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Optimal entanglement generation from quantum operations

M. S. Leifer,* L. Henderson, and N. Linden
Department of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom

~Received 14 May 2002; published 13 January 2003!

We consider how much entanglement can be produced by a nonlocal two-qubit unitary operation,UAB—the
entangling capacityof UAB . For a single application ofUAB , with no ancillas, we find the entangling capacity
and show that it generally helps to act withUAB on an entangled state. Allowing ancillas, we present numerical
results from which we can conclude, quite generally, that allowing initial entanglement typically increases the
optimal capacity in this case as well. Next, we show that allowing collective processing does not increase the
entangling capacity if initial entanglement is allowed.

DOI: 10.1103/PhysRevA.67.012306 PACS number~s!: 03.67.2a

I. INTRODUCTION

The fundamental resource used in many quantum infor-
mation protocols, such as cryptography and teleportation, is
the entanglement in a quantum state. A major theme of in-
vestigation in quantum information theory is the analysis and
characterization of entanglement properties of quantum
states under local operations and classical communication
~LOCC!. One issue is how to extract the entanglement in a
quantum state. The simplest protocols involve taking a single
copy of the quantum state and using LOCC to extract the
entanglement@1#. An important realization is that, in general,
collective processing~i.e. processing more than one copy of
the state at a time! is more efficient than individual-copy
processing. Indeed, for mixed states@2#, there are examples
where no entanglement can be extracted at all if one only has
one copy, but collective processing does allow extraction of
entanglement. The fact thatasymptoticcollective processing
~i.e., processing of infinitely many copies! is necessary for
the reversibleextraction of entanglement is a key building
block in the general theory of entanglement@3,4#.

The fundamental resource used in quantum control theory
and quantum computing is a nonlocal quantum operation,
such as an interaction Hamiltonian or a unitary gate. These
can be used, along with local actions, to perform the steps of
quantum algorithms and to generate entangled states. Con-
versely, an entangled state and LOCC can be used to apply a
nonlocal operation to an arbitrary state, enabling distributed
quantum processing.

Just as for quantum states, it is important to find ways of
classifying and quantifying the nonlocal properties of opera-
tions. There is a multitude of inter-related problems here.
Indeed, there seems to be an even richer structure in the case
of quantum operations than there is for states. For example,
one can consider how much entanglement an operation can
generate, how much classical communication the operation
can perform, or the power of the operation to simulate other
operations. As with states, we may restrict ourselves to a
single application of an operation or we may process mul-
tiple copies collectively.

This area has attracted much interest recently and results

have been obtained on Hamiltonian simulation@5–17#, inter-
conversion of unitary operations@18,19#, entanglement gen-
eration @20–23#, and generating operations from entangled
states@24–26#. Most of these results have focused on proto-
cols involving a single application of the operation and little
is known about the multiple-copy and asymptotic cases.

In this paper, we focus on the problem of entanglement
generation for two-qubit unitary operations acting on pure
states. Suppose that Alice and Bob share a stateuc& in their
combined Hilbert spaceHA^ HB and that they are able to
implement an operationUABPU(4) on any nonlocal two-
qubit subspace. They would like to maximize the amount of
entanglement that they generate per application ofUAB . We
call this maximum the entangling capacityECE of UAB . For
single applications ofUAB , the entangling capacity is given
by

ECE~UAB!5maxuc&PHA^ HB
@E~UABuc&!2E~ uc&)], ~1!

whereE is an entanglement measure andUAB acts on one
qubit in HA and one inHB .

In Sec. II, we review the useful decomposition of two-
qubit unitaries which was introduced in Refs.@6,21#. Section
III of the paper concerns the single-copy entangling capacity.
In Sec. III A, we review an argument due to Refs.@27,28#
that shows that the single-copy entangling capacity can be
achieved whenUAB is only allowed to act on pure states. We
then extend this argument to show that pure states can still be
used if the entangling capacity is to be achieved using the
minimal amount of initial entanglement. In Sec. III B and
Sec. III C, we show how much entanglement can be created
by a single use of a quantum operation when we allow Alice
and Bob to share initial entanglement; this work extends Ref.
@21# where the authors considered entangling capacities of
unitaries but did not allow initial entanglement; it also ex-
tends Ref.@20#, which allowed initial entanglement but only
unitary transformations infinitesimally close to the identity
~i.e., Hamiltonians!. In the case where ancillas are not al-
lowed ~Sec. III B!, we are able to derive analytic results
about the entangling capacities of unitaries. We find that it
generally helps to start with an entangled state, although this
is dependent on the entanglement measure. Section III C
concerns the case where we allow ancillas; we mostly de-
scribe numerical results here, however these numerical re-*Email address: Matt.Leifer@bristol.ac.uk
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sults allow us to conclude, quite generally, that allowing ini-
tial entanglement can increase the entangling capacity even
when ancillas are available.

