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Abstract

It has long been acknowledged that planar hand drawing movements conform to a

relationship between movement speed and shape, such that movement speed is inversely

proportional to the curvature to the power of one-third. Previous literature has detailed

potential explanations for the power-law’s existence as well as systematic deviations from

it. However, the case of speed-shape relations for three-dimensional (3D) drawing

movements has remained largely unstudied. In this paper we first derive a generalization

of the planar power law to 3D movements, which is based on the principle that this power

law implies motion at constant equi-affine speed. This generalization results in a 3D power

law where speed is inversely related to the one-third power of the curvature multiplied by

the one-sixth power of the torsion. Next, we present data from human 3D scribbling

movements, and compare the obtained speed-shape relation to that predicted by the 3D

power law. Our results indicate that the introduction of the torsion term into the 3D

power law accounts for significantly more of the variance in speed-shape relations of the

movement data and that the obtained exponents are very close to the predicted values.

Keywords: Arm movement, Laws of motion, Motor Control
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Three-Dimensional Arm Movements at Constant Equi-Affine

Speed

Introduction

The characterization of spatial and temporal properties of human movement has

long been one avenue of investigation into human movement production. This approach is

important because characterization of movements not only allows one to form qualitative

models of the mechanisms behind movement production, but also permits close

examination of the predictions of quantitative models of motion production. In this paper

we investigate a characteristic of human movement – the speed of drawing movement is

related to its geometry. This empirical relationship has been described in general terms as

an inverse relationship between movement speed and curvature (Binet & Courtier, 1893;

Jack, 1895; Abend, Bizzi, & Morasso, 1982). More specifically, for planar drawing

movements, it was termed the two-thirds power law (denoted 2/3-PL below), relating

speed to curvature (Lacquaniti, Terzuolo, & Viviani, 1983; Viviani & McCollum, 1983;

Viviani & Cenzato, 1985), or more formally:

v = ακ−1/3 (1)

Here v is the movement speed, κ is the curvature of the path, and α is some constant,

termed the velocity gain factor (or speed gain factor). The law acquired its name from its

expression in terms of angular speed, A, i.e. A = ακ2/3.

As detailed below, various types of drawing movements have been demonstrated to

obey the power law (e.g. Viviani & McCollum, 1983; Viviani & Cenzato, 1985). This

power-law has also been suggested to have a role in locomotion (Vieilledent, Kerlirzin,

Dalbera, & Berthoz, 2001; Hicheur, Vieilledent, Richardson, Flash, & Berthoz, 2005) and
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motion perception (Viviani & Stucchi, 1989, 1992; Levit-Binnun, Schechtman, & Flash,

2006). Moreover, possibly more importantly, it has been related to neural coding of motor

commands during various types of drawing movements according to the population vector

model (Georgopoulos, Kalaska, Caminiti, & Massey, 1982; Georgopoulos, Schwartz, &

Kettner, 1986; Georgopoulos, Kettner, & Schwartz, 1988; Schwartz, 1992, 1993, 1994;

Moran & Schwartz, 1999; Schwartz & Moran, 1999, 2000) as well as to proprioceptive

feedback (Viviani, Baud Bovoy, & Redolfi, 1997; Albert, Ribot-Ciscar, Fiocchi,

Bergenheim, & Roll, 2005).

One incomplete aspect of these relations between kinematics and geometry is the

question of whether speed is related to geometrical features of three-dimensional (3D)

movements such as curvature and torsion. Previous research has not revealed an obvious

relationship between speed and torsion (Morasso, 1983), and it was actually argued that

3D hand movements tend to be piecewise planar (Morasso, 1983). Moreover, there is

evidence that the 2/3-PL describing planar movements does not satisfactorily describe 3D

movements (Pollick & Ishimura, 1996; Schaal & Sternad, 2001). In the following, we

propose a mathematically derived novel relationship between speed and 3D geometry for

drawing movements, evaluate it empirically on spatial scribbling hand movements, and

compare it to the 2/3-PL. By scribbling movements we mean spontaneous unconstrained

movements of the hand, where the subject is guided by no template or instructions but

those of her or his own wish (see Figure 2).

The starting point for this research is a recent theoretical description of the 2/3-PL,

which showed that the covariation of speed and curvature that this power-law describes in

planar drawing motion is consistent with the mathematical interpretation of motion at

constant equi-affine speed1 (Flash & Handzel, 1996; Pollick & Sapiro, 1997; Handzel &

Flash, 1999; Flash & Handzel, 2007).
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This interpretation has implications for the representation of figural forms (see next

section). But, more importantly for us here, the conditions for motion at constant

equi-affine speed in two dimensions can be generalized to 3D movements, where they

entail a new relationship between speed and geometry (Pollick, Flash, Giblin, & Sapiro,

1997). The details of this derivation are presented below (in the Appendix) and provide a

predicted relationship: that the speed (v) of a 3D movement is proportional to the inverse

of the product of the curvature (κ) raised to the 1/3 power and the absolute value of the

torsion (τ) raised to the 1/6 power2. More formally:

v = ακ−1/3|τ |−1/6 = α
(
κ2|τ |

)−1/6
, (2)

where α is once again a constant, termed the velocity gain factor (or speed gain factor).

We name this relationship between the speed, curvature and torsion the one-sixth power

law (usually designated 1/6-PL below).

The empirical thrust of this paper is to examine unconstrained self-paced spatial

scribbling movements, to see whether they conform to this new 3D power law. We will

also compare between the adherence of our data to both of the above power-laws.

