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Abstract  

The cognitive control of gait is altered in individuals with low back pain, but it is unclear if 

this alteration persists between painful episodes. Locomotor perturbations such as walking turns 

may provide a sensitive measure of gait adaptation during divided attention in young adults.  

The purpose of this study was to investigate changes in gait during turns performed with divided 

attention, and to compare healthy young adults with asymptomatic individuals who have a 

history of recurrent low back pain (rLBP). Twenty-eight participants performed 90° ipsilateral 

walking turns at a controlled speed of 1.5 m/s. During the divided attention condition they 

concurrently performed a verbal 2-back task. Step length and width, trunk-pelvis and hip 

excursion, inter-segmental coordination and stride-to-stride variability were quantified using 

motion capture. Mixed-model ANOVA were used to examine the effect of divided attention and 

group, and interaction effects on the selected variables. Step length variability decreased 

significantly with divided attention in the healthy group but not in the rLBP group (post-hoc p = 

0.024). Inter-segmental coordination variability was significantly decreased during divided 

attention (main effect of condition p < 0.000). There were small but significant reductions in hip 

axial and sagittal motion across groups (main effect of condition p = 0.044 and p = 0.040 

respectively), and a trend toward increased frontal motion in the rLBP group only (post-hoc p = 

0.048). These findings suggest that the ability to switch attentional resources during gait is 

altered in young adults with a history of rLBP, even between symptomatic episodes. 

Keywords 

Walking turn, divided attention, low back pain, variability 
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Introduction 

Functional, goal-oriented gait requires attention to navigate environmental 

obstacles. Even during steady-state walking, some attentional resources are utilized for 

gait [1]. This is demonstrated experimentally by cognitive-motor interference when gait is 

performed concurrently with another attention-demanding task. Cognitive-motor 

interference may be increased by a reduction in the automaticity of gait, an increase in 

the executive control resources utilized for steady-state gait [2], or as a result of impaired 

attentional capacity and processing[1]. Increased cognitive-motor interference during 

gait is evident in older adults and individuals with multiple clinical conditions including 

persistent pain. This is associated with impaired functional gait performance and 

increased risk of falls [3,4]. 

The effect of cognitive-motor interference can be quantified at multiple levels of gait 

control. Spatiotemporal characteristics such as gait speed and step length provide information 

on control of overall task performance. Kinematic characteristics, such as coordination 

between segments (inter-segmental coordination) and individual joint excursions 

demonstrate how task performance is accomplished. In healthy adults, gait performance 

deteriorates during divided attention [5-9]. Existing evidence has demonstrated unchanged 

inter-segmental coordination [10], reduced [5] and unchanged lower-limb joint excursion [7] and 

reduced trunk excursion [11] during divided attention. However, as previous studies 

examined divided attention paradigms that involved additional mechanical demands, or 

did not control gait speed, the extent to which cognitive load alone accounts for these 

kinematic adaptations is unclear [5,7,11].  

Adaptable locomotor behavior is facilitated by stride-to-stride variability [12]. Healthy 

individuals demonstrate increased step length variability [5,8], reduced step width variability 

[13], decreased variability in trunk-pelvis coordination [10] and decreased variability in trunk 

motion when attention is divided during steady-state gait [14]. Changes in variability during 
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attention-demanding gait perturbations such as walking turns may provide further 

insight into cognitive-motor interference. Ipsilateral walking turns are changes in direction 

that occur toward the side of the stance limb. The reorientation into the new line of progression 

during ipsilateral turns may be accomplished within the stance phase of a single step (ipsilateral 

pivot strategy) and is achieved through rapid, axial rotation in the trunk, pelvis and hip [15,16]. 

As there is an immediate return to steady-state walking after the reorientation phase of the turn 

[15] the successful, consistent performance of the ipsilateral walking turn can be characterized 

by the length and width of the step immediately following the turn, and the variability of those 

parameters.  

In people with low back pain (LBP), altered executive control of gait may result in 

an exaggerated response to divided attention [17]. Adults with chronic LBP demonstrate 

greater increases in stride length variability [17] and decreases in axial plane trunk-pelvic 

coordination variability [10] during divided attention compared with healthy controls. 

