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ABSTRACT 

SK Channel Modulators as Drug Candidates 

 and Pharmacological Tools  

by Razan Saud Orfali 

The small- and intermediate-conductance Ca2+-activated K+ (SK/IK) channels play a 

fundamental role in the regulation of neurons in the central nervous system. In animal 

models, SK/IK channel positive modulators have been shown to be effective in 

reducing the symptoms of neurological diseases such as ataxia. Ataxia is a lethal 

neurological rare disease characterized by lack of balance and incoordination of 

muscle movements, often as a result of cerebellar or spinocerebellar 

neurodegeneration. SK/IK channel modulators have been developed over the past few 

decades. Currently available modulators are often weak in potency. Lack of 

knowledge about the binding site for the compounds is the main reason hindering the 

development of more potent and effective therapeutics targeting SK channels. Dr. 

Zhang and his colleagues recently discovered the binding pocket for these positive 

modulators of SK/IK channels. This pocket is located at the interface between the 

channel and calmodulin. Dr. Zhang and his colleagues performed screening of a large 

number of compounds in silico, to find those fitting into the binding pocket. I 

performed electrophysiological recordings to evaluate the efficacy and the potency of 

these modulators on SK2 channels. We discovered a correlation between the total 

binding energy values calculated from the structures and the potencies determined 

from electrophysiological recording. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Ataxia 

Ataxia, a Greek word that means ‘loss of order,’ is used medically to describe a 

devastating neurological disorder characterized by lack of muscle control during 

voluntary movements, difficulties with gait, problems with clarity of speech, and 

intention tremor, often as a result of cerebellar or spinocerebellar neurodegeneration 

(Carlson et al., 2009).  The cause of such neurodegeneration can be from brain tumor, 

multiple sclerosis, alcoholism or a congenital genetic defect (Carlson et al., 2009; 

Matilla-Dueñas et al., 2010; Orr, 2012). There are more than fifty different types of 

hereditary ataxias taking place during childhood or adulthood. Most of ataxias 

progress over a number of years, and the patients eventually lose the ability to swallow 

and breathe smoothly, which can be fatal. The most common type of ataxia is a 

cerebellar ataxia that is caused by a dysfunction of the cerebellum or in one of its 

pathways. Spinocerebellar ataxia (SCA) is an inherited form of ataxia in an autosomal-

dominant pattern. SCA is caused by irregular function of the spinocerebellum, the 

portion of the cerebellar cortex that receives somatosensory signals from the spinal 

cord (Orr, 2012; Orr and Zoghbi, 2007).  Currently, twenty-eight autosomal dominant 

SCAs have been described (Matilla-Dueñas et al., 2010). The autosomal dominant 

SCAs are typically progressive, late-onset, and often lethal neurodegenerative 

illnesses.  
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1.2 Treatment of Ataxia 

There is no cure that can specifically treat ataxia or the symptoms of ataxias. 

However, understanding the disease can be helpful to treat, cure, or prevent it. The 

cerebellum coordinates motor movement and helps maintain balance and posture. It 

has three deep nuclei that provide the main output of the cerebellum. In 

neurodegenerative ataxias, neuronal death usually occurs as a result of prolonged 

period of neuronal dysfunction (Shakkottai et al., 2011). The cerebellar Purkinje cells 

(PCs) are affected in many types of ataxias (Carlson et al., 2009; Orr, 2012; Shakkottai 

et al., 2004). PCs are the only output source of cerebellar cortex, and they primarily 

promote inhibitory signals to the deep cerebellar nuclei (DCN). The dysfunction of 

pacemaking activity in PCs is one of the primary causes for the symptom of early 

stage ataxia (Kasumu et al., 2012b; Shakkottai et al., 2011). As this malfunction of 

PCs would be expected to cause DCN hyperexcitability. The modulation of the DCN 

firing rate by PC input is believed to be responsible for coordination of movement. 