Planar movement

It has been found that for production of continuous planar hand movements such as

drawing movements, the relationship between speed and curvature is rather well described

by a power law where speed is proportional to the curvature to the power of −1/3, or

equivalently to the 1/3 power of the radius of curvature (Lacquaniti et al., 1983). This

power law has been found in a variety of drawing tasks (Viviani & McCollum, 1983;

Viviani & Cenzato, 1985; Wann, Nimmo-Smith, & Wing, 1988; Massey, Lurito, Pellizzer,

& Georgopoulos, 1992; Viviani & Flash, 1995), and has been shown to evolve with the

development of drawing skills (Viviani & Schneider, 1991). In addition to describing the

production of planar drawing movements, the visual perception of planar form (Viviani &
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Stucchi, 1989) and movement uniformity (Viviani & Stucchi, 1992; Levit-Binnun et al.,

2006) were both found to be influenced by deviations from the two-thirds power law. Why

one would expect the two-thirds power law relation for perception, let alone production of

human movement, is an open question that has received considerable attention, and is

discussed directly below.

The two-thirds power law as an emergent property.

The tendency of human drawing movements to obey the power-law may reflect the

internal neural representation of movement by the central nervous system (CNS)

(Schwartz, 1992, 1994; Schwartz & Moran, 1999; Moran & Schwartz, 1999; Schwartz &

Moran, 2000). However, the fact that planar drawing movements obey the two-thirds

power law does not necessarily imply that this particular speed-curvature relation is made

explicit in movement planning by the CNS. The possibility does exist that it arises as a

byproduct of more basic motor-planning principles or from some peripheral factors.

Several researchers have pursued this approach in examining the origins of the two-thirds

power law. Accounts of the two-thirds power law were provided by suggesting that the

CNS may in fact wish to maximize movement smoothness (i.e. minimizing jerk or some

other higher time derivatives of position; Flash & Hogan, 1985; Viviani & Flash, 1995;

Richardson & Flash, 2002), smoothness along a predetermined path (Todorov & Jordan,

1998), or possibly minimizing endpoint variability under signal-dependent noise control

(Harris & Wolpert, 1998).

Another suggestion was that given an input signal to draw an ellipse at constant

Euclidean speed, mechanical properties of muscles may give rise to the observed behavior,

namely that the movement output will obey the two-thirds power law (Viviani &

Schneider, 1991). Such suggestions have been based on an implementation of equilibrium

point control (Gribble & Ostry, 1996) and purely sinusoidal control (Sternad & Schaal,

1999). It has also been recently suggested that the power-law might be due, at least in
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part, to correlated noise in the human motor system (Maoz, Portugaly, Flash, & Weiss,

2006). In summary, the two-thirds power law of movement production has been

demonstrated to possibly arise from a variety of principles.

The two-thirds power law and equi-affine representation of planar shape.

It has been established that the two-thirds power law of drawing planar shapes is

equivalent to tracing out a curve at constant equi-affine speed (Flash & Handzel, 1996;

Pollick & Sapiro, 1997; Flash & Handzel, 2007). The essence of this statement is that a

particular representation of planar shape is suggested – one that represents length by

equi-affine arc-length rather than by Euclidean arc-length. This proposition of the use of

equi-affine arc-length to parameterize a curve is of practical interest since results from the

visual representation of shape show that equi-affine properties of plane curves can be

exploited to some degree to obtain recognition of a planar shape approximately

independently of viewing direction (Munich & Perona, 1999; Olver, Sapiro, &

Tannenbaum, 1999; Sato & Cipolla, 1997). When drawing a plane curve in compliance

with the two-thirds power law, it is possible that this visual invariance could be exploited.

Given the role of the two-thirds power law in motion perception (Viviani & Stucchi,

1989, 1992; Levit-Binnun et al., 2006), it should also be evident that what the equi-affine

interpretation of the two-thirds power law provides is a basis for the common coding of

perception and action (Levit-Binnun et al., 2006). This suggestion can be contrasted with

other approaches which suggested that the visual system learned the two-thirds power law

from the motor system (Viviani & Stucchi, 1992). Generally speaking, the notion of

common coding implies that at some level of processing the motoric and visual

representations share the same principles of coding (Prinz, 1997). For the case of tracing

planar figures, the parameterization of shape by equi-affine arc-length grants plausibility

to the idea that the common coding originates in a common visuomotor equi-affine

representation of the shape to be drawn (Flash & Handzel, 2007).



3D Arm Motion at Const Equi-Affine Speed 9

Properties of three-dimensional movement

The two-thirds power law relates movement kinematics, or speed, to the geometrical

properties, or the shape, of the curve being drawn. Examining the geometry of curves in

two and three dimensions reveals that, whereas the shape of a curve in the plane is

uniquely specified by its curvature, for a curve in three-dimensional space an additional

parameter, torsion, is required to completely specify shape (O’Neill, 1997; Oprea, 1997).

Thus, we see that the power law given in Equation (1) is, in the sense of relating

movement speed to geometry, complete for planar movements, but mathematically

incomplete for the drawing of 3D space curves. However, speed-shape relations in 3D

drawing movements have hardly been examined, and therefore the implications of this

theoretical limitation is unknown.

One study that examined potential relationships between the curvature, torsion and

speed of 3D drawing movements was performed by Morasso (1983). He found that while a

clear inverse relationship between curvature and speed of movement exists for 3D

scribbling movements, a similar result was not found for torsion. Instead, torsion

appeared to indicate segmentation of movements into piecewise planar segments, and no

obvious relation was found between torsion and either curvature or speed.

A further study into the segmentation of 3D drawing movements has suggested that

these may be piecewise planar (Soechting & Terzuolo, 1987). Piecewise planarity would

suggest that torsion is generally approximately zero and would tend to occur only in the

transitions between different planar segments of a movement. However, deviations from

piecewise-planar drawing in 3D have been observed (Gusis, 1995), and indeed this

hypothesis does not seem to be supported by a more recent study involving 3D shape

tracing hand movements (Todorov & Jordan, 1998). Moreover, it was shown that when

asked to draw ellipses of different sizes, participants draw ellipses which become less

planar as they increase in size; and violations of the two-thirds power law relation between
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speed and curvature increase with this decreasing planarity (Schaal & Sternad, 2001).