Existing studies have investigated middle-aged, symptomatic patients. In these 

individuals, executive function may be persistently impaired [18], or pain and fear of pain 

may demand additional attentional resources [1,2,19]. Many young individuals with 

persistent LBP have recurrent rather than chronic symptoms  (rLBP)[20]. To better 

understand the mechanisms underlying cognitive-motor interference and LBP it is 

important to establish how individuals with rLBP respond to divided attention when they 

are asymptomatic. In particular, measures of trunk-pelvic inter-segmental coordination and 

joint excursion may provide valuable indices of cognitive-motor interference specific to the 

painful body region in this population.  

The purpose of this study, therefore, was to compare the influence of divided attention 

on step length and width, inter-segmental coordination and joint excursion, and stride-to-stride 

variability during ipsilateral walking turns between asymptomatic young adults with a history of 

rLBP and healthy individuals. We hypothesized that in response to divided attention, all 
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participants would demonstrate reduced step length and increased step width, increased step 

length/width variability, reduced trunk-pelvic and hip excursion and reduced trunk-pelvic 

coordination variability compared with baseline. We also hypothesized that these changes 

would be greater in the individuals with a history of rLBP.  

Methods 

Participants 

Twenty-eight young adults participated in the study (Table 1). Participants provided 

written informed consent. Individuals in the rLBP group were aged between 18 and 40 years 

[21] with at least a one-year history of rLBP and two functionally-limiting pain episodes 

exceeding 24 hours’ duration in the preceding year [20] but were in symptom remission at the 

time of the data collection. Fear avoidance beliefs and impact of rLBP episodes were 

quantified using the Fear Avoidance Beliefs Questionnaire and the modified Oswestry Disability 

Index respectively [22,23]. Control participants (CTRL) had no history of low back pain and were 

individually matched to rLBP participants by sex, age, height, weight, and activity level.  

Instrumentation 

Spatiotemporal and kinematic data were collected using an 11-camera motion capture 

system (200 Hz, Qualisys AB, Gothenburg, Sweden). Individual markers and marker clusters on 

the thorax (quantifying total trunk motion), pelvis, thighs, shanks and feet were used to define 

joint axes and track three-dimensional segment motion. Wireless force-sensitive resistor foot 

switches were attached bilaterally to the sole of participants’ shoes under the heel and the first 

metatarsophalangeal joint (3000Hz, TeleMyo DTS Telemetry, Noraxon USA Inc, Scottsdale, 

USA).   

Walking turns 

 Participants performed multiple laps of a walking circuit that included straight walking 

and 90° ipsilateral walking turns (Figure 1). Individuals with rLBP turned in the direction opposite 
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the side of their predominant symptoms, and their matched control turned in the same direction. 

For both baseline (BASE) and divided attention (ATT) trials, participants performed the 

circuit at a controlled walking speed of 1.5 m/s  5 %. Average speed was quantified 

using photoelectric triggers and trials were repeated if the participant did not maintain 

the correct speed. All participants spontaneously utilized an ipsilateral pivot strategy to turn.  

Cognitive task 

For the ATT trials, participants performed a verbal 2-back task at the same time as the 

walking turns. An n-back task was selected as it requires continuous attention and does 

not utilize visual fixation or cause direct structural interference during walking[1]. The 2-

back version of the task was utilized as pilot testing demonstrated that participants 

found it challenging but were still able to perform the turns correctly at the controlled 

speed. Randomly generated strings of single digits were read to the participants at a rate of one 

approximately every two seconds. Participants responded “yes” when they heard a digit that 

was the same as one presented two digits earlier in the string. Baseline 2-back task 

performance was quantified during three trials in relaxed standing. During ATT trials, 

participants were instructed to prioritize the 2-back task over the walking turn, and were 

provided with feedback on the number of 2-back errors following each trial. As the duration of 

each trial was consistent for all participants, everyone received the same number of 2-

back stimuli.  