The final part of this paper~Sec. IV! concerns collective
processing of quantum operations. As described above, col-
lective processing is a key idea in understanding entangle-
ment properties of quantum states. Our main result, essen-
tially that collective processing of quantum operations does
not help in generating quantum entanglement, is in stark con-
trast to the situation for processing of quantum states. We
conclude with a discussion of the implications of these re-
sults for the interconvertibility of quantum operations and
the classification of their entanglement properties.

II. DECOMPOSITION OF TWO-QUBIT UNITARY
OPERATORS

The entanglement properties of a unitary operation are
invariant under local unitary operations applied before or
after the operation. This gives a notion of local equivalence
of operations

UAB;UAB8 iff UAB8 5VA^ VBUABWA^ WB , ~2!

whereVA ,VB ,WA ,WB are local unitaries acting on the sys-
tems indicated. In order to simplify our calculations, we
make use of the following decomposition of two-qubit uni-
tary operators. Any two-qubit unitary,UAB;Ud ; where

Ud5expS i (
j 51

3

a js j
A

^ s j
BD , ~3!

p/4>a1>a2>ua3u>0 and s1,2,3 are the Pauli matrices.
SinceUd has the same entangling capacity asU, we always
work with this form@31#. Note that the eigenvalues ofUd are
given byeil j , where

l152a11a21a3 ,

l251a12a21a3 ,
~4!

l351a11a22a3 ,

l452a12a22a3 .

The corresponding eigenbasis is given byUduF j&
5eil j uF j& which is the Bell basis. For later convenience, we
choose the following phase convention:

uF1&5
2 i

A2
~ u00&2u11&),

uF2&5
1

A2
~ u00&1u11&),

uF3&5
2 i

A2
~ u01&1u10&),

~5!

uF4&5
1

A2
~ u01&2u10&).

In Ref. @21#, an explicit method is given for calculating
a j ,VA ,VB ,WA , andWB for any unitary. However, since we
are only interested in the valuesa j , the following method
can be used.

First, we define

Ũ5s2^ s2UTs2^ s2 , ~6!

whereT indicates the transpose in the computational basis.
The eigenvalues ofŨU are local invariants ofU, equivalent
to those found in Ref.@29#. From, Eq.~3! one can see that
these invariants are in fact squares of the eigenvalues ofUd .
Thus, solving Eq.~4! gives the unique decomposition.

III. SINGLE-COPY ENTANGLING CAPACITY

A. Purity of states in the optimal protocol

In this section we determine whether optimal protocols
can be found for generating entanglement using one applica-
tion of UAB , which only involve pure states at every stage.
We use an argument of Refs.@27,28# to establish that this is
the case. Further, we extend this argument to show that op-
timal pure state protocols can be found, which start with the
minimum possible amount of initial entanglement. Thus, all
the important details of the single-copy entangling capacity
of UAB can be established by considering pure states only.

Making a suitable definition of the entangling capacity
over mixed states is not quite as straightforward as the pure
state case. In particular, the choice of entanglement measure
for the initial and final states may be different. For the initial
state, it seems natural to use a measure of the minimum
average amount of entanglement required to generate it~i.e.,
the entanglement of formation!. However, for the final state
it makes more sense to measure the maximum amount of
entanglement that can be extracted from it~i.e., the distill-
able entanglement!.

To make this more specific, consider an initial mixed state
r0. Let r05( j pj uc j&^c j u be the decomposition ofr0 with
minimal ensemble-average entanglement. To generate an en-
semble ofn states described byr0, we may prepareuc j&
with probability pj and then discard the information about
which state was prepared. Asn→`, the amount of entangle-
ment per state used in this procedure will beEf(r0), where
Ef is the entanglement of formation. The operationUAB can
then be applied to each state individually, yieldingn copies
of the stater15UABr0UAB

† . These states can then be dis-
tilled to singlets by LOCC, and asn→` the yield of singlets
per copy ofr1 will be D(r1), where D is the distillable
entanglement. Note that, although this protocol involves col-
lective processing of the states, the fact thatUAB is applied to
each copy ofr0 individually means that it can still be re-
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garded as a single-copy protocol with respect to the nonlocal
operation.