Therefore, a direct relationship between increased DCN firing rate and ataxia can be 

concluded (Shakkottai et al., 2004). Disruptions of regular cerebellar PCs activities 

have been identified in studies with mouse models of Episodic Ataxia EA2 (Walter et 

al., 2006), Cerebellar Ataxia (Gao et al., 2012), Spinocerebellar Ataxia SCA3 

(Shakkottai et al., 2011) and SCA2 (Kasumu et al., 2012b). However, cerebellar ataxia 

could be caused without disturbance of PCs output. One approach to increase the 

firing rate of the DCN is to selectively block the SK channels. Cerebellar ataxias were 

observed in a transgenic (Tg) mice that expressed a dominant negative isoform of SK 

channel (Shakkottai et al., 2004). Hence, in cerebellar ataxias, the pharmacological 
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activation of SK channel can serve neuroprotective roles (Hosy et al., 2011). Here, 

using electrophysiology, the potency of two positive modulators on the SK2 channels 

was demonstrated.
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CHAPTER 2 

 

REVIEW OF LITERATURE 

2.1 Overview  

Ion channels are the essential elements of the excitable cells that are responsible 

for the electrical signaling in nerves, muscles, and synapses. They are macromolecular 

pores that conduct and carry ions through the cell membrane. These channels open or 

close their pores to permit or block the ion flow in response to extracellular stimuli 

such as a membrane potential change (Wei and Lee, 2006). 

2.2 Small conductance Ca2+-activated potassium SK channels 

Ataxias are often disabling with no symptomatic therapy available. 

Consequently, it seems appropriate to search for more effective approaches. The 

dysfunction of PCs leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), 

which results in cerebellar ataxia. The SK channels are a unique group of potassium 

ion channels that are activated by intracellular Ca2+ ions (Stocker, 2004; 

Kovalevskaya et al., 2013). Potassium efflux through these channels modulates cell 

excitability. Thus, SK channels have been recognized as potential therapeutic drug 

targets for ataxia. SK channels have tetrameric architecture, and each channel subunit 

is consisted of six transmembrane α-helical domains (Zhang et al., 2013). Ca2+ binds 

to the calcium sensor calmodulin (CaM). Calcium binding to calmodulin prompts 

conformational changes in the channel resulting in channel opening. SK channels are 

so called because of their small single-channel conductance, whereas the IK channel 

has an intermediate single-channel conductance and is thus named an ‘intermediate-
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conductance' channel. SK1, SK2 and SK3, are the three types of SK channels that are 

expressed in the neurons, and their activation is involved in afterhyperpolarization that 

regulates the firing frequency of action potentials for many types of neurons (Sailer et 

al., 2004). SK channels emerged as one of the principle ion channels involved in the 

pacemaking of PCs. Among the three subtypes of SK channels, SK2 is the 

predominant subtype expressed in PCs (Cingolani et al., 2002; Sailer et al., 2004). 

2.3 SK Channels Positive modulators (PAM) 

 Over the past decade, a significant number of compounds have been developed 

targeting SK/IK channels. 1-EBIO (1-ethyl-2-benzimidazolinone), the first positive 

modulator was identified twenty years ago, potentiates SK/IK channel activity, and 

modulates neuronal excitability (Devor et al., 1996). DCEBIO was developed from 

structural optimization of 1-EBIO, and it has about twenty-fold higher potency than 1-

EBIO (Cui et al., 2014). NeuroSearch A/S, a Scandinavian biopharmaceutical 

company has developed a relatively potent IK/SK channels positive modulator NS309 

(3-oxime-6,7-dichloro-1H-indole-2,3-dione) (Strøbaek et al., 2004). 1-EBIO and 

NS309 are non-selective positive modulators. These modulators cannot activate the 

SK/IK channels without the presence of Ca2+. Accordingly, they are termed as SK/IK 

channel positive modulators because they enhance the Ca2+ sensitivity of the SK/IK 

channels. Despite this progress, many modulators often suffer from low potency 

(Pedarzani and Stocker, 2008). Limited knowledge about the binding site for the 

compounds reflected in delaying the development of more effective agents targeting 

SK channels. 
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2.4 The Binding Pocket 

