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(SAHA) in the Inhibition of TGF-β1 Mediated Canine Corneal 
Fibrosis
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1Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of 
Missouri, Columbia, Missouri

2Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri

3Mason Eye Institute, School of Medicine, Columbia, Missouri

Abstract

Objective—To investigate molecular mechanisms mediating anti-fibrotic effect of SAHA in the 

canine cornea using an in vitro model. We hypothesized that SAHA attenuates corneal fibrosis by 

modulating Smad-dependent and, to a lesser extent, Smad-independent signaling pathways 

activated by TGF-β1, as well as matrix metalloproteinase (MMP) activity.

Methods—Cultured canine corneal fibroblasts (CCF) were incubated in the presence/absence of 

TGF-β1 (5ng/ml) and SAHA (2.5μM) for 24hrs. Western blot analysis was used to quantify non-

phosphorylated and phosphorylated isoforms of Smad2/3, p38 MAP kinase (MAPK), ERK1/2 and 

JNK1. Real-time PCR and zymography were utilized to quantify MMP1, MMP2, MMP8 and 

MMP9 mRNA expression and MMP2 and MMP9 protein activity, respectively.

Results—TGF-β1 treatment caused a significant increase in phospho-Smad2/3 and phospho-p38 

MAPK. SAHA treatment reduced TGF-β1-induced phosphorylation of Smad2/3 but not of p38 

MAPK. TGF-β1 did not modulate the phosphorylation of ERK1/2 or JNK1. SAHA caused a 

significant reduction in phospho-ERK1/2 expression regardless of concurrent TGF-β1 treatment. 

Neither SAHA alone nor in combination with TGF-β1 altered phospho-JNK1 expression. TGF-β1 

significantly increased MMP1 and MMP9 mRNA expression but did not alter MMP2 mRNA. 

SAHA treatment attenuated TGF-β1-induced MMP9 mRNA expression while significantly 

enhancing TGF-β1-induced MMP1 mRNA expression. Zymography detected reduced expression 

of MMP2 and MMP9 proteins in untreated control CCF. TGF-β1 treatment did not alter their 

expression but SAHA treatment +/−TGF-β1 significantly increased MMP2 and MMP9 protein 

expression.

Conclusions—The corneal anti-fibrotic effects of SAHA involve multiple mechanisms 

including modulation of canonical and non-canonical components of TGF-β1 intracellular 

signaling and MMP activity.
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Introduction

Corneal wound healing is a complex process that involves the signaling of numerous 

cytokines, activation of keratocytes, formation of both fibroblasts and myofibroblasts, 

increased deposition of extracellular matrix (ECM) and up-regulation of matrix 

metalloproteinases (MMPs) (1–6). Many different cytokines are produced in response to 

corneal wounding and of these various cytokines TGF-β1 has been shown to play a major 

role in the formation of corneal fibrosis (2, 7, 8).

The effects of TGF-β1 are facilitated via various intracellular signaling pathways including 

the Smad-dependent intracellular signaling pathways (9, 10). The Smad protein family is 

classified based on function and is composed of three categories including receptor-

regulated Smads (R-Smads), common mediator Smads (co-Smads), and inhibitor Smads (I-

Smads). R-Smads possess ligand specificity and become phosphorylated after directly 

binding to the TGF-β Receptor. Co-Smads are needed for nuclear entry and consequently 

allow for signal transduction from the cell membrane to the nucleus. Finally, I-Smads 

interfere with the activation of R-Smads by inhibiting their phosphorylation. Interactions 

among these Smad proteins ultimately results in the transformation of quiescent corneal 

keratocytes into corneal fibroblasts and subsequently myofibroblasts (7, 10, 11).

