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Localization of angiotensin converting enzyme in rabbit cornea and
its role in controlling corneal angiogenesis in vivo

Ajay Sharma,1,2 Daniel I. Bettis,1,2 John W. Cowden,2 Rajiv R. Mohan1,2,3

1Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO; 2Mason Eye Institute, School of Medicine, University of Missouri-
Columbia, MO; 3Department of Ophthalmology, College of Veterinary Medicine, University of Missouri-Columbia, MO

Purpose: The renin angiotensin system (RAS) has been shown to modulate vascular endothelial growth factor and
angiogenesis. In this study we investigated (i) the existence of the RAS components angiotensin converting enzyme (ACE)
and angiotensin II receptors (AT1 and AT2) in the rabbit cornea using in vitro and ex vivo models and (ii) the effect of
enalapril, an ACE inhibitor, to inhibit angiogenesis in rabbit cornea in vivo.
Methods: New Zealand White rabbits were used. Cultured corneal fibroblasts and corneal epithelial cells were used for
RNA isolation and cDNA preparation using standard molecular biology techniques. PCR was performed to detect the
presence of ACE, AT1, and AT2 gene expression. A corneal micropocket assay to implant a vascular endothelial growth
factor (VEGF) pellet in the rabbit cornea was used to induce corneal angiogenesis. Rabbits of the control group received
sterile water, and the treated group received 3 mg/kg enalapril intramuscularly once daily for 14 days starting from day 1
of pellet implantation. The clinical eye examination was performed by slit-lamp biomicroscopy. We monitored the level
of corneal angiogenesis in live animals by stereomicroscopy at days 4, 9, and 14 after VEGF pellet implantation. Collagen
type IV and lectin immunohistochemistry and fluorescent microscopy were used to measure corneal angiogenesis in tissue
sections of control and enalapril-treated corneas of the rabbits. Image J software was used to quantify corneal angiogenesis
in the rabbit eye in situ.
Results: Our data demonstrated the presence of ACE, AT1, and AT2 expression in corneal fibroblasts. Cells of corneal
epithelium expressed AT1 and AT2 but did not show ACE expression. Slit-lamp examination did not show any significant
difference between the degree of edema or cellular infiltration between the corneas of control and enalapril-treated rabbits.
VEGF pellet implantation caused corneal angiogenesis in the eyes of vehicle-treated control rabbits, and the mean area
of corneal neovascularization was 1.8, 2.8, and 3.2 mm2 on days 4, 9, and 14, respectively. Enalapril treatment caused a
notable decrease in corneal neovascularization of 44% (1 mm2), 28% (2.1 mm2), and 31% (2.2 mm2) on the three tested
time points, respectively. The immunostaining of corneal tissue sections with collagen type IV and lectin confirmed the
presence of blood vessels, with enalapril-treated rabbit corneas showing a lesser degree of blood vessel staining.
Conclusions: Corneal cells show expression of tissue RAS components, such as ACE, AT1, and AT2. Treatment with ACE
inhibitor enalapril markedly decreased corneal angiogenesis in a rabbit model of VEGF-induced corneal
neovascularization, suggesting that ACE inhibitors may represent a novel therapeutic strategy to treat corneal
angiogenesis.

Corneal clarity is necessary for normal vision. Corneal
insult, such as trauma, chemical injury, infections, or immune
disorders, can lead to corneal neovascularization and loss of
corneal transparency [1,2]. Clinical management of corneal
neovascularization is challenging and preexisting
neovascularization in acceptor eye also significantly increases
the risk of corneal transplant rejection [3]. A variety of agents,
such as corticosteroids [4], cyclosporine [5], indomethacin
[6], methotrexate [7], rapamycin [8], low-molecular weight
heparin sulfate [9], and thalidomide [10], have been evaluated
in animal models of angiogenesis to treat corneal
neovascularization but have shown limited success.
Bevacizumab, an anti-vascular endothelial growth factor

Correspondence to: Rajiv R. Mohan, Ph.D., Mason Eye Institute,
School of Medicine, EC-210, University of Missouri-Columbia, 1
Hospital Drive, Columbia, MO, 65212; Phone: (573) 884-1449;
FAX: (573) 814 6551; email: mohanr@health.missouri.edu

(VEGF) antibody, has recently been successfully tested in
patients of corneal neovascularization [11]. Although
bevacizumab is well tolerated, multiple applications may be
required for effective treatment, and this can be expensive.
Therefore, there is an unmet medical need for clinically
effective agents that can inhibit corneal neovascularization.