 A binding pocket exists for SK channels positive modulators at the SK channel/CaM 

interface. Dr. Zhang and his colleagues discovered this binding site several years 

ago(Zhang et al., 2012). Two FDA approved SK modulators (Chlorzoxazone and 

Riluzole) in addition to bound in Calmodulin DCEBIO also shared the same binding 

pocket in SK channels. Channel amino acid residues A477 and L480 interact with the 

modulators (fig.1A). Fig.1B shows a three-dimensional structure of calmodulin 

binding domain (CaMBD) and CaM in complex with riluzole. Calmodulin binding 

domain strongly interacts with N-lobe of calmodulin. Also, two calcium ions were N-

lobe. The protein structure from SK2 fragment complexed with NS309 (PDB: 4J9Z) 

which we determined previously can be used as the model for search of potent SK2 

channel modulators (Cui et al., 2014). Significantly, positive modulators have been 

shown to share the same binding site at the CaM/CaMBD interface with different 

potency, including 1-EBIO and NS309 (fig. 1). A structured analysis of the 

CaM/CaMBD complexed with various compounds could be used to facilitate drug 

discovery targeting SK channels. The determination of potency of some known PAMs 

is described in fig.2. 
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Figure 1. Shared binding pocket by DCEBIO. (A), Chlorzoxazone (B) and Riluzole 

(C) in the CaM (cyan) complex with SK2-a channel (salmon). (D) Overlay of the 

conformations of three compounds obtained from their respective protein crystal 

structures. (E) A space-filled model of  the CaMBD and CaM in complex with Riluzole. 

 

 

 

 

 

 

 

 

 

 

 



 

8 

 

 

Figure 2. Structural basis for determining the potency of known SK modulators. 

(A) The interaction energy with major residues in the binding pocket for 1-EBIO, 

DCEBIO and NS309. (B) Lack of the hydrogen bonds between 1-EBIO (gray) and the 

receptor (magenta). (C) Formation of one hydrogen bond (yellow dash lines) between 

DCEBIO (gray) and M51 (cyan). (D) Formation of three hydrogen bonds (yellow dash 

lines) between NS309 (gray) and A477, M51 and K75 (yellow). 
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CHAPTER 3 

 

METHODOLOGY 

 

The identification of potent and selective SK modulators could alleviate the 

symptom of ataxia, in addition to providing pharmacological tools to probe the 

important roles of SK channels in the pacemaking of cerebellar PCs during the 

development of ataxia.  The computer-based approach is able to screen a large number 

of compounds in silico, to find those fitting into the binding pocket. Electrophysiology 

expertise would be critical in characterizing the new modulators in detail.  

3.1 Virtual High Throughput Screening (vHTS) for SK channel modulators.   

The protein structure from SK2-a fragment complexed with NS309 (PDB: 

4J9Z) determined previously was used as the model for search of novel SK2 channel 

modulators. The vHTS screening was performed by Dr. Meng Cui in Northeastern 

University School of Pharmacy. The binding pocket of compounds 11 and 14 were 

determined by Dr. Young Woo Nam. The interaction energy (Eint) was calculated from 

the crystal structures by Dr. Cui in Northeastern University School of Pharmacy. 

3.2 Electrophysiology: 

SK2 channels were expressed in HEK293 cells. A calcium phosphate method 

was used for co-transfection of rat SK2 cDNA in pIRES2-AcGFP1 vector, together 

with rat CaM cDNA in pcDNA3.1(+) vector. Channel activities were recorded from 

GFP positive cells 1-2 days after transfection (figure.3-A).  
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Patch clamp experiments were performed with a Multiclamp Axon 200B 

amplifier (Molecular Devices) at room temperature. pClamp 10.6.2 (Molecular 

Devices) was used for data analysis and acquisitions. The resistance of the patch 

electrodes ranged from 3–7 MΩ. The pipette solution contained 140 mM KCl, 10 mM 

HEPES, 1 mM MgSO4, at pH 7.4. The bath solution contained 140 mM KCl and 10 

mM HEPES, at pH 7.2. EGTA (1 mM) and HEDTA (1 mM) were mixed with Ca2+ to 

obtain free Ca2+ of indicated concentrations, calculated using the software by Chris 