Although Smad proteins seem to play a primary role in TGF-β1 signal transduction, 

literature suggest that several other signaling pathways also allow for TGF-β1 to modulate 

gene expression and cell function. For example, TGF-β1 can activate several mitogen-

activated protein kinases (MAPKs) such as ERK, JNK and p38 MAPK (10). These MAPK 

pathways appear to play to a role in epithelial and endothelial cell migration in the corneas 

of mice, rabbits and humans. Further they also, alter the expression of ECM genes (12–14).

TGF-β1 is known to induce fibrosis not only through cellular transdifferentiation but also 

through the modulation of the activity of MMPs (10). MMPs are proteolytic enzymes, which 

play a major role in extracellular matrix degradation. Physiologically, MMPs allow for 

remodeling of the extracellular matrix which is a necessary component of the wound repair 

process. However, excessive and uninhibited activity of MMPs in the cornea such as MMP2 

and MMP9 can result in keratomalacia and potentially fibrinogenesis (15). Over activity of 

MMP1 has been implicated in ophthalmic disease as well, such as superior limbic 

keratoconjunctivitis and viral keratitis in people (16, 17). Various studies have demonstrated 

TGF-β1 can cause the up-regulation of the gene and protein expression of MMP1, MMP2 

and MMP9 (5, 6, 18–21).

It has been demonstrated that Smad and MAPK mediated gene expression is influenced by 

histone acetylation (22–25). Histone acetylation is controlled by the interactions of two 

enzymes, histone deacetylase (HDAC) and histone acetyltransferase (HAT) (26). The 
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activities of these two enzymes regulate gene expression and cellular function by modifying 

core histones or non-histone proteins (26). HDACs have been shown to participate in the 

development of fibrosis within various organs, including the cornea (27, 28). The over-

expression of HDACs and subsequent fibrosis can be prevented by HDAC inhibitors 

(HDACi) (29–32). Recently, we demonstrated effective inhibition of canine corneal fibrosis 

in vitro using the HDACi, Suberoylanilide Hydroxamic Acid (SAHA) (33). SAHA is an 

FDA approved drug (Vorinostat®) for human clinical use as a treatment of cutaneous T-cell 

lymphoma (34).

SAHA efficiently inhibits corneal fibrosis without toxicity; however the precise mechanism 

by which SAHA decreases corneal fibrosis remains undefined. The purpose of this study 

was to determine the mechanisms mediating anti-fibrotic effects of SAHA in canine corneal 

wound healing using an established in vitro model. We tested the hypothesis that SAHA 

inhibits canine corneal fibrosis by modulating Smad and MAPK signaling and attenuating 

MMP activity.

Materials and methods

Canine corneal fibroblast (CCF) cultures

Primary canine corneal fibroblast cultures were established following the protocol 

previously described (33, 35). Briefly, full-thickness 6 mm axial corneal buttons were 

aseptically harvested from 3 dogs euthanized for reasons unrelated to the study. These 

purpose-bred, university owned, research dogs were being sacrificed for an orthopedic study 

in which they were enrolled. Eyes were examined by slit-lamp biomicroscopy prior to 

euthanasia and determined to be free of anterior segment disease. The corneal biopsies were 

washed with sterile minimal essential medium (MEM, Gibco, Grand Island, NY, USA), and 

the epithelium and endothelium were removed with careful dissection using a number 10 

blade (BD, Franklin Lakes, NJ, USA). The remaining corneal stroma was sub-sectioned and 

placed in 100×20 mm tissue culture dishes (BD, BioSciences, Durham, NC, USA) 

containing MEM supplemented with 10% fetal bovine serum. These stromal explants were 

then incubated in a humidified 5% CO2 incubator at 37°C to obtain CCF cultures. The 

primary CCF harvested from the corneal stromal sub-sections were seeded into 100×20 mm 

tissue culture plates in MEM supplemented with 10% fetal bovine serum and allowed to 

reach 80% confluence.