The renin angiotensin system (RAS) is among the most
powerful regulators of blood pressure and plasma volume
[12]. The RAS consists of kidney renin (converts circulating
plasma protein angiotensinogen into angiotensin I) and
angiotensin-converting enzyme (ACE) that converts
angiotensin I to angiotensin II (Ang II). Besides the circulating
RAS, the presence of a tissue-specific local RAS is also well
documented for brain, heart, pancreas, kidney, blood vessels,
and gonads [12]. In ocular tissue, multiple studies have tested
the presence of the tissue RAS, demonstrating mRNA and
protein expression of renin, angiotensinogen, and Ang II
receptors in ciliary bodies [13,14], choroid [15], ganglion cells
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[14], pigmented epithelial cells [16,17], and Müller cells of
the retina [18]. The presence of angiotensin and ACE enzyme
activity have also been detected in the vitreous fluid [19].
Among retina cells, the presence of renin has been shown in
pigmented epithelial cells but not in neural retina, whereas
angiotensinogen and ACE could be detected in both
pigmented epithelial cells and neural retina [16]. These
findings suggest that RAS expression is not constant, even in
the various cell types of a single tissue such as retina. A few
researchers have tested the presence of the RAS in cornea, but
these, performed in rodent, dog, and primate eyes, have shown
contradictory findings [14,15,17]. Savaskan et al. [14] and
Usui et al. [20] reported expression of ACE and Ang II
receptors (AT1) in the primate and mouse cornea, whereas
Sheota et al. [15] and Murata et al. [17] did not detect ACE or
AT1 in dog and rat cornea. The detailed investigation of RAS
components in different corneal cell types is still missing.

Typically, Ang II is implicated in controlling plasma
volume, electrolyte balance, and blood pressure [12].
Recently, Ang II has been ascribed to modulate many more
pro-angiogenic activities, including the proliferation and
chemotaxis of vascular smooth muscle and endothelial cells
and increased transcription of VEGF [21-24]. These reports
suggest that Ang II may have a role in promoting
angiogenesis. Thus, it is reasonable to speculate that
suppression of Ang II can inhibit angiogenesis. Numerous
studies have demonstrated that ACE inhibitors (known to
block Ang II formation) decrease cellular proliferation,
angiogenesis, and VEGF expression in different tumor cell
lines [25-27]. Furthermore, the anti-angiogenic effect of ACE
inhibitors has been shown in various experimental animal
models of cancer. In these studies, ACE inhibitors showed a
decrease in tumor growth and VEGF levels [25-30]. In the
eye, ACE inhibitors have shown a significant decrease in
choroidal [31] and retinal vascularization [32] in rodent
models in vivo. A recent clinical trial performed with an ACE
inhibitor, enalapril, showed 65% reduction in progression of
diabetic retinopathy in enalapril-treated patients [33]. We
hypothesized that inhibition of RAS activity with ACE
inhibitor can prevent angiogenesis in rabbit cornea in vivo.
Therefore, we evaluated the effect of enalapril on corneal
neovascularization using a well-defined VEGF-induced
rabbit model of corneal neovascularization. The expression of
ACE enzyme and the angiotensin receptors AT1 and AT2 in
rabbit corneal epithelium and fibroblasts was also
investigated.

METHODS
Rabbits and corneal cultures: Female New Zealand White
rabbits (Myrtle laboratories Inc., Thompson’s Station, TN)
weighing 2.5–3.0 kg were used in this study. The study was
approved by the Institutional Animal Care and Use
Committee (Harry S. Truman Memorial Veterans’ Hospital,
Columbia, MO). Animals were treated in accordance with the