Data processing 

Marker trajectories were low-pass filtered at 10 Hz. The stride cycle of each turn was 

determined using the voltage signals of the foot switches. Data were time-normalized within 

each stride cycle (Visual3D™ software, C-Motion Inc., MD, USA). Between 15 and 21 turns 

were analyzed for each participant for both BASE and ATT, as preliminary work indicated that a 

minimum of 15 trials provided stable stride-to-stride variability estimates.  

Spatiotemporal variables and joint excursion 
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Step length and step width (post-turn step, Figure 1) were calculated from the 

trajectories of the distal heel markers. For joint excursion, local coordinate systems for 

each segment were determined by a static calibration trial and peak-to-peak excursion of 

angular motion at the trunk-pelvis and hip (turn limb) was calculated across the turn 

stride cycle using Cardan angles [24]. The alignment of the trunk segment was normalized to 

the static standing trial to account for individual postural alignment [15]. Mean and standard 

deviation of the peak-to-peak amplitude of trunk-pelvic and hip motion was calculated for each 

participant and ensemble averages were calculated for the rLBP and CTRL groups during 

BASE and ATT trials. 

Inter-segmental coordination 

 Inter-segmental coordination between the trunk and the pelvis in the axial plane was 

quantified using the vector coding approach. This has been described in detail elsewhere [25] 

and we have demonstrated test-retest reliability of this approach [15]. Briefly, for each interval in 

the time series, a coupling angle between the segments was calculated. This coupling angle 

can be visualized as the angle from the right horizontal of a vector connecting successive points 

on an angle-angle plot of segment displacement. The mean coupling angle for each time 

interval across multiple trials for each participant was then calculated. From the mean coupling 

angle, the coordination pattern between the trunk and the pelvis at each time interval was then 

defined as inphase (trunk and pelvis rotating in the same direction), antiphase (trunk and pelvis 

rotating in opposite directions), pelvic phase (predominantly pelvic motion) and trunk phase 

(predominantly trunk motion) using 45-degree bin widths [26,27]. The frequency that each 

coordination pattern occurred as a percentage of the total stride cycle was quantified for each 

participant for the BASE and ATT conditions (MATLAB®, MathWorks, MA, USA).   

Stride-to-stride variability 
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Within-subject stride-to-stride variability for step length and width and joint excursion was 

calculated as the standard deviation for the BASE and ATT turns in that individual. Stride-to-

stride variability of inter-segmental coordination was calculated using the mean angular 

deviation of the coupling angle across the stride cycle [28,29]. . 

Statistical analysis 

Average numbers of 2-back errors per trial were compared between standing and the 

ATT condition, and between groups, using Wilcoxon signed ranks tests. Two-way mixed-model 

ANOVA were conducted for each variable to assess the main effect of divided attention (within-

subjects factor) and group (between-subjects factor) and any interaction effect.  Variables that 

did not meet assumptions of normal distribution were log-transformed prior to statistical testing. 

Post-hoc comparisons for significant interaction effects were made using t-tests with a 

Bonferroni correction for number of tests performed within each factor (α = .05/2). Effect sizes 

for ANOVA main effects were calculated using partial eta squared (  
 ) and for post-hoc 

comparisons were calculated using Cohen’s d. In both cases .8 indicates a large effect size, .5 a 

medium effect size and .2 a small effect size. Associations between changes in all variables 

during ATT were probed with Pearson correlation coefficients (SPSS® Version 21, IBM Corp., 

Armonk, NY). 

Results 

2-back task errors 

The number of 2-back errors per trial at baseline in relaxed standing was the same in 

both groups (median ± inter-quartile range, CTRL 0.3 ± 0.2, rLBP 0.3 ± 0.3, p = 0.465). The 

number of errors during the ATT condition was the same as during relaxed standing (p = 0.904) 

and did not differ between groups (CTRL 0.3 ± 0.3, rLBP 0.4 ± 0.5, p = 0.348).  

Step length/width 
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 Step length and width were not significantly affected by divided attention in either group 

(Table 2).  