With this in mind, we define the mixed state single-copy
entangling capacity as

CE
mixed5maxr0

@D~r1!2Ef~r0!#. ~7!

Then

D~r1!2Ef~r0!<Ef~r1!2Ef~r0!<(
j

pj@Ef~UABuc j&

3^c j uUAB
† !2Ef~ uc j&^c j u!# ~8!

<maxc j
@Ef~UABuc j&!2Ef~ uc j&)].

~9!

This demonstrates that, for every mixed state, there is a pure
state for which the action ofUAB generates at least as much
entanglement.

Next we show that any mixed state that achieves the en-
tangling capacity cannot be formed using less entanglement
than there is in a pure state that achieves the entangling ca-
pacity with minimal initial entanglement. Letuc& be a pure
state that achieves the entangling capacity with the minimal
possible initial entanglement. Letr be a mixed state that also
achieves the entangling capacity. From Eqs.~8! and ~9! it is
clear that the optimal decomposition ofr must be a mixture
of pure states that achieve the entangling capacity. Since this
is the optimal decomposition ofr, Ef(r) is just the weighted
average of the entanglements of these pure states. Thus,
Ef(r)>Ef(uc&) becauseuc& has the minimal entanglement
of any possible state in this ensemble.

B. Single application with no ancillas

We now determine the entangling capacity of two-qubit
unitaries of the form of Eq.~3! when no ancillas are allowed.
This depends on the entanglement measure we choose to
optimize over. In Sec. III B 1 we optimize over the square of
concurrence and then in Sec. III B 2 we show how our re-
sults can be extended to other measures of entanglement.

1. Square of concurrence

One entanglement measure that is particularly convenient
to optimize is the square of the concurrence@30#, C, defined
by

C~ uc&)5u^cus2^ s2uc* &u, ~10!

where uc* & is the state vector obtained by taking the com-
plex conjugates of the components ofuc& in the computa-
tional basis. We can adapt an argument from Ref.@21# to
perform the optimization here.

Writing uc&5( jbj uF j& gives

DC25Cf
22C0

25U(
j

e2il jbj
2U2

2U(
j

bj
2U2

5(
j ,k

~e2i (l j 2lk)21!bj
2bk*

2 , ~11!

whereC0 is the initial concurrence andCf is the final con-
currence after applyingUAB .

This can be optimized by imposing the normalization con-
dition ( j ubj u251 with a Lagrange multiplier, 2m, i.e., we
maximize

L5(
j ,k

~e2i (l j 2lk)21!bj
2bk*

222mS (
j

bjbj* 21D .

~12!

Differentiating gives

]L

]bj
52bje

2il j(
k

e22ilkbk*
222bj(

k
bk*

222mbj* 50;

~13!

multiplying by bj and summing overj gives

(
j ,k

~e2i (l j 2lk)21!bj
2bk*

22m(
j

ubj u250, ~14!

which yields

m5Cf
22C0

2 . ~15!

Substituting Eqs.~15! and ~11! into Eq. ~13! gives

bje
2il je2ihCf2bje

2i eC02Cf
2bj* 1C0

2bj* 50, ~16!

wheree,h are phases depending on all of thebj ’s. One pos-
sible solution isbj50. To find the other solutions we write
bj5b je

ig j whereb j ,g jPR. These solutions must haveb j
Þ0 and so Eq.~16! reduces to

Cf
22e2i (l j 1g j 1h)Cf2C0

21e2i (g j 1e)C050. ~17!

There are as many equations~17! as there are nonzerobj ’s.
For genericl j ’s, we will show that at most two of these
equations can be satisfied simultaneously.

First, consider the case when the optimal starting state has
C050. Then we have

Cf~Cf2e2i (l j 1g j 1h)!50. ~18!

SinceCf is real and we are looking for the maximum, we
must haveCf51. This shows that it is only best to start in a
product state ifUAB can generate onee-bit of entanglement
when no ancillas are present. The conditions for this were
found in Ref.@21# to be

a11a2>
p

4
and a21a3<

p

4
, ~19!

so here we will focus on the cases where Eq.~19! is violated
and the optimal starting state must have nonzeroC0.
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Subtracting any two of Eqs.~17! gives

sin~l j2lk1g j2gk!Cf5ei (2e22h2l j 2lk)sin~g j2gk!C0 .
~20!