tenets of the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research. The cells of corneal
epithelium were collected by scraping the epithelium with a
surgical blade. Primary corneal fibroblasts were generated
from the rabbit corneas as previously described [34]. Briefly,
cornea was washed with cell culture medium, and epithelium
and endothelium were removed by gentle scraping with a
scalpel blade. Corneal stroma was cut into small pieces and
incubated in a humidified (90%) CO2 incubator at 37 °C in
Dulbecco’s modified Eagle’s medium, containing 10% fetal
bovine serum, to obtain rabbit corneal fibroblasts. Seventy
percent confluent cultures of rabbit corneal fibroblasts were
used for experiments.
RNA extraction, cDNA synthesis, and PCR: Total RNA from
the cells was extracted using the RNeasy kit (Qiagen Inc.,
Valencia, CA) and was reverse-transcribed to cDNA,
following the vendor’s instructions (Promega, Madison, WI).
Briefly, cells were lysed in 350 µl RLT buffer (Qiagen Inc.,
Valencia, CA) containing β-mercaptoethanol, followed by
equal volume of ethanol addition. The solution was then
applied onto RNeasy column and RNA was eluted from the
column using 30 µl of RNAse free water. The eluted RNA
was reverse transcribed to cDNA using oligo(dT) primers,
AMV reverse transcriptase (Promega), reverse transcriptase
buffer,  dNTPs,  RNasin.  The  reverse  transcription  reaction
was carried out at 42 °C for 30 min followed by  enzyme
inactivation by heating at 90 °C for 2 min. PCR was performed
for the detection of ACE, AT1, and AT2. A 50-µl reaction
mixture containing 3 µl cDNA, 2 µl forward (200 nM) and
2 µl reverse (200 nM) primer, 3.125 mM of deoxynucleotide
triphosphates (dNTPs) and Taq polymearse was run one cycle
at 95 °C for 3 min, then 40 cycles of 95 °C 30 s, followed by
55 °C 30 s and 55 °C for 60 s, using a thermocycler (Bio-Rad
Laboratories, Hercules, CA). For ACE, the forward primer
sequence 5′-ACG AGC ACG ACA TCA ACT TCC TCA-3′
and reverse primer sequence 5′-AGT AGT TCA TCA TGG
CCG AGG CT-3′ were used. For AT1, the forward primer
sequence was 5′-AGG ATG ACT GTC CCA AAG CTG
GAA-3′, and the reverse primer sequence was 5′-ACG TTT
CGG TGG ATG ATA GCT GGT-3′. For AT2, the forward
primer sequence was 5′-TGA GAA ATA TGC CCA GTG
GTC GGT-3′, and the reverse primer sequence was 5′-ATA
ATC CAG ATG GGC CTC AAG CCA-3′. β-actin (ACTB)
was used as a positive control gene: forward primer (5′-AGG
CCA ACC GCG AGA AGA TGA CC-3′), reverse primer (5′-
GAA GTC CAG GGC GAC GTA GCA C-3′). cDNA samples
were prepared from two different rabbits. Each PCR was
repeated at least three times.

Corneal angiogenesis in rabbits: Eight female New Zealand
White rabbits (2.5–3.0 kg) were divided in two groups.
Animals were anesthetized by intramuscular injection of
ketamine hydrochloride (50 mg/kg) and xylazine
hydrochloride (10 mg/kg). In addition, topical proparacaine
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hydrochloride 0.5% (Alcon, Ft. Worth, TX) was applied to
each eye just before surgery. A corneal micropocket assay was
performed in the rabbit eyes under general and local
anesthesia. Only one eye of each animal was used for the
surgical procedure, and the contralateral eye served as a naive
control. A wire speculum was positioned in the eye, and a
sucralfate-hydron pellet containing 650 ng of VEGF
(PeproTech, Rocky Hill, NJ) was implanted in the cornea
micropocket. Rabbits of the control group received sterile
water, and the treated group received 3 mg/kg enalapril
(Sigma Aldrich Inc., St. Louis, MO) via intramuscular
injection once daily for 14 days starting from day 1 of pellet
implantation.
Stereomicroscopy and slit-lamp examination: The level of
neovascularization in the cornea was monitored with a
micrometer-calibrated stereomicroscope (Leica, Wetzlar,
Germany) equipped with a digital camera (SpotCam RT KE;
Diagnostic Instruments Inc., Sterling Heights, MI). Rabbit
eyes were imaged at 4, 9, and 14 days after pellet implantation
for quantitative analysis of corneal neovascularization. Slit-
lamp biomicroscopy was also performed on naive and VEGF-
implanted untreated and enalapril-treated rabbit eyes.
Qualitative clinical evaluation data about the redness, edema,
and inflammation were recorded.

