm. Evolving Methods
674		for Macromolecular Crystallography. 245:41-51
675	18.	Vagin A, Teplyakov A. 1997. MOLREP: an Automated Program for Molecular
676		Replacement. J. Appl. Cryst. 30:1022-1025.
677	19.	Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D, Wu H.
678		2009. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33: 602-615.
679	20.	Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S. 2009. Structural basis for
680		specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and

681 TAB3. EMBO J. **28:**3903-3909.

- 682 21. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta
 683 Crystallogr. D, Biol. Cryst. 60:2126-2132.
- 684 22. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn
- MD, Long F, Vagin AA. 2011. REFMAC5 for the refinement of macromolecular crystal
 structures. Acta Crystallogr. D, Biol. Cryst. 67:355-367.
- 687 23. Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures
 688 by the maximum-likelihood method. Acta Crystallogr. D, Biol. Cryst. 53:240-255.
- 689 24. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T,
- 690 Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I. 2009. Specific recognition of
- 691 linear ubiquitin chains by NEMO is important for NF-κB activation. Cell **136**:1098-1109.
- 692 25. Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA,
- 693 Sixma TK. 2012. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its
- 694 RING-IBR-RING domain and the unique LDD extension. EMBO J. **31:**3833-3844.
- 695 26. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD.
- 696 2000. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases.
- 697 Trends Cell Biol. **10**:429-439.
- 698 27. Ivins FJ, Montgomery MG, Smith SJ, Morris-Davies AC, Taylor IA, Rittinger K.
- 699 2009. NEMO oligomerization and its ubiquitin-binding properties. The Biochemical

700 journal **421:**243-251.

701	28.	Wang B, Alam SL, Meyer HH, Payne M, Stemmler TL, Davis DR, Sundquist WI.
702		2003. Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4. J.
703		Biol. Chem. 278: 20225-20234.
704	29.	Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G, Veron M, Agou F, Israel A.
705		2009. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new
706		bipartite ubiquitin-binding domain. EMBO J. 28:2885-2895.
707	30.	Polley S, Huang DB, Hauenstein AV, Fusco AJ, Zhong X, Vu D, Schrofelbauer B,
708		Kim Y, Hoffmann A, Verma IM, Ghosh G, Huxford T. 2013. A Structural Basis for IkB
709		Kinase 2 Activation Via Oligomerization-Dependent Trans Auto-Phosphorylation. PLoS
710		Biol. 11:e1001581.
711	31.	Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, Wu H. 2011.
712		Crystal structure of inhibitor of κB kinase β . Nature 472: 325-330.
713	32.	Meyer HH, Wang Y, Warren G. 2002. Direct binding of ubiquitin conjugates by the
714		mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21:5645-5652.
715	33.	Alam SL, Sun J, Payne M, Welch BD, Blake BK, Davis DR, Meyer HH, Emr SD,
716		Sundquist WI. 2004. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23:1411-1421.
717	34.	Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R,
718		Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H. 2009.

719		Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1
720		signaling complex and is required for TNF-mediated gene induction. Mol. Cell
721		36: 831-844.
722	35.	Israel A. 2010. The IKK complex, a central regulator of NF-κB activation. Cold Spring
723		Harbor perspectives in biology 2:a000158.
724	36.	Hunter T, Lindberg RA, Middlemas DS, Tracy S, van der Geer P. 1992. Receptor
725		protein tyrosine kinases and phosphatases. Cold Spring Harbor symposia on quantitative
726		biology 57: 25-41.
727	37.	Iwai K. 2012. Diverse ubiquitin signaling in NF-κB activation. Trends Cell Biol.
728		22: 355-364.
729	38.	Smit JJ, van Dijk WJ, El Atmioui D, Merkx R, Ovaa H, Sixma TK. 2013. Target
730		Specificity of the E3 Ligase LUBAC for Ubiquitin and NEMO Relies on Different Minimal
731		Requirements. J. Biol. Chem. 288:31728-31737.
732	39.	Sasaki Y, Sano S, Nakahara M, Murata S, Kometani K, Aiba Y, Sakamoto S,
733		Watanabe Y, Tanaka K, Kurosaki T, Iwai K. 2013. Defective immune responses in
734		mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO J. 32:2463-2476.
735	40.	Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. 2001. TAK1 is a
736		ubiquitin-dependent kinase of MKK and IKK. Nature 412:346-351.
737	41.	Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ.