TGF-β1 and SAHA treatment

A 10 mM stock solution of SAHA (Cayman Chemical Company, Ann Arbor, MI) was made 

using dimethylsulfoxide (DMSO) and diluted 4000 times with MEM to achieve a final 

concentration of 2.5 μM. Upon reaching 80% confluence CCF were exposed to either TGF-

β1 (5 ng/ml) or SAHA (2.5 μM) alone or both for 24 hours.

Immunoblotting

Protein lysates were harvested from CCF using a radioimmunoprecipitation assay (RIPA) 

lysis buffer containing a protease inhibitor cocktail (Santa Cruz Biotechnology, Santa Cruz, 

CA). The samples were then centrifuged at 10,000 g for 10 min. Following centrifugation, 
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samples were suspended in NuPAGE LDS buffer containing a reducing agent (Life 

Technologies Corporation, Grand Island, NY, USA) and heated at 70°C for 10 min. Proteins 

were resolved by NuPAGE Novex Bis-Tris mini gels (Life Technologies, Invitrogen, Grand 

Island, NY, USA) and were transferred onto the polyvinylidene difluoride membranes 

utilizing overnight wet transfer technique at 25 volts. To detect transferred proteins, the 

membranes were then incubated with the following primary antibodies: p38 MAPK, 

phospho-p38 MAPK, JNK1, phospho-JNK1, ERK1/2, phospho-ERK1/2 (Cell Signaling, 

Beverly, MA, USA), Smad2/3 and phospho-Smad2/3 (Santa Cruz biotechnology Inc., 

Dallas, TX, USA). Membranes were then washed and incubated with alkaline phosphatase 

conjugated anti-mouse, anti-goat, or anti-rabbit secondary antibody. After washing three 

times in Tris-buffered saline for 5 minutes, membranes were developed using the nitroblue 

tetrazolium/5-bromo-4-chloro-3-indolylphosphate method. All western blots for each 

protein were repeated at least two times. Digital quantification of western blots was 

performed using Image J software (NIH, Bethesda, MD, USA).

RNA extraction, cDNA synthesis and PCR

Total RNA was extracted from CCF with RNeasy kit (Qiagen, Valencia, CA). The RNA was 

then reverse transcribed to cDNA following vendor’s instructions (Promega, Madison, WI). 

Real-time PCR was performed to detect and quantify MMP1, MMP2, MMP8 and MMP9 

mRNA using the Step One Plus real-time PCR system (Life Technologies, Grand Island, 

NY, USA). A 20 μl reaction mixture containing 2 μl of cDNA, 2 μl of forward primer (200 

nM), 2 μl of reverse primer (200 nM), and 10 μl of 2X SYBR green super mix (Bio-Rad 

Laboratories, Hercules, CA) was run at a universal cycle (95 °C for 10 min, 40 cycles at 

95 °C for 15 s, and 60 °C for 60 s) in accordance with the manufacturer’s instructions as 

reported earlier.(33) β-Actin was used as the housekeeping gene. Each PCR reaction was run 

in triplicate and repeated at least 2 times. The primer sequences used in PCR analysis are 

listed in Table 1.

Zymography

Gelatin zymography was used to quantify pro and active isoforms of MMP2 and MMP9 

proteins. The 10% Novex pre-cast SDS polyacrylamide gels (Life Technologies, Novex, 

Carlsbad, CA, USA) in the presence of 0.1% gelatin were used under non-reducing 

conditions. A 20 μL zymography sample was prepared by mixing total protein lysates (30 

μg), Tris-Glycine SDS sample buffer (10 μL) and deionized water (0–6 μL). Protein 

standards were run concurrently to identify molecular weight. Samples were loaded for 

SDS-PAGE with 1X Tris-Glycine SDS Running Buffer and were run at a constant voltage 

(125 Volt) for 120 minutes without heating. Following completion of electrophoresis, the gel 

was washed once in 1X Zymogram Renaturing Buffer, which was then decanted, and the gel 

was next washed twice with 1X Zymogram Developing Buffer. For the second washing, the 

gel was incubated at 37 °C overnight. For staining, the gel was washed with Simply Blue 