Tissue collection: Rabbits were humanely euthanized with
pentobarbitone (150 mg/kg) under general anesthesia.
Corneas were removed with forceps and sharp Westcott
scissors, embedded in liquid optimal  temperature cutting
compound (OCT) compound (Sakura FineTek, Torrance, CA)
within a 24 mm×24 mm×5 mm mold (Fisher, Pittsburgh, PA),
and snap frozen. The frozen tissue blocks were maintained at
−80 °C. Tissue sections (7 µm) were cut with a cryostat (HM
525M; Microm GmbH, Walldorf, Germany). Sections were
placed on 25 mm×75 mm×1 mm microscope Superfrost Plus
slides (Fisher), and maintained frozen at −80 °C until staining.
Immunostaining for collagen type IV and lectin: Collagen
type IV is a major component of the basal lamina of blood
vessels. We therefore performed collagen type IV
immunohistochemistry to detect the presence of blood
vessels. Blood vessel staining was also confirmed with lectin
(obtained from Lycopersicon esculatum). Briefly, the tissue
sections were equilibrated at room temperature to thaw OCT.
Tissue sections were washed with 1× HEPES buffer for 15
min, blocked with 5% bovine serum albumin for 30 min, and
incubated with 1:50 dilution (in 1× HEPES buffer) of goat
polyclonal antibody for collagen type IV (catalog no. sc9302;
Santa Cruz Biotechnology Inc., Santa Cruz, CA) for 90 min.
Donkey antigoat Alexa 594 secondary antibodies (catalog no.

Figure 1. Representative image showing
detection of ACE, AT1, and AT2 mRNA
expression in rabbit corneal fibroblasts
with PCR. Appropriate size
amplification products for ACE (469
bp), AT1 (463 bp), and AT2 (551 bp) were
detected in two independent cDNA
samples of corneal fibroblast prepared
from different rabbits. -ve con denotes
negative controls that contained ACE,
AT1, or AT2 primers but water instead of
cDNA. + ve con represents the positive
control of β-actin (ACTB; 350 bp). L
denotes 1 kb plus the DNA ladder.

Figure 2. Representative image showing
AT1 and AT2 mRNA expression in rabbit
corneal epithelium detected with PCR.
Appropriate size amplification products
for AT1 (463 bp) and AT2 (551 bp) were
detected in two independent rabbit
corneal epithelium cDNA samples
prepared from different rabbits. No
signal for ACE was detected. -ve con
denotes negative controls that contained
ACE, AT1, or AT2 primers but water
instead of cDNA. + ve con represents
the positive control of β-actin (ACTB;
350 bp). L denotes 1 kb plus the DNA
ladder.
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A-11058; Invitrogen, Carlsbad, CA) were used at a dilution
(in 1× HEPES buffer) of 1:500 for 1 h. For lectin staining,
sections were incubated with a solution of 20 µg/ml Texas
red-conjugated tomato lectin (Vector laboratories,
Burlingame, CA) for 30 min. The sections were washed three
times in HEPES buffer, mounted in vectashield containing
4'-6-diamidino-2-phenylindole (DAPI; Vector laboratories),
and viewed and photographed with a Leica fluorescent
microscope (Leica DM 4000B; Leica) equipped with a digital
camera (SpotCam RT KE).

Quantification of corneal neovascularization: Adobe
Photoshop CS2 (Adobe systems, San Jose, CA) and National
Institutes of Health Image J 1.38X (NIH, Bethesda, MD)
software were used for quantifying corneal
neovascularization. The quantification of corneal vasculature
in the eye of the live rabbit at different selected days was
performed with stereo and slit-lamp microscopy. Images of
the eye covering corneal neovascularization were taken with
a digital camera fitted in a microscope for quantification
analysis.
Statistical analysis: The results were expressed as mean
±standard error of the mean (SEM). Statistical analysis was
performed using two-way analysis of variance (ANOVA)
followed by Bonferroni multiple comparisons test. A value of
p<0.05 was considered statistically significant.

RESULTS
Detection of ACE, AT1, and AT2 in rabbit corneal epithelium
and fibroblasts: Figure 1 shows the presence of ACE, AT1, and
AT2 in rabbit corneal fibroblasts. An appropriate size
amplification product of 469 bp was detected for ACE in two
independent rabbit corneal fibroblast samples. Amplification
products for AT1 and AT2, corresponding to the product size
of 463 bp and 551 bp, respectively, were also present in the
rabbit corneal fibroblast cDNA samples. No PCR product was
detected in the negative controls that contained primers for
ACE, AT1, or AT2 but no cDNA. ACTB was used as a positive

control. The appropriate size amplification product of ACTB
at 350 bp was detected in all PCRs (Figure 1).