Patton of Stanford University (http://www.stanford.edu/~cpatton/maxc.html)  

 Currents were recorded using an inside-out patch configuration. The 

intracellular face was initially exposed to a zero-Ca2+ bath solution, and subsequently 

to bath solutions with increasing 0.1 µM Ca2+. Currents were recorded by repetitive 1 

sec-voltage ramps from -100 mV to +100 mV from a holding potential of 0mV. One 

minute after switch bath solutions, ten sweeps, with a one-second interval, were 

recorded at each compound concentration in the presence of 0.1 µM Ca2+. The 

integrity of the patch was examined by switching the bath solution back to the zero-

Ca2+ buffer.  

3.3 Data analysis: 

To construct the dose–response curve, the current amplitudes were normalized at 

maximal concentration. The normalized currents were plotted as a function of the 

concentrations of each compound. Relative currents at -100 mV were plotted as a 

function of compound concentrations. Half-activation compound concentration (EC50) 

and Hill coefficients were determined by fitting the data points obtained from 
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individual experiments to a standard dose-response curve (y = 100/(1 + (x/EC50)^-

Hill)). 
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Figure 3. The general principle of patch-clamp electrophysiological recording 

technique. (A) SK2 channels were  co-transfected with a Green Fluorescent 

Protein (GFP) in HEK293 cells. (B) Diagram illustrating the methods of performing 

electrophysiological recordings with the inside-out configuration. 
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Figure 4. Diagram illustrating the method of testing compounds using the 

electrophysiological recordings. (A) The cells and the pipette under the microscope. 

(B) The intracellular side of the channel is exposed to drug in different concentrations 

applied to the bath.  
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Activation of SK2 channels by Ca2+ 

Dose dependent activation of SK2 channels by Ca2+ was measured first. The 

raw current traces are indicated in fig. 5A. The threshold Ca2+ concentration was 

determined to be 0.1 µM as shown in fig.5B. This threshold Ca2+ concentration is a 

minimal concentration of Ca2+ that is required for the modulators. As such, all 

following experiments were performed in the presence of 0.1 µ M Ca2+. 

 

4.2 Potentiation of SK2 channels by Compounds #11 and #14  

Before I started in the lab, Dr. Cui in Northeastern University has performed 

the vHTS, Dr. Zhang and other lab members has purchased and screened the top 100 

hit compounds from the vHTS. Dr. Zhang and other lab members has identified 

compound #11 and compound #14 as two novel SK channel positive modulators.  

After I started in the lab, in order to determine the dose dependent potentiation 

of SK2 channels by these compounds, SK2 channels were expressed in HEK293 cells, 

and their responses to compound #11 and compound #14 were recorded in the 

presence of 0.1 µM Ca2+ in the bath solution.  

4.3 Compound #11 

SK2 channels showed very minimal activation upon application of a 0.1 µM Ca2+ 

solution (Fig. 6B). The channel activity was potentiated by compound #11 with 
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increasing concentrations, from 0.3 µM up to 300 µM. The maximal response to 300 

µM of compound 11 in the presence of 0.1 µM Ca2+ is 94.60 ± 3.03% of the maximal 

current induced by µM Ca2+ (Fig. 7).  Compound 11 dose dependently potentiate the 

SK2 channel activity (Fig. 7A), with the EC50 of 3.87±0.88µM (Fig. 7B) and a Hill 

coefficient of 1.40±0.14 (n=8). 

4.4 Compound #14 

SK2 channels opened slightly upon application of a 0.1 µM Ca2+ solution (Fig. 6C). 