738		2004. TAB2 and TAB3 activate the NF- κ B pathway through binding to polyubiquitin
739		chains. Mol. Cell 15: 535-548.
740	42.	Emmerich CH, Ordureau A, Strickson S, Arthur JS, Pedrioli PG, Komander D,
741		Cohen P. 2013. Activation of the canonical IKK complex by K63/M1-linked hybrid
742		ubiquitin chains. Proc. Natl. Acad. Sci. USA 110:15247-15252.
743	43.	Xu M, Skaug B, Zeng W, Chen ZJ. 2009. A ubiquitin replacement strategy in human
744		cells reveals distinct mechanisms of IKK activation by TNF α and IL-1 β . Mol. Cell
745		36: 302-314.
746		
747		

749 FIGURE LEGENDS

750

751	FIGURE 1. Linearly ubiquitinated NEMO activates the IKK complex more efficiently than	
752	unanchored linear ubiquitin chains. (A) IKK complex (0.5, 2.5 or 5 μ g/ml) and either NEMO WT	
753	or R316A/R319A/E320A was incubated for 1 h at 30°C with GST-IκBα (1–54), E1, and UbcH56	
754	in the presence or absence of LUBAC, and the reaction mixtures were probed with the indicated	
755	antibodies. (B) Reaction mixtures containing E1, E2, LUBAC, and ubiquitin were incubated with	
756	or without ATP. After incubation, E1, E2, and LUBAC were inactivated with EDTA and NEM, and	
757	the reaction mixtures were dialyzed. The dialyzed samples were incubated with GST-I κ B α (1–54)	
758	and the IKK complex in the presence or absence of E1, E2, and LUBAC, followed by probing with	
759	the indicated antibodies. (C) His-HA-Ub ₂ (10, 50, or 250 μ g/ml) or 250 μ g/ml ubiquitin was	
760	incubated with E1, UbcH5c, LUBAC, IKK complex, and GST-I κ B α (1–54), followed by probin	
761	with the indicated antibodies.	
762		
763	FIGURE 2. The NZF1 domain of HOIP is responsible for NEMO binding. (A) Myc-HOIP,	
764	Myc-HOIL-1L, or Myc-SHARPIN were transfected into HEK293T cells with or without	
765	FLAG-NEMO, and cell lysates and anti-FLAG immunoprecipitates were immunoblotted with the	
766	indicated antibodies. (B) Schematics of HOIP and its mutants. (C) HA-HOIP and its mutants, along	
767	with Myc-HOIL-1L, T7-SHARPIN, and FLAG-NEMO, were transfected into HEK293T cells.	

Cell lysates (top) and anti-HA immunoprecipitates (bottom) were immunoblotted with theindicated antibodies.

770

771	FIGURE 3. Structure of the NEMO CoZi in complex with HOIP NZF1. (A) Overall structure of
772	the NEMO CoZi/HOIP NZF1 complex. The two chains of NEMO are colored in yellow and green;
773	HOIP is shown in salmon. The coiled-coil2 and LZ (CoZi) and UBAN (ubiquitin-binding in ABIN
774	proteins and NEMO) domains are indicated on the NEMO structure. (B to D) Superposition of the
775	NEMO molecules in the free form (light orange) and in complex with HOIP NZF1 (green),
776	including residues (B) 255–335, (C) 255–291, and (D) 293–335. Arrows indicate position of the
777	Pro292 residues in the NEMO structure. (E and F) Amino acid residues involved in the interactions
778	are indicated on the surfaces of NEMO (E) and HOIP (F). (G) Stereo view of the interactions
779	between NEMO CoZi and HOIP NZF1. Interacting amino acids are shown as sticks. Salt bridges
780	and hydrogen bonds are indicated with dashed lines. (H) Open-book representation of NEMO
781	recognition by HOIP NZF1. (I) Analysis of conservation of residues of HOIP NZF1 involved in
782	binding to NEMO in different NZF domain-containing proteins. Interacting residues from HOIP
783	NZF1 and conserved residues are highlighted in red. (J) Analysis of conservation of residues of
784	HOIP NZF1 involved in binding to NEMO in various species. Highly conserved residues are
785	highlighted in dark gray, and less conserved residues in light gray. The red arrows indicate residues
786	from human HOIP that interact with NEMO.