A clear picture of the relationship between torsion and drawing speed does not arise

from these previous studies. If 3D drawing movements are piecewise planar then it might

be expected that the observed torsion of 3D drawing movements would serve only to

separate a movement into its segments. Thus, we might expect the torsion within the

planar segments to be nearly zero and therefore to have no effect on the drawing speed

within the piecewise planar segments of a space curve. However, it is clear that in cases

such as tracing a line on a curved surface, the movement need not be piecewise planar and

could have both torsion and curvature that continuously vary. Finally, the results by

Schaal and Sternad (2001), which demonstrated that as the reproductions of a planar

shape become less planar they also obtain a worse fit to the 2/3-PL, are at least consistent

with the possibility that torsion might influence the speed of drawing movements.

Constant equi-affine speed and power-laws of spatial hand motion

The possibility that torsion influences the speed of 3D drawing movements raises

the question of what is the effect of torsion on the speed of such movements. Intuitively,

we can guess that because both curvature and torsion indicate deviation from

straightness, then torsion, like curvature, would be inversely related to drawing speed.

Moreover, the minor inverse correspondence between the absolute value of torsion and

speed in the data of Morasso (1983) (see the “Torsion and piecewise planarity” subsection

of the Discussion below) suggests that torsion would have less of an influence on speed

than curvature. So it would be reasonable to guess that speed is inversely related to

torsion to the power of some magnitude, which is less than the 1/3 of curvature.

While such intuitions are useful, the approach we will take to model the role of

torsion in modulating drawing speed is based on equi-affine differential geometry, which

was used to explain the two-thirds power law of planar drawing movements. In the plane,
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it was shown that this law is equivalent to movement along a curve at constant equi-affine

speed. Movement at constant equi-affine speed can be obtained by re-parameterizing a

curve using equi-affine arc-length parameterization and then moving along the curve in

equal units of this equi-affine arc-length per unit time. The extension from a 2D curve to

a 3D curve is mathematically straightforward. The result is expressed in Equation (2) and

derived in the Appendix below. This relation is consistent with the intuitions discussed

above.

Methods

We examined self-paced, unconstrained spatial scribbling movements for the

predicted relationship between Euclidean speed, v, curvature, κ, and torsion, τ as

formulated in Equation (2).

Participants

Ten subjects volunteered to participate in the experiment (2 of them were females, 3

of the 10 were left-handed), which was approved by the ethical committee of the

Weizmann Institute of Science. All gave their informed consent to participate, and did not

report any previous arm injuries. They are designated below by their initials: AB, DF,

DS, ED, ES, FP, LK, MD, RF and SL.

Apparatus

Participants were seated on a high-back chair and restrained with a shoulder

harness to reduce effects of body sway. Their wrist was braced to minimize motion at the

wrist joint. The Polhemus Liberty magnetic movement measurement system was used to

measure the 3D position and orientation of three sensors placed on the forearm,

upper-arm and chest of the subjects (see Figure 1). The system does not require
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line-of-sight between the magnetic source and the sensors, so it does not suffer from

occlusions. The sampling rate was 240 Hz.

Experimental procedure

Subjects were instructed to move at a comfortable pace and to make free

unconstrained scribbling or drawing movements in 3D space. They began their motion,

and after a few seconds the data recording began. Movement was recorded for a period of

15 sec and a total of 6 trials were obtained for each subject. Subjects made a pause

between movements, and were then allowed to rest if they were so inclined. Examples of

the recorded paths from each of the subjects is given in Figure 2.

Data preprocessing

Rigorous testing that we performed proved that the Liberty system has a

measurement error of roughly 1 mm for the distance from the magnetic source that we

used and for the environment in which movement recording was performed. The motion

data were approximated with splines using the Mathworks, Matlab implementation of the

GCVSPL package for generalized, cross-validatory spline smoothing and differentiation

(Woltring, 1986). The 1 mm measurement error was used to compute the appropriate

tolerance for these splines. The quantities of speed, v, curvature, κ, and torsion, τ , could

then be calculated by analytically differentiating these splines. Figure 3 displays the

speed, curvature, torsion and absolute value of torsion versus the path arc-length for one

experimental movement trial.

Extensive simulations were performed with this smoothing and differentiation

method. We took trajectories very similar to those traced by our subjects, whose

geometric properties were analytically computed. The characteristic noise of our

measurement system was then added to these trajectories. We could then test how close

our approximations of the geometric parameters of the noisy trajectories were to the



3D Arm Motion at Const Equi-Affine Speed 13

original parameters. These demonstrated that for scribbling trajectories such as ours,

torsion is calculated to within about 10% overall error for each sample, whereas speed and

curvature are calculated to within 2-3% error. Figure 4 presents a typical example of the

torsion and its approximation. It is apparent that the approximation is close to the true

signal and well preserves its characteristic form.

Processing of the data involved examining whether the predicted relationship

between the speed, curvature and absolute value of torsion in Equation (2) was obtained.

There were two initial considerations when examining this relationship. The first was

whether or not parts of the movement were planar. In regions where a movement was

rather planar, the torsion was approximately zero and the relationship between speed,

curvature and torsion, as presented in Equation (2), becomes ill-defined. A second

consideration is that subjects tend to trace 3D paths whose signed torsion is composed of

negative and positive regions (Figure 3 is typical in that respect). Taking the absolute

value of this torsion thus gives rise to physically unrealizable cusps at locations that are

transition regions between positive and negative values for signed-torsion (compare third

from top and bottom panels in Figure 3). These non-realizable transition regions must be

omitted before any correspondence between speed, curvature and torsion can be

examined3.

In order to deal with the planar regions and the torsion cusps we placed a threshold

of 2 meters−1 on the absolute torsion for the power-laws fitting procedures described

below. We thus effectively utilized only data that had absolute torsion values of at least 2

meters−1 for power-laws fitting. This threshold value was the lowest one that enabled us

to considerably get rid of the planar regions of the movement as well as the cusps’

transition regions; 66% of the data, which were above threshold, were maintained for the

power-law fitting.
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Fitting the power-laws to the data

Three types of power-law fitting methods were used on the data. In the first, we

wanted to best-fit the exponents of the one-sixth power law to the experimental data.