This gives consistency conditions for the simultaneous solu-
tion of any pair of Eqs.~17!. In particular, sinceCf andC0
are both real, we have that

2~e2h!2l j2lk5np, nPZ. ~21!

For genericl j ’s this condition cannot be satisfied for more
than one pair of equations in Eqs.~17!. Thus, at most two
bj ’s can be nonzero@32#. This means that the optimal start-
ing state will always be in a subspace spanned by two of the
eigenvectors ofUAB . We will choose the two eigenvectors
and the coefficientsbj that maximizeDC2. Reexpressing Eq.
~11! in terms ofb j ,g j gives

DC254(
j ,k

b j
2bk

2$sin@2~g j2gk!1l j2lk#sin~lk2l j !%.

~22!

Only one term in this sum can be nonzero, and for this term
we may chooseg j ,gk so that DC254b j

2bk
2usin(lk2lj)u.

This is maximized byb j5bk51/A2. Thus the entangling
capacity is given by

ECC25maxj ,kusin~lk2l j !u. ~23!

Note that this is greater than the corresponding result of
maxj ,kusin(lk2lj)u2 found in Ref. @21# when the starting
state is restricted to be a product. This shows that when Eq.
~19! is violated, initial entanglement is always required to
achieve the optimal capacity when no ancillas are allowed.
There are two parameter regions where Eq.~19! does not
hold.

~1! a11a2,p/4, a21a3,p/4. In this region, the maxi-
mum is given by making thej 53,k54 term nonzero. We
find that ECC25sin@2(a11a2)# and the optimal starting
state is uc&5„sin@(a11a2)/22p/8#u01&2 icos@(a11a2)/2
2p/8#u10&…. This gives an optimal initial entanglement of
C0

25 1
2 @12sin2(a11a2)#.

~2! a11a2.p/4, a21a3.p/4. In this region, the maxi-
mum is given by making thej 51,k54 term nonzero. We
find thatECC25sin@2(a21a3)# and the optimal starting state
is uc&51/A2(uF1&1ei (p/41a21a3)uF4&).

Note that the entangling capacity is always found to be a
function ofa11a2 or a21a3, i.e., a sum of only two of the
parameters of the unitary. The value of the third parameter
does not affect the entangling capacity at all when no ancillas
are allowed.

2. Other entanglement measures

All bipartite entanglement measures,E, are monotonic
functions of one another and in particular of the concurrence
squared@i.e., E5E(C2)]. Generalizing the strategy of Eqs.
~11!–~20! to an arbitrary entanglement measureE by making
use of]E/]bj5]E/](C2)](C2)/]bj gives

sin~l j2lk1g j2gk!Cf

dEf

d~Cf
2!

5ei (2e22h2l j 2lk)sin~g j2gk!C0

dE

d~C0
2!

. ~24!

This gives the same consistency conditions as Eq.~21! so we
still have that at most twobj ’s can be nonzero. The only
exception is whendE/d(C2)}1/C, which occurs when our
entanglement measure is the concurrence itself. In this case,
similar methods show that the only consistent solutions are
C050 and C051, meaning that the optimal starting state
must always be a product.

For all other entanglement measures we focus on the case
wherea11a2,p/4,a21a3,p/4. If we choose onlybj and
bk to be nonzero for some choice ofj Þk51,2,3,4, then the
resulting optimalDE is always a function of the correspond-
ing l j andlk only. In fact, it must be the same function ofl j
andlk for all choices ofj andk. For all the measures con-
sidered below, we found that the optimalDE is always a
monotonically increasing function oful j2lku @33#. As with
the square of concurrence, we choose thej andk that give the
largest value oful j2lku, namely, j 53,k54. Thus, we can
write the optimal starting state in its Schmidt decomposition
as

uc&5cos~u!u01&1eifsin~u!u10& ~25!

and we simply have to optimizeDE over the Schmidt pa-
rameteru and relative phasef. We found the following
results.

~1! Concurrence: C5u^cus2^ s2uc* &u. As discussed
above, this measure is unusual in that we must always start
from a product state. Thus,ECC5sin@2(a11a2)#, which co-
incides with the result of Ref.@21#.

~2! Entropy of entanglement: E52Tr(rAlog2r
A), where

rA is Alice’s reduced density matrix. We end up with a tran-

FIG. 1. Single-copy entangling capacity and optimal initial en-
tanglement for a general two-qubit unitary of the form of Eq.~3!
when no ancillas are allowed. Crosses show the entangling capacity
and diamonds show the minimum initial entanglement of a state
that achieves the capacity.
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scendental equation inu, which can be optimized numeri-
cally for eacha11a2. For results see Fig. 1.