788	FIGURE 4. Involvement of Gln271 and Asp275 of NEMO in LUBAC-mediated linear	
789	polyubiquitination. (A) HEK293T cells were transfected as indicated, and cell lysates (top),	
790	anti-FLAG immunoprecipitates (middle), and anti-HA immunoprecipitates (bottom) were	
791	immunoblotted. (B) HEK293T cells were transfected as indicated, and cell lysates (bottom) and	
792	anti-FLAG immunoprecipitates (top) were immunoblotted. (C and D) NEMO WT or mutants	
793	fused with MBP were incubated with linear tetra-ubiquitin (C) or K63 chains (D) followed by	
794	pull-down with maltose resins. (E) MBP-NEMO WT or Q271A/D275A was incubated as indicated	
795	at 37°C for 1 h, followed by immunoblotting with anti-MBP antibody. (F) FLAG-NEMO or its	
796	mutants were introduced into HEK293T cells together with LUBAC. Cells were subjected to hot	
797	lysis, and anti-FLAG immunoprecipitates were probed with anti-linear ubiquitin or anti-FLAG	
798	antibody.	
799		
800	FIGURE 5. Conjugation of linear chains to NEMO plays crucial roles in IKK activation. (A)	
801	NEMO-defective N-1 cells were transiently transfected with $5 \times$ NF- κ B luciferase reporter and	
802	NEMO WT or mutants. At 16 h after transfection, cells were treated with IL-1 β (1 ng/ml) for 8	
803	and luciferase activity was measured (mean \pm SEM; n=3). The amounts of NEMO and tubulin	
804	were also assessed. (B) N-1 cells expressing NEMO WT or Q271A/D275A were treated with	
805	IL-1 β (20 ng/ml) for the indicated periods, and anti-NEMO immunoprecipitates were	

806	immunoblotted. (C) NEMO-deficient MEFs stably expressing NEMO WT or Q271A/D275A were	
807	treated with TNF- α (10 ng/ml) for the indicated periods, and cell lysates were immunoblotted with	
808	the indicated antibodies. (D) Anti-NEMO immunoprecipitates from NEMO-deficient MEFs stably	
809	expressing NEMO WT or Q271A/D275A treated with TNF- α (10 ng/ml) for the indicated periods	
810	were incubated with GST-I κ B α (1–54) at 30°C for 2 h. The reaction mixtures were probed with the	
811	indicated antibodies.	
812		
813	FIGURE 6. Mechanism underlying IKK activation mediated by LUBAC. (A) NEMO-defective	
814	N-1 cells were transiently transfected with $5 \times$ NF- κ B luciferase reporter and NEMO WT or	
815	mutants. At 16 h after transfection, cells were treated with IL-1 β (1 ng/ml) for 8 h, and luciferase	
816	activity was measured (mean \pm SEM n=3). The amounts of NEMO and tubulin were also assessed.	
817	(B) FLAG-IKK2 or its mutants, along with FLAG-NEMO or FLAG-NEMO-Ub ₂ , were transfecte	
818	into HEK293T cells; cell lysates were immunoblotted with the indicated antibodies. (C)	
819	FLAG-IKK2 and its mutants, along with FLAG-NEMO or FLAG-NEMO-Ub ₂ , were transfected	
820	into HEK293T cells and cell lysates (left); anti-NEMO immunoprecipitates (right) were	
821	immunoblotted as indicated.	
822		
823	FIGURE 7. Simultaneous recognition of NEMO and ubiquitin by HOIP NZF1 is required for	
824	NF- κ B activation. (A and B) WT or mutant HOIP NZF1 fused to GST was incubated with K63	