This was done in order to ascertain that the exponents are compatible with motion at

constant equi-affine speed – i.e. approximately −1/3 for the curvature and −1/6 for the

torsion, as described in Equation (2). We thus introduce a new equation:

v = ακβτγ , (3)

termed the unconstrained curvature-torsion power-law and denoted uc-κτ -PL, for which

we computed the best-fit α, β and γ. More formally, this method was based on

simultaneously finding the α, β and γ values in Equation (3), which minimize the square

error between the experimentally measured speed and the speed predicted according to

the equation (using the curvature and torsion computed from the experimental data).

For the second type of fit, only the best-fit speed gain factor α (in the least-squares

sense) of each of Equations (1) and (2) was found using linear regression. In the third

power-law fitting, the power laws’ exponents were not taken as fixed constants, but rather

the least-squares-error speed gain factor and exponents were sought together. More

formally, instead of the two-thirds power law we have:

v = ακβ. (4)

We name this the curvature power-law and denote it by the acronym κ-PL. Similarly,

instead of the 1/6-PL we have:

v = α
(
κ ·

√
|τ |

)β
. (5)

This is termed the constrained curvature-torsion power-law and is denoted c-κτ -PL below,

because here assume a constraint on the relationship between the curvature and torsion of

the uc-κτ -PL of Equation (3). The five power-laws discussed above are summarized in

Table 1.
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The constraint between the curvature and torsion in the c-κτ -PL is the same as

that which exists between the curvature and torsion exponents for constant equi-affine

speed and hence the same as that which appears in Equation (2). It was introduced so

that the c-κτ -PL would have the same number of free parameters as the 1/6-PL (i.e. α

and β in both Equation (4) and (5)). Had we tried to compare the explanatory power of

the uc-κτ -PL of Equation (3) with that of the κ-PL of Equation (4) we would have

encountered a problem because the uc-κτ -PL has an extra free parameter (γ) over those

of the κ-PL.

For the first and third methods (Equations (3), (4), and (5)) non-linear regression

had to be utilized to find the best-fit exponents. Taking the log of both sides of the two

equations, we found the approximate least-squares regression values using linear regression

in this log-space. We then took these values as starting points when utilizing the subspace

trust region non-linear regression method (Coleman & Li, 1994, 1996). Last, the result

was double-checked using an exhaustive regional search with iteratively increasing

resolution. We always used the the R2 goodness of fit statistic to compare between the

power-laws (Rao, 1973).

Results

Visual inspection of Figure 3 suggests that the speed of the movement is inversely

correlated to the curvature, as predicted by a two-thirds power law. It is also apparent

that while an inverse relationship between torsion and speed is possibly present, it is not

as strong as that of curvature and speed. In order to quantify these informal observations,

we performed an analysis that was aimed at assessing the influence of including torsion in

the relationship between the speed and the geometry, as far as this relationship accounts

for the variance of the speed.
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Testing for 3D constant equi-affine speed

If our subjects moved at constant equi-affine speed, we could expect that when

fitting the uc-κτ -PL to the data we would obtain β ≈ −1/3 and γ ≈ −1/6. The results of

this fitting are presented in Table 2. Pooling these results over all subjects, we cannot

reject the hypothesis that the mean of the exponent distributions for the curvature and

torsion exponents are -1/3 and -1/6, respectively (both tested with a one-sample t-test at

the 0.05 significance level). Moreover, the standard deviations are rather small.

Comparing between 2/3-PL and 1/6-PL

After checking that our movement data is compatible with the one-sixth power-law,

we wish to compare between the fit quality of this power-law and the two-thirds

power-law. The only difference between the 2/3-PL and the 1/6-PL models

(Equations (1) and (2)) is that the second has the right hand side of the first multiplied

by |τ |−1/6. Similarly, the only difference between the κ-PL and the c-κτ -PL models

(Equations (4) and (5)) is that the second has the right hand side of the first multiplied

by
√
|τ |β in the second case. To examine whether incorporating torsion resulted in a

better power-law, we compared the explanatory power of the 2/3-PL versus 1/6-PL and

the explanatory power of the κ-PL versus the c-κτ -PL.

We evaluated the distributions of the R2 goodness-of-fit statistics for the fit of the

speed predicted by each of the two power-laws, as they appear in Equations (1) and (2),

to the experimentally measured speed. Here α was the only regression parameter in both

cases. This was done for every subject separately as well as by pooling over all the

subjects together. The averages and standard deviations of these R2 distributions as well

as the p-value of the test of the statistical significance of their difference (Kruskal-Wallis

nonparametric one-way ANOVA) are shown in Table 3.

As is apparent, the 1/6-PL explains the data significantly better than the 2/3-PL
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for 8 out of 10 subjects (at the 0.05 significance level ) and surely does so significantly

better when all subjects are pooled together. On average, the 1/6-PL explains 17±8%

more of the data variance than the 2/3-PL. Moreover, computations prove that the R2

score of the 1/6-PL is higher than that of the 2/3-PL for all trials of all subjects. Last, no

statistically significant differences among subjects were found for the R2 score

distributions of the 1/6-PL for all subject-pairs except for AB & ES and AB & SL (i.e for

43 of the 45 subject-pairs, 96%; Kruskal-Wallis non-parametric one-way ANOVA and

multiple comparison test of means using Tukey’s honestly significant difference criterion at

the 0.05 significance level).

Comparing between κ-PL and c-κτ -PL

We wanted to test the influence of including torsion on the power-law exponents as

well as on the goodness of fit. We therefore compared the distributions of the β and R2

values for the best least-squares fit of each of the two power-laws as they appear in

Equations (4) and (5) (with α and β as the regression parameters in both cases). Figure 5

depicts some examples of the speed-profiles that these κ-PL and the c-κτ -PL models

predict versus the actual measured speed.