Safe stain diluted with deionized water (1:2) for 60 minutes. The stain was then decanted 

and the gel was washed in deionized water for 24 hours. Three separate zymograms were 

performed for each treatment group. Digital quantification of zymograms was performed 

using NIH Image J software.
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Statistical analyses

Results were expressed as a mean ± standard error. One-way analysis of variance (ANOVA) 

and Tukey’s test post-hoc were used to statistically analyze results, and p<0.05 was 

considered significant.

Results

Effects of SAHA on TGF-β1-induced Smad phosphorylation

As presented in Fig. 1, TGF-β1 treatment of CCF caused a 2.8 ± 0.28 fold (p<0.01) increase 

in Smad2/3 phosphorylation. Conversely, expression of phospho-Smad2/3 in CCF exposed 

to both SAHA and TGF-β1 was unchanged and comparable to untreated controls. These 

results suggested that SAHA significantly (p<0.01) attenuated TGF-β1-induced Smad2/3 

phosphorylation.

Effects of SAHA on TGF-β1-induced MAPK

In Fig. 2, the effect SAHA and/or TGF-β1 on the phosphorylation of p38 MAPK are 

displayed. TGF-β1 caused a 3.5 ± 0.66 fold (p<0.05) increase in p38 MAPK 

phosphorylation. SAHA treatment partially attenuated TGF-β1-induced p38 MAPK 

phosphorylation down to 2.4 ± 0.4 fold; however, SAHA treatment did not significantly 

attenuate TGF-β1-induced p38 MAPK phosphorylation, suggesting that modulation of p38 

MAPK signaling may not be primarily involved in the mechanism of action of SAHA.

Next, the effect of TGF-β1 and SAHA on ERK1/2 and JNK1 signaling were investigated. 

As demonstrated by Fig. 3, TGF-β1 treatment alone did not alter the phosphorylation of 

ERK1/2. On the other hand, CCF exposed to SAHA alone or in combination with TGF-β1 

showed significantly reduced expression of phospho-ERK1 (2.7 ± 0.6 fold decrease p<0.01) 

and phospho-ERK2 (8.0 ± 3.0 fold decrease p<0.05). These results suggested that SAHA 

treatment inhibited ERK1/2 phosphorylation, regardless of concurrent-treatment with TGF-

β1.

Thereafter, we tested the effects of SAHA on JNK1 signaling. Phospho-JNK1 expression 

was not detected in the untreated control CCF. Similarly, neither TGF-β1 nor SAHA alone 

or in combination with TGF-β1 showed any change on phospho-JNK1 expression. These 

results are displayed in Fig. 4.

Effects of SAHA on MMP mRNA and protein expression

Real time PCR was used to quantify the effect of SAHA and/or TGF-β1on MMP gene 

expression in CCF. As shown in Fig. 5, TGF-β1 caused a 6.0 fold (p<0.01) increase in 

MMP1 mRNA and 10.0 fold (p<0.01) increase in MMP9 mRNA expression, but did not 

have a significant effect on MMP2 mRNA expression. SAHA treatment alone did not alter 

MMP1, MMP2 or MMP9 expression. However, concurrent SAHA and TGF-β1 treatment 

caused a significant increase in MMP1 mRNA (p<0.05) and a significant decrease in the 

MMP9 mRNA (p<0.05) expression. Real time PCR performed to quantify MMP8 mRNA 

did detect any change in MMP8 mRNA in untreated control CCF or SAHA or TGF-β1 

treated CCF.
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Gelatin zymography was performed to detect the protein isoforms of MMP2 and MMP9; 

and results are presented in Fig. 6. MMP2 and MMP9 proteins were detected in untreated 

control CCF and this expression remained unaltered after TGF-β1 treatment. Treatment of 

SAHA alone or in combination with TGF-β1 caused a significant increase in both MMP2 

(1.5 ± 0.01 fold increase p<0.05) and MMP9 (3.0 ± 0.77 fold increase p<0.05) protein 

expression.