Step length/width variability 

The effect of divided attention on step length variability differed between groups 

(condition by group interaction; F(1, 26) = 4.86, p = 0.037,   
  = 0.157, Table 2). Post-hoc testing 

indicated that there was no change in step length variability in the rLBP group (p = 0.634) but a 

decrease in variability in the CTRL group (p = 0.024, d = 0.67, Figure 2). Step width variability 

was not significantly affected by divided attention in either group (Table 2).  

Joint excursion 

Trunk-pelvic motion did not differ with divided attention or between groups (Table 2).  

However, there was a significant main effect of condition on peak-to-peak amplitude of hip axial 

and sagittal plane excursion. Axial and sagittal hip motion was decreased in the divided 

attention condition (axial F(1, 26) = 4.502, p = 0.044,   
  = 0.148; sagittal F(1, 26) = 4.661, p = 

0.040,   
 = 0.152). There was a significant condition by group interaction for peak-to-peak 

amplitude of hip motion in the frontal plane (F(1, 26) = 7.233, p = 0.012,   
  = 0.218 (Table 2). 

Post hoc comparisons indicated a trend toward a significant increase in motion in the rLBP 

group (p = 0.048, d = 0.55), with no change in the CTRL group (p = 0.122).   

Joint excursion variability  

 Stride-to-stride variability of trunk-pelvic excursion was not significantly affected by 

divided attention in the axial and sagittal planes (Table 2). In the frontal plane, stride-to-stride 

variability was decreased during divided attention in both groups (F(1, 26) = 7.328, p = 0.012,   
  

= 0.220). Stride-to-stride variability of the hip was affected by divided attention. In the axial 

plane, there was a main effect of condition on stride-to-stride variability, with a decrease in axial 

plane variability during divided attention (F(1, 26) = 9.054, p = 0.006,   
  = 0.258).  

Axial plane inter-segmental coordination 
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 There was no main or interaction effect for the frequency that each pattern of trunk-

pelvic inter-segmental coordination occurred across the stride cycle of the turn (Table 2).  

Inter-segmental coordination variability 

 Mean coordination variability was lower during ATT than during BASE in both groups 

(main effect of condition on mean trunk-pelvic inter-segmental coordination variability; F(1, 26) = 

27.516, p < 0.0001,   
  = 0.934, Figure 2).   

Association between variables 

There was a significant positive correlation between change in step width and change in 

hip frontal plane excursion (r = 0.545, p = 0.003). A larger increase in step width during ATT 

was associated with a larger increase in hip motion. 

Discussion 

This study investigated for the first time the effect of divided attention on gait 

during ipsilateral walking turns. Our data suggest that the impact of divided attention is 

affected by a history of rLBP, even between symptomatic episodes.  

 The performance of the walking turn was not affected by divided attention. 

However, in healthy individuals, the consistency of task performance significantly 

improved during divided attention. Substantial evidence indicates that motor 

performance improves when attention is redirected from an internal focus (on the 

movement itself) to an external focus [30]. This may be due to greater automaticity of 

task performance [8,31]. Similar redirection of attention may occur when individuals 

perform a motor task concurrently with a relatively simple cognitive task [32].  In the 

participants with a history of rLBP, there was no increased consistency in performance. 

This suggests that difficulty switching attentional focus may persist in individuals with 

LBP even between painful episodes and even when attentional resources are not being 

directed toward the experience of pain [19].  
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Divided attention did not affect the frequency that each pattern of trunk-pelvic inter-

segmental coordination occurred across the stride cycle of the turn. However, divided attention 

resulted in significantly decreased inter-segmental coordination variability across groups, with a 

large effect size. The findings from this study corroborate earlier work investigating the effect of 

divided attention on inter-segmental coordination variability between the trunk and the pelvis 

during steady-state treadmill walking in healthy adults [10]. The relationship between variability 

in task performance and coordination is complex. An optimal level of stride-to-stride 

coordination variability reflects adaptable use of degrees of freedom to ensure correct 

performance of the task goal under varying task conditions [33]. Therefore, too little inter-

segmental coordination variability may be associated with impaired task performance. However, 

in this study in healthy participants, consistency of walking turn performance improved even as 

coordination variability decreased, indicating that sufficient stride-to-stride variability was 

conserved during divided attention. In contrast to previous research in individuals with 

chronic LBP during steady-state walking [10], axial trunk-pelvic coordination variability 

was reduced equally in individuals with rLBP and healthy individuals during walking 

turns. This may be because sufficient variability in axial coordination is more essential 

for repeated successful walking turns than it is for steady-state gait due to the rapid 

modulation in the pattern of trunk-pelvic coordination that occurs during the turn [15]. 