The comparison between the power-laws’ fitting was carried out for each subject

separately as well as over all subjects together. The results are given in Table 4 and

Table 5. Table 4 holds the results of the R2 of the fit, similarly to Table 3. Table 5 holds

the mean and standard-deviation of the power-laws’ exponents (β of Equations 4 and 5)

that were found in the fitting procedure.

As is apparent from Table 4, the c-κτ -PL explains the data significantly better than

the κ-PL for 7 of the 10 subjects (at the 0.05 significance level), and certainly does better

for the pool of all subjects together. On average the c-κτ -PL explains 14±7% more of the

data variance than the κ-PL4. Moreover, for all trials of all subjects the computed R2
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score of the c-κτ -PL was higher than that of the κ-PL. Last, no statistically significant

differences were found between subjects for the R2 score distributions of the 1/6-PL for all

subject-pairs except AB & DF, AB & ES and AB & SL (i.e for 42 of the 45 subject-pairs,

93%; Kruskal-Wallis non-parametric one-way ANOVA and multiple comparison test of

means using Tukey’s honestly significant difference criterion at the 0.05 significance level).

The distributions of the exponent values (the β’s of equations (4) and (5)) across

subjects are also rarely significantly different in pairs. Statistically significant differences

were found only between the distributions of subjects AB & DF, AB & ES, AB & LK and

AB & SL (i.e only for 4 of the 45 subject-pairs, 9 %; Kruskal-Wallis non-parametric

one-way ANOVA and multiple comparison test of means using Tukey’s honestly

significant difference criterion at the 0.05 significance level) 5. When pooled over all

subjects, the exponent values are significantly different between the two power-laws

(Kruskal-Wallis nonparametric one-way ANOVA at the 0.002 confidence level). Moreover,

whereas the mean of the distribution of the exponents of the κ-PL is significantly different

than −1/3, we cannot reject the hypothesis that the mean of the exponent distribution of

the c-κτ -PL is −1/3 (both tested with a one-sample t-test at the 0.05 significance level).

The statistical analysis above thus seems to support rather robust and stable behavior

across subjects in obeying the c-κτ -PL for 3D scribbling hand movements.

Torsion and piecewise planarity

Morasso (1983) and others (e.g. Soechting & Terzuolo, 1987) suggest that 3D hand

movements are executed in a piecewise planar fashion. According to this hypothesis,

torsion should be generally approximately zero, with high torsion regions appearing at the

boundaries of planar sections – i.e. when shifting between planes. To test whether this is

the case in our hand movements, we segmented our entire signed torsion data (without

taking its absolute value and when not suppressing any data due to torsion-thresholding)
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for all subjects and trials into consecutive 0.2 sec bins in time (each segment thus

contained 48 samples at our 240 Hz sampling rate). According to the piecewise planarity

hypothesis, we would expect the great majority of the torsion bins to hold roughly zero

values, with some exceptions for bins residing around inter-planar transition regions.

However, when testing for each bin whether its median is significantly different from zero

(sign-test at the 0.05 confidence level), we found that when averaged over all subjects

73± 6% of the bins have a median significantly different from zero. Therefore, for almost

three-quarters of the time, the torsion cannot be said to be zero with random fluctuations.

Discussion

This paper has examined a proposal for extending the planar two-thirds power law

for drawing movements to a relationship that can account for local speed-shape relations

in 3D drawing movements, which we name the “one-sixth power-law”. The derivation of

this relationship was based on the equi-affine geometrical account of the planar two-thirds

power law, which reveals that this power law implies motion at constant equi-affine speed.

We demonstrated that constraining motion to constant equi-affine speed in three

dimensions, leads to a straightforward relation that introduces a torsion component into

the speed-shape relation, resulting in a new power-law of spatial hand motion (see the

Appendix for the full mathematical derivation). Our results suggest that the one-sixth

power-law explains spatial scribbling movements rather well, and certainly better than the

two-thirds power-law.

The geometry of CNS movement planning

We behave and interact within an environment that is usually locally rather-well

described by Euclidean geometry. This may have given rise to our intuition that the

functional geometry of our sensory and motor systems is Euclidean. But there is persistent

evidence that could be taken to suggest a different underlying geometric structure.
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Some observed regularities of planar hand drawing movements have been

demonstrated to be more naturally described using the non-Euclidean equi-affine

geometry than Euclidean geometry. Firstly, the two-thirds power-law was revealed to be

equivalent to motion at constant equi-affine speed (Flash & Handzel, 1996; Pollick &

Sapiro, 1997; Handzel & Flash, 1999; Flash & Handzel, 2007). Secondly, there is the

“local isochrony” principle (Viviani & Cenzato, 1985; Viviani, 1986; Viviani & Flash,

1995), which describes the modulation of speed within movement segments according to

their extent in a manner that preservers the duration of each individual segment relatively

insensitively to its length. This too was shown to be a possible consequence of moving at

piecewise constant equi-affine speed (with the ratio between the speeds over the segments

determined by the equi-affine arc-length of these segments; Flash & Handzel, 2007). A

third result of motion at constant equi-affine speed is the time-scaling property of human

movements (Hollerbach & Flash, 1982; Atkeson & Hollerbach, 1985) – the fact that the

instantaneous hand speed is scaled by a multiplicative factor, whose value depends on the

ratio of the overall movement duration to that of some reference movement (Flash &

Handzel, 2007). The framework of equi-affine geometry was even used to identify possible

elementary building blocks from which complex planar movements are composed (often

termed “motor primitives”) (Flash & Handzel, 2007). Last, it was shown that this

framework can accommodate the internal neural coding of motor commands according to

the population vector model (Georgopoulos et al., 1982, 1986, 1988; Schwartz, 1992, 1993,

1994; Moran & Schwartz, 1999; Schwartz & Moran, 1999, 2000).