Figure 2 shows the presence of AT1 and AT2 in the
epithelial cells of rabbit cornea. Anticipated size PCR
products of 463 bp and 551 bp for AT1 and AT2, respectively,
were detected in the two independent cDNA samples of rabbit
epithelium. On the other hand, no amplification product for
ACE was detected, suggesting that rabbit epithelium does not
express ACE enzyme. Negative controls containing
appropriate primers and water instead of cDNA samples were
also analyzed and did not show any amplification products.
ACTB was used as a positive control and showed a PCR
product band of 350 bp (Figure 2).
Slit-lamp examination of rabbit eyes: Figure 3 shows broad
beam and narrow beam slit-lamp pictures of the eyes of
control and enalapril-treated rabbits. A qualitative
comparison between the control and enalapril-treated corneas
did not reveal any significant difference in the degree of
redness, edema, or cellular infiltration.
Effect of enalapril on corneal angiogenesis: Figure 4 shows
stereomicroscopic images depicting the localization and
extent of corneal neovascularization in control and enalapril-
treated rabbit eyes. VEGF pellet implantation produced
corneal neovascularization in both control and enalapril-
treated rabbits. The images captured on day 4, 9, and 14 show
a time-dependent increase in corneal blood vessels in both the
control and enalapril-treated groups. However, a notable
decrease in corneal neovascularization can be seen in eyes of
rabbits treated with enalapril (Figure 4).

For quantitative comparisons between control and treated
animals, we calculated the area of corneal neovascularization
using Image J software. Figure 5 shows the mean area of
corneal neovascularization in control and enalapril-treated
rabbits at the three tested time points. Control corneas showed
a mean corneal neovascularization area of 1.8 mm2 at day 4.
The area of corneal neovascularization noted at day 9 and day
14 was 2.8 and 3.2 mm2, respectively, and it was significantly
higher compared to day 5 (p<0.01; shown by ψ in Figure 5).

Figure 3. Representative broad-beam
(A) and narrow-beam (B) slit-lamp
biomicroscopy images of VEGF-
implanted rabbit corneas. Corneas did
not show any cellular infiltrate or edema
in the area  inferior to VEGF pellet (as
shown  by  arrow).  A mild  level  of  
edema is noticeable  around the area of
VEGF   pellet.   The  scale  bar  denotes
2 mm.
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Figure 4. Representative stereomicroscopy images showing VEGF-induced neovascularization in the cornea of control and enalapril-treated
rabbit eyes. The rabbit eyes were imaged on day 4, 9, and 14 days after VEGF implantation to monitor corneal angiogenesis in control and
enalapril treated rabbits.
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Corneas of enalapril-treated rabbits showed a mean corneal
neovascularization area of 1 mm2 on day 4, which increased
significantly (p<0.01; shown by ψ in Figure 5) to 2.1–
2.2 mm2 on day 9 or day 14. A relative comparison between
control and enalapril-treated rabbits revealed a mean decrease
in corneal neovascularization of 44%, 28%, and 31% on day
4, 9, and 14, respectively, and the decrease was statistically
significant at day 4 and day 14 (p<0.01; shown by the asterisk
in Figure 5).

The effect of enalapril on corneal angiogenesis was
further confirmed by collagen type IV and lectin staining of
the blood vessels in the corneal tissue sections of control and
enalapril-treated rabbits. Figure 6 demonstrates the
localization and level of collagen type IV-stained blood
vessels in corneal tissue sections of control and enalapril-
treated rabbits. Collagen type IV and lectin staining (data not
shown) revealed fewer blood vessels in corneal sections
obtained from enalapril-treated rabbits compared to control
corneal sections (Figure 6).

DISCUSSION
The presence of the RAS in a wide variety of nonocular
tissues, including brain, heart, pancreas, and gonads, has been
reported [12]. In the eyes, renin, angiotensin, and
angiotensinogen protein and mRNA expression have been
reported in retina [14,16,17], choriod [15], and ciliary bodies
[13,14] but were not tested in various cells of the cornea

Figure 5. Digital quantification of VEGF-induced corneal
neovascularization in enalapril-treated (white bar) and enalapril-
untreated control (black bar) eyes of live rabbit performed on days
4, 9, and 14. ψ denotes a p<0.01 and shows a significant value of
corneal neovascularization on day 9 and 14 compared to day 4; *
denotes a p<0.05 and shows a significant value of corneal
neovascularization in enalapril-treated rabbit compared to enalapril-
untreated controls. Bars represent standard error.