This interpretation is consistent with previous evidence suggesting that the magnitude of 

variability in kinematic factors that are critical to successful gait performance is 

conserved in individuals with LBP during divided attention [34],  

The effect of divided attention on joint excursion was less pronounced. Although there 

were significant decreases in axial and sagittal plane hip motion across groups, the effect sizes 

for these changes were small. In the rLBP group, divided attention resulted in greater hip frontal 

plane excursion. Examination of hip joint trajectories showed that this increase was a result of 

greater hip abduction during the swing phase of the turn-limb stride cycle. The significant 
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positive correlation between increased hip excursion of the turn-limb and increased step width 

suggested that this may reflect a strategy in the rLBP group to enhance stability by increasing 

post-turn step width, and therefore increase their base of support immediately following the turn. 

Stride-to-stride variability of frontal trunk-pelvic excursion and hip axial excursion were also 

significantly reduced during the ATT trials, albeit with small effect sizes. However, in contrast to 

our hypotheses we did not observe that individuals with rLBP modified trunk-pelvic excursion 

differently than healthy individuals, and therefore these adaptations to divided attention do not 

seem to be influenced by a history of pain in that region.  

The extent of cognitive-motor interference during divided attention is highly 

dependent upon the difficulty of both the cognitive and motor tasks. While gait 

performance may improve during divided attention with a less difficult cognitive task due 

to redirected attention, it may then deteriorate as cognitive load and resource 

competition increases [35]. It is difficult to directly compare the results of the present 

study with earlier work as the attention required to perform the walking turns at the 

correct speed is likely substantially larger than that required for steady-state treadmill 

walking. It is possible that utilizing a more difficult cognitive task, such as a 3-back task, 

would have elucidated greater group differences. In the present study it was clear that all 

participants effectively prioritized the 2-back task. This was indicated by no difference in 

number of 2-back errors during ATT compared with baseline. There was also no difference 

in the performance of the 2-back task between groups. Previous studies have demonstrated 

impaired cognitive performance in individuals with chronic pain [10,18]. These impairments 

appear to be more related to psychological distress than pain intensity [18]. The individuals in 

the rLBP group in this study had relatively low levels of fear avoidance and disability, and 

therefore they likely also had minimal psychological distress related to pain [22].  

This study has important clinical implications that warrant further research. We have 

demonstrated that even in young adults with minimally disabling low back pain, and even 
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when there is no pain at the time of the data collection, a history of rLBP is associated 

with altered allocation of attentional resources during perturbed gait. Determining the 

neural substrates of cognitive-motor interference during steady-state and perturbed walking 

using methodologies such as EEG or fNIRS will enhance the understanding of control 

mechanisms underlying altered gait in individuals with pain [36].  
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Figure legends 

Figure 1. Stride cycle of an ipsilateral walking turn to the right. Left: walking circuit, with events 

of ipsilateral turn stride cycle numbered and in black. Participants performed multiple laps of the 

walking circuit. In one corner of the circuit, participants performed a rapid 90° ipsilateral walking 

turn before continuing to walk in the new line of progression. Right: stride cycle of turn 

demonstrating 1a & b) reorientation occurring during stance phase of the turn limb (right leg in 

this example), 2) initial contact of the contralateral limb (post-turn step) in new line of 

progression, and 3) final turn limb initial contact. 

 

Figure 2. Left: individual data for changes in step length variability with divided attention 

showing significant decrease in variability in the CTRL group only (standard deviation, in 

meters.  rLBP group n = 14, CTRL group n = 14) Right: individual data for changes in 

coordination variability with divided attention showing significant decrease in variability in both 

groups (angular deviation of coupling angle, in degrees. rLBP group n = 14, CTRL group n = 

14).   