Discussion

Our group has demonstrated the anti-fibrotic potential of HDACi, specifically trichostatin A 

(TSA) and SAHA, in various models of corneal fibrosis (33, 36, 37). Sharma et al. found 

that TSA not only inhibited TGF-β1-induced α-SMA, fibronectin and myofibroblast 

formation in human corneal fibroblasts in vitro but also significantly decreased corneal haze 

in rabbits in vivo following photorefractive keratectomy (37). Recently, Bosiack et al. 
determined that SAHA inhibited canine corneal fibrosis in vitro (33), and Tandon et al. 
demonstrated the anti-fibrotic properties of SAHA in vivo, also utilizing rabbits which had 

undergone photorefractive keratectomy (36). However, these studies did not detail the 

mechanism(s) of action of HDACi as corneal anti-fibrotic agents. To the best of our 

knowledge, the molecular mechanisms of the anti-fibrotic effects of SAHA in the cornea is 

largely unknown (38).

The results of this study suggest that SAHA prevents canine corneal fibrosis through many 

different mechanisms including the modulation of TGF-β1-induced pro-fibrotic intracellular 

signaling pathways. Smad proteins largely mediate the intracellular signaling triggered by 

TGF-β1. R-Smads, such as Smad2 and Smad3, are considered pro-fibrotic intracellular 

signaling molecules. Consequently, these Smad proteins represent intracellular therapeutic 

targets for the manipulation of TGF-β1 mediated fibrosis. The inhibition of TGF-β1-induced 

phosphorylation of Smad2 and Smad3 has been demonstrated in models of renal, hepatic, 

cardiac and pulmonary fibrosis (39–42). Previous studies from our laboratory utilizing 

RNAi-mediated knock down models have shown that TGF-β1-mediated Smad2/3 

phosphorylation is an essential step for fibroblast transdifferentiation to myofibroblasts (43). 

Therefore, it was hypothesized that SAHA may inhibit corneal fibrosis by attenuating TGF-

β1-induced phosphorylation of Smad2/3. In the present study, SAHA significantly 

attenuated TGF-β1-induced phosphorylation of Smad2/3, thereby confirming our initial 

hypothesis that the inhibition of TGF-β1-induced phosphorylation of these R-Smads plays 

an important role in the anti-fibrotic effects of SAHA in the canine cornea.

Although Smad intracellular signaling serves as the canonical pro-fibrotic pathway of TGF-

β1, it has been demonstrated that TGF-β1 also involves MAPK pathways. Therefore, the 

effect of SAHA on three MAPK signaling pathways specifically p38 MAPK, ERK1/2 and 

JNK1 were also investigated. Previous in vitro and in vivo models of cardiac, renal and 

corneal fibrosis demonstrated TGF-β1 induces the phosphorylation of p38 MAPK, (44–46) 

thereby supporting the results of this study, wherein treatment of CCF with TGF-β1 caused a 

marked increase in the phosphorylation of p38 MAPK. In contrast, treatment of CCF with 

TGF-β1 for 24 hours did not significantly modulate the phosphorylation of ERK1/2 or 

JNK1. These results are in accordance with previous studies which demonstrated that TGF-
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β1 caused only a transient increase in ERK and JNK phosphorylation, the expression of 

which returned to baseline after 1 hour of treatment (46, 47).