These results, together with indications of the possible role of affine geometry in

perception (e.g. Todd, Oomes, Koenderink, & Kappers, 2001), provides a possible

mechanism of joint internal representation of perception and action (Viviani & Stucchi,

1992; Levit-Binnun et al., 2006), which may explain the role of the two-thirds power law

in both (Polyakov et al., 2003; Polyakov, 2001, 2006; Flash & Handzel, 2007). What is
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more, the various studies that lend support to the two-thirds power-law go beyond hand

movement and movement perception. It was found to apply in eye-motion (deSperati &

Viviani, 1997) and movement prediction based on biological motion (Kandel, Orliaguet, &

Viviani, 2000). Recent studies have also found it in locomotion (Vieilledent et al., 2001;

Hicheur et al., 2005) and even for proprioceptive feedback in the leg (Albert et al., 2005)

and hand (Viviani et al., 1997). The fact that this power-law is a direct consequence of

motion at constant equi-affine speed, suggests that all these observed phenomena may be

incorporated into the equi-affine framework.

The results of the present paper suggest that spatial scribbling is traced at constant

equi-affine speed. In this they further contribute to the investigation of the role of

non-Euclidean geometry, and more specifically that of equi-affine geometry, in neural

representations subserving planning, controlling and perceiving motion. It was

demonstrated that generalizing motion at constant equi-affine speed from two- to

three-dimensions results in a viable invariant of spatial scribbling movement – the

one-sixth power-law. This has, on the one hand, incorporated spatial scribbling into the

growing collection of movement regularities whose derivation is straightforward under the

framework of equi-affine geometry as a possible functional geometry of motion planning in

the CNS. On the other hand, this derivation has demonstrated the power of the seemingly

abstract equi-affine formulation in allowing to generate novel ideas (Pollick et al., 1997),

and hence to experimentally test regularities of the sensorimotor system.

Torsion and piecewise planarity

As noted above, Morasso (1983) found that while a clear inverse relationship

between curvature and speed of movement exists for 3D scribbling movements, a similar

result was not found for torsion. In fact, he claimed that no obvious relation was found

between torsion and either curvature or speed for his spatial movement data. It should be
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noted though, that Morasso examined the relationship between movement speed and

signed torsion rather than the absolute value of torsion. When reexamining some of his

figures, replacing the torsion values he obtained with their absolute value, a limited

inverse correspondence between this value and speed is apparent (see Figure 3). Moreover,

torsion measurement is not trivial with today’s 3D measurement equipment, and thus

considerable efforts had to be made to ensure the quality of our torsion approximation

(see ”Data Processing” subsection of the Methods above). So the noise level in Morasso’s

measurements (which were carried out in the early 80’s, and he himself indirectly

acknowledges as significant in one of his footnotes) could have influenced his results.

Morasso (1983) and Soechting and Terzuolo (1987) further suggested that 3D

movements are piecewise planar. For this hypothesis to hold, torsion would have to be

generally approximately zero with high torsion regions appearing at the boundaries of

planar sections. Yet, as demonstrated in Figure 3, this type of behavior is not more

typical for torsion than it is for curvature, at least in our data. Moreover, our more

rigorous analysis suggested that for about three-quarters of the time torsion does not

fluctuate around zero. Therefore the torsion signals of our data do not seem to conform to

the piecewise planar hypothesis. This all leads us to suggest that until more is known

about the torsion of 3D drawing movements, it would seem premature to make strong

claims about a possible connection between torsion and segmentation of movements into

planar subsections.

Points for further research

Our results suggest that about two-thirds of the variance in the speed profile of

unconstrained spatial scribbling movements can be explained by their geometry according

to the one-sixth power law. Nevertheless, we only used one value for the speed gain factor

for the entire 15 sec of each movement trial. Although previous studies proved the
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equivalence of the speed gain factor of the two-thirds power law (α of Equation (1)) with

the equi-affine speed along the planar path described by the curvature (κ), it was

demonstrated that the speed gain factor of the two-thirds power-law is only piecewise

constant for motion along complex planar paths, including scribbling (Viviani & Cenzato,

1985; Viviani, 1986; Viviani & Flash, 1995). This means that such paths are traced with

piecewise constant equi-affine speed (Handzel & Flash, 1999; Flash & Handzel, 2007). It

was further demonstrated that the shifts in the otherwise roughly constant speed gain

factor correspond to natural shifts between consecutive segments of the drawing motion

(Viviani & Cenzato, 1985; Viviani, 1986; Viviani & Flash, 1995). Nevertheless, additional

claims that this segmentation may reflect segmented control by the CNS (Viviani &

Cenzato, 1985; Viviani, 1986) were contrasted with results suggesting this segmentation to

be epiphenomenal to continuous smooth minimum-jerk control at the hand level

(Richardson & Flash, 2002) or to nonlinear transformations of the forward kinematics of

human arms that perform smooth multi-joint rotations, which are governed by continuous

control (Sternad & Schaal, 1999). It would thus be interesting to examine, which, if any,

segmentation is implied by the one-sixth power-law, and how much more of the variance in

the speed profile might be explained by the geometry in a segmented manner. Moreover,

it would be important to test whether this new power-law and any segmentation scheme it

may imply can be derived from some smoothness criteria in joint- or hand-space.

The Appendix lays out the proof that the speed gain factor of the one-sixth

power-law, α of Equation (2), is the equi-affine speed along the path described by the

curvature and torsion (κ and τ , respectively) there. When we constrain α to be constant

throughout the entire scribbling trial as we did above (effectively assuming motion at

globally constant equi-affine speed), our results suggest that about two-thirds of the

variance of the Euclidean speed over the path can be explained by Equation (2). Given

that complex planar paths including scribbling were traversed with piecewise constant
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equi-affine speed, a plausible point for further research would be to test wether 3D

scribbling is carried out with piecewise constant equi-affine speed too. If this is the case, it

may explain much of the remaining one-third of the speed variance left unexplained when

assuming globally constant equi-affine speed.