 



Table 1. Participant demographics and clinical characteristics (median ± inter-quartile range) 

 CTRLa rLBPa p 

Age (years) 24.5 ± 1.75 26.5 ± 4.75 .068 

Height (m) 1.73 ± 0.05 1.73 ± 0.09 .664 

Mass (kg) 66.68 ± 14.97 67.70 ± 23.42 .152 

Time since first pain    
episode (years) 

n/a 5.8 ± 4.2 n/a 

Baseline VAS (cm) n/a 0.12 ± 0.24 n/a 

FABQb n/a 12.5 ± 6.75 n/a 

ODI (%) n/a 18.0 ± 15.0 n/a 

           an = 14 in each group, 8 women, 6 men bphysical activity sub-scale 

 

Table 1



Table 2. Summary of analyses of variance for all variables 

 
Condition Group 

Group*condition 
interaction 

F ratio P  F ratio P  F ratio P 

Gait performance       

 Step length 2.90 0.10 0.13 0.72 2.43 0.13 

 Step width 0.72 0.41 0.19 0.66 2.71 0.11 

 Step length variability 2.39 0.13 0.51 0.48 4.86 0.04 

 Step width variability 0.86 0.36 0.06 0.81 0.31 0.58 

Inter-segmental coordination       

 % inphase coordination 0.49 0.49 1.00 0.33 1.77 0.20 

 % antiphase coordination 0.01 0.91 0.03 0.86 0.3 0.59 

 % trunk phase coordination 0.98 0.33 3.23 0.08 2.05 0.16 

 % pelvic phase coordination 0.98 0.34 0.05 0.93 0.72 0.41 

 Coordination variability 27.52 <0.00 1.48 0.24 0.06 0.82 

Joint excursion       

 Trunk-pelvic axial  0.54 0.47 1.92 0.18 <0.00 0.96 

 Trunk-pelvic sagittal 0.03 0.87 2.77 0.11 0.1 0.76 

 Trunk-pelvic frontal  1.00 0.33 2.06 0.16 0.03 0.87 

 Trunk-pelvic axial variability 3.62 0.07 0.45 0.51 0.05 0.34 

 Trunk-pelvic sagittal variability 0.38 0.54 0.01 0.92 0.07 0.80 

 Trunk-pelvic frontal variability 7.33 0.01 0.18 0.68 0.49 0.49 

 Hip axial  4.50 0.04 0.51 0.48 0.98 0.33 

 Hip sagittal  4.66 0.04 2.69 0.11 0.01 0.93 

 Hip frontal  0.06 0.81 1.49 0.23 7.23 0.01 

 Hip axial variability 9.05 <0.01 0.23 0.64 0.01 0.93 

 Hip sagittal variability 2.56 0.12 0.01 0.93 0.11 0.74 

 Hip frontal variability 1.69 0.21 0.33 0.57 0.66 0.43 

Bold indicates significant effect 

 

Table 2



Figure 1
Click here to download high resolution image

http://eeslive.elsevier.com/gaipos/download.aspx?id=459617&guid=73b2ab68-d4d1-4807-98cb-3810e6968f81&scheme=1


Figure 2
Click here to download high resolution image

http://eeslive.elsevier.com/gaipos/download.aspx?id=459618&guid=9426fc22-e02e-4b61-8b4e-38c86488f20e&scheme=1


Research Highlights. 

 

We investigated the effects of divided attention during walking turns 

We compared healthy adults to asymptomatic adults with a history of low back pain 

Turn performance consistency improved with divided attention in healthy adults only 

Changes in cognitive control of gait persist between painful episodes 

 

*Research Highlights


	Chapman University
	Chapman University Digital Commons
	9-20-2017

	The Influence of Divided Attention on Walking Turns: Effects on Gait Control in Young Adults With and Without a History of Low Back Pain
	Jo Armour Smith
	James Gordon
	Kornelia Kulig
	Recommended Citation

	The Influence of Divided Attention on Walking Turns: Effects on Gait Control in Young Adults With and Without a History of Low Back Pain
	Comments
	Creative Commons License
	Copyright


	tmp.1512409807.pdf.Tlsgn