In this study, the effects of SAHA on TGF-β1-induced phosphorylation of the various 

MAPKs appeared to be subtype-specific. For example, SAHA caused a significant reduction 

in the phosphorylation of ERK1/2. As previously stated, TGF- β1 causes a transient increase 

in ERK1/2 phosphorylation, and so the observed attenuation of ERK1/2 phosphorylation by 

SAHA appears to be a means by which SAHA inhibits corneal fibrosis. However, SAHA did 

not affect the phosphorylation of p38 MAPK or JNK1, suggesting that these two MAPKs 

are not involved in the anti-fibrotic mechanisms of SAHA in the cornea. These results 

conflict with those of previous studies which demonstrated the ability of HDACi, including 

SAHA, to inhibit phosphorylation of p38 MAPK in neoplastic cells, rheumatoid arthritis 

synovial fibroblast and lens epithelial cells (48–50). It is important to note that these studies 

utilized cytokines different than TGF-β1 to induce cellular transformation and fibrosis. 

Therefore, it may be possible that TGF-β1 induces the phosphorylation of p38 MAPK 

through means which are inaccessible to SAHA, or SAHA may be able to prevent the 

phosphorylation of p38 MAPK in canine corneal fibroblasts in the presence of a different 

corneal cytokine, such as interleukin 1β (IL-1β), Platelet Derived Growth Factor (PDGF) or 

Connective Tissue Growth Factor (CTGF). Future studies would investigate these potential 

effects of SAHA in an in vitro model of canine corneal fibrosis utilizing different 

inflammatory cytokines.

It has been well established that MMPs play a critical role in the degradation and subsequent 

remodeling of the extracellular matrix. Past studies have consistently shown that TGF-β1 

causes increased expression of MMP1 and MMP9 mRNA in corneal cells in vitro (5, 6, 51). 

Our study’s data support previous findings, as TGF-β1 treatment resulted in the increased 

expression of MMP1 and MMP9 mRNA. While TGF-β1 treatment for 24 hours did not 

affect MMP2 mRNA in the present study, Donnelly et al. demonstrated that TGF-β1 

treatment for 5 days caused a significant increase in MMP2 mRNA (52). When analyzing 

the effects of TGF-β1 on MMP protein expression, no significant changes were noted in the 

expression of MMP2 or MMP9 proteins. These results suggest that prolonged exposure to 

TGF-β1 may be necessary to alter MMP protein expression in CCF. Alternatively, it may be 

possible that TGF-β1 may not be involved in the expression of MMP protein, as previously 

demonstrated by a study in which both normal and keratoconic human corneal keratocytes 

were treated with TGF-β1 for 7 days (53).

Several studies have investigated the effects of different HDACi on MMPs in various cell 

types and the results appear to be drug-, dose- and tissue-specific (54–57). Treatment with 

SAHA alone did not significantly affect MMP1, MMP2 or MMP9 mRNA in our 

investigation of CCF. However, treatment with both SAHA and TGF-β1 significantly 

increased MMP1 mRNA, decreased MMP9 mRNA and had no effect on MMP2 mRNA. 

Unexpectedly, CCF treated with either SAHA alone or SAHA and TGF-β1 expressed 

significantly increased expression of MMP9 protein, despite the aforementioned decreased 

MMP9 mRNA expression within the same treatment group. We speculate that SAHA may 

affect cellular proteins involved in MMP9 degradation, thus increasing the half-life of this 

particular MMP. Overall, our data suggest that modulations of MMP expression by HDACi 
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is not only isoform specific but also may be affected by other inducible inflammatory 

cytokines and growth factors.

In summary, this study is the first report to the authors’ knowledge investigating both the 

pro-fibrotic intracellular signaling cascade in canine corneal fibroblast induced by TGF-β1 

and the molecular mechanisms of action of SAHA as a corneal anti-fibrotic agent. Results 

indicate that SAHA affects both canonical and non-canonical components of the TGF-β1 

intracellular signaling pathways and pathways independent of TGF-β1. Finally, SAHA alters 

both gene and protein expression of MMP2 and MMP9. However, the mechanisms of these 

modulations and their clinical significance need further investigation.
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Figure 1. 
Representative western blot showing the effect of SAHA +/− TGF-β1 on Smad 

phosphorylation in canine corneal fibroblast (CCF) cell extracts. TGF-β1 treatment of CCF 

caused a 2.8 ± 0.28 fold (p<0.01) increase in Smad2/3 phosphorylation. SAHA treatment of 