The channel activity is further potentiated by compound #14 with increasing 

concentrations, from 3µM up to 600 µM. In the presence of 0.1 µM Ca2+, the maximal 

response to 600 µM of compound 14 is 92.03± 3.44% of the maximal current induced 

by µM Ca2+ (Fig. 7).  Compound 14 dose dependently potentiate the SK2 channel 

activity (Fig. 7A), with the EC50 of 33.24±4.80µM (Fig. 7B) and a Hill coefficient of 

1.40±0.15 (n=9). 
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Figure 5. Activation of SK2 channels by Ca2+. (A) Raw current traces from an 

inside-out patch with SK2 channels expressed in HEK293 cells. The SK2 channels are 

activated by the Ca2+ concentrations indicated.  A voltage ramp from −100 mV to 

+100 mV was applied. (B) Dose dependent activation of SK2 channels by Ca2+.  
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Figure 6. Potentiation of SK2 channel currents by positive allosteric modulators. 

(A) The chemical structures of NS309, 1-EBIO, SKS-11 and SKS-14. (B) Raw current 

traces from an inside-out patch with SK2 channels expressed in HEK293 cells. The SK2 

channels are activated by 0.1µM Ca2+, with subsequent potentiation by compound 11 at 

the concentrations indicated (all in the presence of 0.1 µM Ca2+). A voltage ramp, from 

−100 mV to +100 mV, was applied. (C) Raw current traces from an inside-out patch 

with SK2 channels expressed. The SK2 channels are activated by 0.1 µM Ca2+, with 

subsequent potentiation by compound 14 at the concentrations indicated (Nam et al., 

2017). 
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Figure 7. Potency of allosteric modulators. (A) Dose–response curves for 1-EBIO, 

compound 11, compound 14 and NS309 for their potentiation of the SK2 channel 

activities. (B) EC50s of the potentiation of SK2 channel activities by 1-EBIO (n=6), 

compound 11(n=8), compound 14(n=9) and NS309(n=8). Note that the y axis is in the 

log scale. 
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4.5 The correlation between the interaction energy and the potency 

Previously, Dr. Zhang’s lab has determined the potency of other known SK channel 

modulators, such as 1-EBIO (EC50= 285.99 ± 31.57μM, n=6), and NS309 (EC50= 

0.55±0.08μM, n=8). As such, we have four compounds with very diverse potency 

values on potentiating SK2 channels including 1-EBIO, compound 14, compound 11 

and NS309, in the order of potency from low to high.  

Previously, Dr. Zhang has determined the crystal structures of the binding pocket of 1-

EBIO (PDB: 4G28) and NS309 (PDB: 4J9Z). Recently, Dr. Young Woo Nam in 

Zhang Lab determined the crystal structures of the binding pocket of compound 11 

and 14 (data not shown). As such, our lab has four crystal structures available for the 

binding pocket of the four compounds mentioned above. Our collaborator, Dr. Cui in 

Northeastern University calculated the interaction energy between the individual 

compound with its binding pocket from these four crystal structures using the 

Discovery Studio program. 

The correlation between the total interaction energy and the potency of these four 

compounds were shown in (Fig. 8). There is a strong correlation between these two 

with a correlation coefficient of ~0.99. The correlation remains between the 

electrostatic interaction energy and the potency of the compounds (fig. 9A), with a 

correlation coefficient of ~0.91. However, the correlation is lost between the van der 

Waals (VDW) interaction energy and the potency of the compounds (fig. 9B), with a 

correlation coefficient of ~0.74. 

Despite the difference in the potency of the compounds, the efficacy of the compounds 

in potentiating SK2 channels are not significantly different from each other (fig. 10). 
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Figure 8. The Correlation between the interaction energy values with the EC50 

values. The x-axis shows total interaction energy of each individual compound (1-

EBIO, compound 11, compound 14 and NS309) with its binding pocket. The y-axis 

shows the potency (EC50 values) of the same group of compounds in potentiation of 

SK2 channels. The correlation   coefficient is 0.99 (Nam et al., 2017). 
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Figure 9. Eint between the compounds and their binding pocket (A) The correlation 

between the electrostatic Eint and the potency of NS309, SKS-11, SKS-14 and 1-EBIO 

(r = 0.91). (B) The lack of correlation between the VDW Eint and the potency of NS309, 

SKS-11, SKS-14 and 1-EBIO (r = 0.74). In (b,c and d), the y-axis is set in log-10 scale 

(Nam et al., 2017).
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CHAPTER 5 