825	diubiquitin (A) or linear tetra-ubiquitin (B) as indicated, followed by pull-down with glutathione	
826	beads. Bound proteins were probed as indicated. (C) HA-HOIP or its mutants were transfected into	
827	HEK293T cells along with Myc-HOIL-1L, T7-SHARPIN, and FLAG-NEMO, and cell lysates	
828	(left) and anti-FLAG immunoprecipitates (right) were immunoblotted as indicated. (D) Full-length	
829	NEMO fused with MBP was incubated with K63-diubiquitin and GST-NZF1, followed by	
830	pull-down with maltose resins. Bound proteins were probed as indicated. (E) Luciferase activities	
831	in HEK293T cells expressing HA-HOIP WT or mutants, along with Myc-HOIL-1L, T7-SHARPIN	
832	and $5 \times$ NF- κ B luciferase reporter, are shown relative to the activity in cells expressing LUBAC	
833	WT, defined as 100% (mean \pm SEM; n=3). (F and G) HOIP Δ linear MEFs retrovirally expressing	
834	HOIP WT, Δ NZF1, R369A (F) or T354A/F355A (G) were treated with TNF- α (3 ng/ml) for the	
835	indicated periods and probed with the indicated antibodies. (H) HOIP Δ linear MEFs retrovirally	
836	expressing HOIP WT, Δ NZF1, R369A or T354A/F355A were treated with FLAG-His ₆ -TNF- α	
837	(FH- TNF- α) (3 µg/ml) for the indicated periods; cell lysates (bottom) and anti-FLAG	
838	immunoprecipitates (top) were immunoblotted as indicated.	
839		
840	FIGURE 8. Schematic representation of LUBAC-mediated IKK and NF-κB activation. Upon	
841	ligand stimulation, LUBAC is recruited to the receptor via the ubiquitin-binding ability of HOIP	
842	NZF1. Then, HOIP NZF1 also recognizes NEMO, and this recognition is involved in linear	

843 polyubiquitination of NEMO. Linear chains conjugated to NEMO are recognized by NEMO in

- 844 trans on another IKK complex, thereby inducing multimerization of the IKK complex and trans
- 845 auto-phosphorylation of IKK2.

NEMO CoZi/HOIP NZF1 complex	
Data collection	
Space group	P65
Cell dimensions	
<i>a, b, c</i> (Å)	81.46, 81.46, 74.57
α, β, γ (°)	90.00, 90.00, 120.00
Wavelength (Å)	1.282
Resolution (Å)	33.0-2.00 (2.05-2.00) ^a
R _{merge}	0.14 (1.11)
Ι/σΙ	7.7 (1.1)
Completeness (%)	83.1 (66.6)
Redundancy	7.6 (6.8)
CC ¹ / ₂	0.99 (0.63)
Refinement	
Resolution (Å)	50.00-2.00
No. reflections	17945
Rwork/Rfree ^b	25.9/31.3
No. atoms	1,743
Protein	1,642
Water	100
Ion	1
B-factors	
Protein	34.4
Water	36.6
Ion	20.6
R.m.s. deviation	
Bond lengths (Å)	0.011
Bond angles (°)	1.369
Ramachandran Statistics	
Residues in most favored regions	97.3%
Residues in additionally allowed region	ns 2.7%
Residues in generously allowed region	s 0.0%

882 883	Residues in disallowed regions	0.0%
884	^a The values in parenthesis relate to	the highest-resolution shells. ${}^{b}R_{free}$ was calculated for a
885 886	randomly chosen 5% of reflections; reflections.	the R factor was calculated for the remaining 95% of

FIGURE1

FIGURE5