[13-17]. Among various cell types of retina, renin expression
has been detected in pigmented epithelial cells but not in
neural retina, whereas angiotensinogen and ACE expression
were demonstrated in both pigmented epithelial cells and
neural retinal cells [13]. Similarly, expression of AT1 has been
mainly reported in retinal ganglion and photoreceptor cells but
not in pigmented epithelial cells [14,15,17]. These studies
suggest that expression of RAS components in different cells
of a tissue may vary and may possess unique cellular
distributions. Our study demonstrates that both corneal
epithelium and fibroblasts express AT1 and AT2, whereas ACE
is expressed in corneal fibroblasts but not in corneal
epithelium. Our data are in agreement with earlier studies that
detected the presence of AT1 and ACE in whole corneal
homogenates of the mouse and human cornea [14,20]. It is
also evident from the literature that corneal RAS expression
varies by species, as the presence of AT1 and ACE was not
detected in rat [17] and dog [15] cornea, respectively. To the
best of our knowledge, this is the first study to report cellular
localization of ACE, AT1, and AT2 expression in two different
cells of the rabbit cornea.

Transdifferentiation of fibroblast to myofibroblast is
thought to be a central event in the pathogenesis of corneal
fibrosis. In nonocular tissues, myofibroblasts are shown to
express high levels of ACE that can generate large amounts
of Ang II [35]. The elevated level of Ang II is reported to
modulate expression of collagen, fibronectin, and many other
extracellular matrix proteins, suggesting that the RAS
expressed locally in fibroblasts may participate in fibrosis and
wound healing [36-38]. Elevated levels of angiotensin
receptors were reported in skin fibroblasts during wound
healing, which further supports this notion [39]. Based on
these studies in nonocular tissues, we speculate that the
presence of corneal RAS components demonstrated in our
study may play a role in corneal wound healing and fibrosis.
Future studies will investigate the role of the RAS in corneal
wound healing and fibrosis. Besides fibrosis, the corneal RAS
may participate in regulation of the inflammatory response,
as suggested by a recent study demonstrating a marked
increase in ACE,AT1, and angiotensinogen gene expression in
a mouse corneal model of a nylon suture-induced corneal
injury [20].

Ang II is the biologically active end product of the RAS.
Accumulating evidence suggests that Ang II promotes
endothelial and vascular smooth muscle cell proliferation and
chemotaxis besides increasing VEGF expression [21-24].
Further support for the pro-angiogenic effect of Ang II comes
from in vivo studies that showed Ang II implantation induces
blood vessel formation in rabbit cornea and in the chick
chorio-allantoic membrane. These investigations provide
strong support about the role of Ang II in angiogenesis [40,
41]. Most importantly, these observations led to a novel
interventional strategy to control angiogenesis by blocking
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Ang II formation. ACE inhibitors are known to block Ang II
formation, and numerous studies have demonstrated that ACE
inhibitors decrease cellular proliferation, VEGF expression,
and inhibit angiogenesis in culture and in animal models of
cancer [25-30]. These studies and our data showing
expression of the RAS locally in the cornea led us to
hypothesize that ACE inhibitors can inhibit corneal
neovascularization in rabbit eye in vivo. We tested this
hypothesis using a well-defined rabbit model of corneal
neovascularization, and our results showed that enalapril
treatment significantly prevents VEGF-induced corneal
neovascularization in rabbit eye in vivo. A relatively low dose
(3 mg/kg) of enalapril was used in our experiments to avoid
the potential risk of hypotension [42]. However, it is likely
that higher or multiple doses of enalapril may show a greater
anti-angiogenic effect in the cornea. The intramuscular
administration of enalapril over topical application was
selected based on pharmacokinetic information available in
the literature.

In conclusion, this study demonstrates the presence of
AT1 and AT2 in rabbit corneal fibroblasts and epithelial cells
and ACE expression in corneal fibroblasts of rabbit cornea.
Furthermore, we found a significant decrease in VEGF-
induced corneal neovascularization in rabbit in vivo with
enalapril, an ACE inhibitor. ACE inhibitors represent a novel
therapeutic strategy to treat corneal neovascularization;
however, this requires further investigation.
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