CCF significantly (p<0.01) attenuated TGF-β1-induced Smad2/3 phosphorylation.
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Figure 2. 
Representative western blot showing the effect of SAHA +/− TGF-β1 on p38 mitogen-

activated protein (MAP) kinase phosphorylation in canine corneal fibroblast (CCF) cell 

extracts. TGF-β1 treatment of CCF caused a 3.5 ± 0.66 fold (p<0.05) increase in p38 MAP 

kinase phosphorylation. SAHA treatment of CCF did not significantly attenuate TGF-β1-

induced p38 MAPK phosphorylation.
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Figure 3. 
Representative western blot showing the effect of SAHA +/; TGF-β1 on ERk1 and ERK2 

phosphorylation in canine corneal fibroblast (CCF) cell extracts. TGF-β1 alone did not 

modulate the phosphorylation of ERK1 or ERK2, while exposure to SAHA with or without 

the concurrent TGF-β1 treatment resulted in significantly reduced expression of p-ERK1 

(2.7 ± 0.6 fold decrease, p<0.01) and p-ERK2 (8 ± 3 fold decrease, p<0.05) which suggests 

that SAHA treatment inhibited ERK phosphorylation, regardless of TGF-β1 activity.
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Figure 4. 
Representative western blot showing the effect of SAHA +/− TGF-β1 on JNK 

phosphorylation in canine corneal fibroblast (CCF) cell extracts. As can be seen in the 

western blot, no p-JNK1 was detected in the untreated control CCF. Neither TGF-β1 nor 

SAHA alone or in combination showed any effect on p-JNK1 expression.
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Figure 5. 
Graph showing real time qPCR mRNA quantification of matrix metalloproteinases (MMPs) 

1, -2 and -9 in canine corneal fibroblasts (CCF). TGF-β1 treatment of CCF caused a 6 fold 

(p<0.01) increase in MMP1 mRNA and 10 fold (p<0.01) increase in MMP9 mRNA 

expression and did not cause any notable change in MMP2 mRNA. SAHA treatment of CCF 

alone did not cause any notable change in MMP1, MMP2 or MMP9 expression but 

concurrent treatment of CCF with TGF-β1 caused a significant increase (p<0.05) in MMP1 

mRNA and a significant decrease (p<0.05) in the MMP9 mRNA expression.
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Figure 6. 
Representative gelatin zymography demonstrating the effect of SAHA +/− TGF-β1 on 

MMP2 and MMP9 protein expression in canine corneal fibroblast (CCF) cell extracts. 

MMP2 and MMP9 proteins were detected in untreated control CCF, and treatment with 

TGF-β1 alone did not alter this baseline MMP protein expression. However, treatment with 

SAHA, irrespective of co-treatment with TGF-β1 resulted in a statistically significant 

increase in MMP2 and MMP9 protein expression.
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Table 1

Sequences of primers for detecting MMP RNA

MMP Primer Sequence Source

MMP1 Forward 5′GGGTCATTCTCTTGGACTTTCT3′ Canine

Reverse 5′AGCTGGACATTGCCACTATAC3′ Canine

MMP2 Forward 5′CTGACCAAGGGTACAGCTTATT3 Canine

Reverse 5′CAGACGGAAGTTCTTGGTGTAG3′ Canine

MMP8 Forward 5′CCACACTCCGTGGAGAAATAC3 Canine

Reverse 5′GGATGGCCAGAACAGAGAAA3′ Canine

MMP9 Forward 5′CTACGACCAGGACAAACTCTAC3′ Canine

Reverse 5′TTGCCCAGGAAGATGAAGG3′ Canine
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