Previous research demonstrated that there are systematic errors in the two-thirds

power-law’s account of planar movement in correlation with the overall shape of the path

(Wann et al., 1988) and for spatial movement in correlation with the global non-planarity

of the path (Schaal & Sternad, 2001). Incorporating torsion into the two-thirds power-law

created the one-sixth power-law for spatial movement, which explained the data

significantly better than the former law. The systematic errors found for the two-thirds

power law for non-planar paths may thus be due to the assumption of motion at planar

equi-affine speed for paths where spatial equi-affine speed is more appropriate. This still

remains to be tested. Yet what about the systematic modification of the two-thirds

power-law with the global planar shape? Does this occur for the one-sixth power law over

spatial shapes? Further research is required in order to investigate what aspects of

movement shape systematically modulate the predicted spatial speed-shape relation. If

systematic corrections must be introduced into the two-thirds and one-sixth power-laws in

correlation with planar and spatial shapes, respectively, it may be that the equi-affine

framework is not broad enough to account for the intricacies of the functional geometry of

the sensorimotor space. We must allow for the possibility that this framework is only a

first-order approximation to some more extensive framework.

Conclusions

In this paper we have proposed and experimentally tested a model of speed-shape

covariation, which conforms to motion at constant spatial equi-affine speed. Our

experimental dataset was composed of free 3D scribbling movements. Our results show
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that these scribbling movements fit the model’s predictions rather well, with

unconstrained spatial drawing movements slowing down not only in regions of high

curvature but also in regions of high torsion, though to a lesser extent, as expected. This

new power-law describes the relationship between spatial speed and geometry significantly

better than the two-thirds power law, resulting in a more accurate speed profile prediction

for a given path. Moreover, a utility of the equi-affine geometric approach to describing

human movement geometry was demonstrated by extending the previous treatment of

planar movements to the three-dimensional case.

Appendix

This appendix presents the mathematical foundations of the one-sixth power-law. It

expands upon the work of Pollick, Flash, Handzel and others (Flash & Handzel, 1996;

Pollick & Sapiro, 1997; Pollick et al., 1997; Flash & Handzel, 2007), regarding the

equivalence of the two-thirds power-law with motion at constant equi-affine speed and its

generalization to three dimensions.

Euclidean arc-length, length and speed

A space curve, r, may be regarded as the trajectory of a point q ∈ [0, 1] in 3D space,

R3. This means that r : [0, 1] → R3 (i.e. for each value of q it matches a point

r(q) = [x(q), y(q), z(q)] ∈ R3 on the curve). The velocity of the trajectory would thus be

given by dr
dq . Different parameterizations of this curve result in different velocity profiles

over the curve, though they all define the same path (i.e. the same image of r in R3).

One particular and important parameterization is the Euclidean arc-length

parameterization, p, in which the curve is traversed with unit speed, i.e. ‖dr
dp‖ ≡ 1 (where

‖ · ‖ is the Euclidean vector norm). In order to transform from an arbitrary
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parameterization q to p, the operation

p(q) =
∫ q

0

∥∥∥∥dr(w)
dw

∥∥∥∥ dw

is used. Utilizing this Euclidean parameterization, the Euclidean length of a curve

between points p1 and p2 is

le(p1, p2) :=
∫ p2

p1

dp.

The Euclidean arc-length parameterization is invariant under Euclidean

transformations (translations and rotations). Formally this means the following: let us

define r̃ = Rr + T, where R ∈ R3×3 is a rotation matrix and T ∈ R3 is a translation

vector. Let us further designate by p̃1 and p̃2 the results of the Euclidean transformation

of points p1 and p2. The Euclidean invariance of the arc-length p means that dp = dp̃,

hence le(p̃1, p̃2) = le(p1, p2).

Once we have a definition for Euclidean arc-length, we can continue and define

Euclidean velocity by

ve :=
dr

dt
=

dr

dp

dp

dt
,

where t stands for time. The Euclidean speed is therefore:

‖ve‖ =
∥∥∥∥dr

dp

dp

dt

∥∥∥∥ =
∥∥∥∥dp

dt

∥∥∥∥ .

Due to the fact that p is Euclidean invariant, so is ‖ve‖. This speed is the one measured in

the power-laws above.

Equi-affine arc-length and speed

Yet what would happen if we wanted invariance not only to translation and

rotation, but also to stretches with different values in the different axes so long as the

“volume” of the curve remains the same (e.g. stretching the curve r by 5 in the x

direction, 0.5 in the y direction and 0.4 in the z direction; or, more generally, stretching r
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by a, b and α in the directions x, y and z, where a · b · c = 1)? These transformations are

collectively named equi-affine transformations, so we would thus want invariance to

equi-affine transformations. More formally, the 3D curves r and r̃ are invariant under

equi-affine transformations if there exist some 3× 3 matrix A, whose determinant is equal

to 1 and a 3× 1 translation vector T for which r̃ = Ar + T.

The Euclidean arc-length is obviously not invariant under arbitrary equi-affine

transformations. Yet we can define the notion of equi-affine arc-length, σ, based on the

“volume” of the curve, which is equi-affine invariant.6 This would enable us to further

define the equi-affine length, la, which would be equi-affine invariant. We define the

equi-affine arc-length of any regular parameter on the space curve r to be the simplest

equi-affine invariant7. That is, the equi-affine arc-length is not affected by a change of

parameter of the curve and is invariant under equi-affine transformations (Davis, 2006):

dσ

dt
=

∣∣∣∣dr

dt
,
d2r

dt2
,
d3r

dt3

∣∣∣∣
1
6

,

where “|u, v, w|” denotes the scalar triple product between vectors u, v, w ∈ R3;

|u, v, w| = u(̇v ∧ w), where xẏ denotes the dot-product and (x ∧ y) denotes the

cross-product between vectors x and y.