 

CONCLUSION 

 

The cerebellum plays an important role in motor control. Cerebellar PCs are 

affected in many types of ataxia. The early symptoms of ataxia may result from the 

dysfunction of PCs, and loss of firing precision. Based on these findings, drugs that 

restore the regular firing of PCs have been suggested as therapeutics for the symptom 

of ataxia patients. There are various ion channels that control the spontaneous 

electrical activity of PCs. SK channels emerged as one of the principle ion channels 

involved in the pacemaking of PCs (Womack and Khodakhah, 2003). SK2 is the 

predominant subtype expressed in PCs. SK channels modulate the 

afterhyperpolarization of the PCs that occurs after action potential generation. 

Therefore, SK channel positive modulators can be effective in alleviating some 

behavioral and neuropathological symptoms of ataxia in animal models (Shakkottai et 

al., 2011; Walter et al., 2006; Shakkottai et al., 2004; Kasumu et al., 2012a). Several 

small molecule modulators of SK channels have been identified previously. Riluzole, 

an SK channel modulator, yielded promising results in a phase II clinical trial of a 

mixed population of ataxic patients (Ristori et al., 2010). Despite these promising 

results, the potency of both agents is not satisfactory for widespread clinical 

application. 
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The SK channel activator 1-EBIO has low potency, whereas NS309 is a potent SK 

channel modulator (Fig. 7A). Compound #11 and compound #14 were identified as 

positive modulators of SK2 channels.  The purpose of this study is to characterize the 

modulators #11 and #14 in details. To achieve this goal, an inside-out patch method 

was used to record the currents as the inside surface of the SK2 channel was exposed 

to different drug concentrations applied to the bath. Compound #11 was applied in the 

range from 0.3 μM to 300 μM to the inside of the patch at a [Ca2+] of 0.1 μM resulted 

in a concentration-dependent potentiation of the SK2 current (Figure 6B). To quantify 

the dose dependence of compound #11, a number of experiments were performed and 

the current response in each experiment was normalized. The normalized data were 

averaged and plotted together with other positive modulators (fig 7A). Data were fitted 

by the Hill equation which yielded an EC50 value for SK2 potentiation of 

3.87±0.88µM, a Hill coefficient of 1.40±0.14 (n=8) of compound #11. Figure. 7A 

depicts that compound #11 potently activated SK2 channels more than compound #14. 

Moreover, The EC50 of compound is less than the EC50 of compound #14. The EC50 

indicates how much of the agent is needed to achieve the half-maximal response. The 

potency of the compound is inversely related to the EC50. The more potent the agent 

the smaller the EC50 will be. Thus, compound # 11 can be considered as a highly 

potent SK channel modulator, but when compared to NS309, compound  # 11 is less 

potent than the most potent modulator, NS309. Using electrophysiology, I evaluated 

the efficacy and potency of two positive modulators (compounds 11 and 14) on the 

SK2 channels. The efficacy values of these two compounds are not significantly 

different from the efficacy of 1-EBIO and NS309 as reported previously by Dr. Zhang 
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(Fig. 10), whereas the potency values of 1-EBIO, compound 14, compound 11 and 

NS309 are significantly different from each other (Fig. 7B). Utilizing the previous 

data from Dr. Zhang on the potency of two other modulators (1-EBIO and NS309) and 

the crystal structures of the binding pocket of the compounds determined by Dr. Nam, 

I found a correlation between the potency of these compounds and the interaction 

energy of the compounds to their binding pocket (fig. 8). These structure-activity 

relationship studies will provide valuable information on how the potency of the 

compounds can be improved through chemical modification, which will facilitate drug 

discovery targeting SK channels to combat ataxia. The results described in this thesis  

have been  published  in the Scientific Report  journal on December 7, 2017  (Nam et 

al., 2017). 
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Figure 10. Efficacy of the compounds. The maximal response of the compounds is 

normalized to the maximal response of 10 µM Ca2+. Efficacy induced by 1-EBIO(n=6), 

compound 11(n=8), compound 14(n=9) and NS309(n=8). 
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