This is in fact the signed volume of the parallelepiped created by the vectors dr
dt ,

d2r
dt2

and d3r
dt3

raised to the power of 1
6 . Therefore:

σ =
∫ t

t0

dσ

dt
dt =

∫ t

t0

∣∣∣∣dr

dt
,
d2r

dt2
,
d3r

dt3

∣∣∣∣
1
6

dt.

Hence the equi-affine length of a curve between σ1 and σ2, la(t1, t2) :=
∣∣∣dr

dt ,
d2r
dt2

, d3r
dt3

∣∣∣ 1
6
dt.

As for the Euclidean case above, this would make the equi-affine speed:

va :=
dσ

dt
=

∣∣∣∣dr

dt
,
d2r

dt2
,
d3r

dt3

∣∣∣∣
1
6

,

where t denotes time.



3D Arm Motion at Const Equi-Affine Speed 28

Constant equi-affine speed

Given the above, constant equi-affine speed parameterization of a 3D curve would

entail:

va =
∣∣∣∣dr

dt
,
d2r

dt2
,
d3r

dt3

∣∣∣∣
1
6

= const,

where t stands for time.

Now, from standard formulae of the differential geometry of space curves (Oprea,

1997) we know that for curvature:

κ =

∥∥∥dr
dt ∧

d2r
dt2

∥∥∥∥∥dr
dt

∥∥3 (6)

and for torsion:

τ =

∣∣∣dr
dt ,

d2r
dt2

, d3r
dt3

∣∣∣∥∥∥dr
dt ∧

d2r
dt2

∥∥∥2 , (7)

where “u∧v” denotes the cross product between vectors u, v ∈ R3.

Combining Equations (6) and (7) with the knowledge that v =
∥∥dr

dt

∥∥, where v is the

Euclidean speed8, we get9:

v =

∣∣∣dr
dt ,

d2r
dt2

, d3r
dt3

∣∣∣1/6

κ1/3 · |τ |1/6
= vaκ

−1/3 |τ |−1/6 . (8)

Therefore motion at constant equi-affine speed in 3D space would directly entail

Equation (2) above.
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Notes

1“Equi-affine transformations” are a special case of the more general “affine

transformations”, in which the determinant of the affine transformation matrix is strictly

1. See the Appendix for more.

2By definition, the curvature is the normal of the unit tangent vector to the curve

(Oprea, 1997) and is hence non-negative. Intuitively it is the amount of local deviation

from straightness of the curve. Torsion, on the other hand, is the negative of the dot

product of the curve’s principle normal vector and the derivative of the binormal vector,

and can thus take positive or negative values (Oprea, 1997). Intuitively it is the amount of

local deviation from planarity. In more technical terms, it is the signed rate of change of

the osculating plane, where the sign is determined by the direction of movement. In the

setting of our power-law we are interested in the rate of change of the osculating plane,

rather than in its direction. We therefore use the absolute value, or magnitude, of torsion.

3Similar singularities and cusps in power law relationships have been noted for the

planar two-thirds power law at inflection points (e.g. Viviani & Flash, 1995). There too

these regions were discarded.

4If we remove outliers (here defined as data points that are two inter-quartile range

estimations of the standard-deviation or more from the distribution’s median) from the

c-κτ -PL’s R2 distribution, its mean increases to 0.67, making it roughly equal to the

median.

5Interestingly, all differences between subject pairs for the R2 values in Table 3 and 4

as well as the exponents in Table 5 involve subject AB. This likely stems from that

subject’s power-law exponent being so low (its average value is closer to -1/2 than to -1/3

and is distanced more than 1.5 inter-quartile range approximations of the standard

deviation from the median of the distribution of all subject mean exponent values).

Nevertheless, even this possibly anomalous subject cannot be said to have significantly
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different R2 and exponent values when compared with most other subjects.

6Such a parameterization always exists for every curve, except for the infinitesimal

neighborhood of a point of zero curvature (a straight line or an inflection point) on that

curve. Because such points are of zero measure over the curves we are interested in, this is

not problematic for us.

7Simplest here means lowest derivative.

8Denoting the Euclidean-speed by ‘v’ here when above ‘ve’ and ‘va’ denoted

Euclidean or equi-affine velocity is certainly confusing. However, in various formulations of

the two-thirds power law and other such laws, v historically denotes the speed. We thus

stick to this problematic method here.

9We replace τ by |τ | because if τ < 0, τ1/6 is not a real number and neither is the

speed it predicts, v.
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Figure Captions

Figure 1. An illustration of the experimental apparatus depicting a subject and the

Liberty magnetic motion measurement system.

Figure 2. Ten examples of 15 sec scribbling paths, one from each subject. Subjects are

designated by their initials. Axes limits are the same across all subjects and are presented

for subject SL.

Figure 3. An example of speed (v), curvature (κ), torsion (τ) and absolute value of torsion

(|τ |) profiles over the path arc-length, from top to bottom respectively. The corresponding

path is depicted in Figure 1 for subject RF.

Figure 4. An example of torsion approximation. The path of subject AB in Figure

Figure 2 was strongly smoothed to remove noise (a smoothing spline with tolerance 0.01m

was passed through it). This was designated the “true” path and its torsion was computed

analytically. Characteristic noise of the Liberty device was then added to this true path,

and our smoothing and differentiation routine was used to extract an approximation for

the true torsion. The approximated and true torsion signals are displayed. The bottom

panel is a zooms in on the dotted rectangular area of the top panel.

Figure 5. Four examples depicting the speed approximations of the κ-PL and the c-κτ -PL

as well as the actual measured speed, all versus the arc-lengths of the paths. They are

taken from subjects AB, DS, FP and RF. Solid lines appear in regions where the torsion is

above its threshold (2 meter−1). The dashed lines are below threshold regions for the

measured speed, and cubic interpolations for the power-law speed predictions.
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