~3! Linearized entropy: R512Tr@(rA)2#. We find that
ECR5sin@2(a11a2)#.

C. Ancillas

Next we consider whether adding ancillas can increase the
entangling capacity. We have not yet solved this problem
analytically; but we present some numerical optimizations,
using entropy of entanglement as the measure. Specifically,
we use the following definition of entangling capacity when
ancillas are present:

ECE5 max
uc&PHAA8BB8

„S$TrBB8@UABuc&^cuUAB
† #%

2S@TrBB8~ uc&^cu!#…, ~26!

whereHA (HB) is the Hilbert space of the qubit that Alice
~Bob! acts on with UAB and HA8 (HB8) is a finite-
dimensional ancillary Hilbert space for Alice~Bob!. Only
pure states over the Hilbert spaceHAA8BB85HA^ HA8^ HB
^ HB8 need to be considered because the argument of Sec.
III A implies that they are optimal.

Note that, here we are only concerned with the extent to
which interaction between Alice and Bob, represented by
UAB , can generate entanglement between Alice and Bob.
Thus, only the initial and final entanglements between Alice
and Bob are relevant and we do not count the entanglement
of Alice or Bob with their local ancillas as part of this en-
tanglement.

We chose three different families of operations:

~a! The controlled-NOT~CNOT! family eias1
A

^ s1
B
.

~b! The doubleCNOT ~DCNOT! family eia(s1
A

^ s1
B

1s2
A

^ s2
B).

~c! The SWAP family eia(s1
A

^ s1
B

1s2
A

^ s2
B

1s3
A

^ s3
B).

The families are so named because settinga5p/4 gives
operations that are locally equivalent to theCNOT, DCNOT,
andSWAP operations.

The simulations were run with both one and two ancillary
qubits on each side~i.e., with dimension 2 and 4 forHA8 and

HB8). Adding one ancillary qubit on each side increased the
entangling capacity for theDCNOT and SWAP families ~see
Figs. 2 and 3!, but there was no further increase on adding
more ancillary qubits. We conjecture that one ancillary qubit
on each side is the most general system required to optimize
single-copy entangling capacity. Note that, for everya, the
SWAPfamily has a higher entangling capacity than theDCNOT

family. This shows that the entangling capacity is generally a
function of all three parameters (a1 ,a2 ,a3) of the unitary,
in contrast to the case considered above where no ancillas are
allowed.

For theCNOT family, adding ancillas had no effect at all
~see Fig. 4!. In Ref. @21#, the entangling capacity for the
CNOT family starting from a product state with ancillas
was found to be H(cos2a)52cos2(a)log2@cos2(a)#
2sin2(a)log2@sin2(a)#. No ancillas were required to achieve
this capacity. Our results exceed this capacity, which demon-
strates that allowing initial entanglement can still increase
the entangling capacity even if ancillas are present.

FIG. 2. Single-copy entangling capacity for theDCNOT family.
Crosses are for no ancillas and diamonds are for one ancilla on each
side.

FIG. 3. Single-copy entangling capacity for the SWAP family.
Crosses are for no ancillas and diamonds are for one ancilla on each
side.

FIG. 4. Single-copy entangling capacity for theCNOT family.
Crosses are for no ancillas, diamonds are for one ancilla on each
side, and the line shows the equivalent result when the starting state
is restricted to be a product between Alice and Bob.
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IV. COLLECTIVE PROCESSING

We now turn to the question of whether the entangling
capacity is increased by applyingn copies of a unitary op-
eration to pairs of qubits in the most general initial state that
may be entangled and may contain ancillas. Then-copy en-
tangling capacity is then defined to be the optimal increase in
entanglement over Alice and Bob’s entire Hilbert space per
application of the unitary. In this definition, we again allow
Alice and Bob to have arbitrarily large, but finite-
dimensional, ancillary Hilbert spaces. We restrict our atten-
tion to the case where we have a pure state in the entire
Hilbert space at every stage of the protocol, but note that the
results also hold for the case where mixed states are allowed
@27,28#. In this setting, the unitaries may be applied simulta-
neously or one after another. Collective LOCC may be per-
formed on all the qubits between applications and each uni-
tary may be applied to arbitrarily chosen pairs of qubits.
However, all protocols of this form can be reduced to simpler
protocols, which yield the same amount of entanglement.

First, observe that applying unitaries simultaneously is
less general than applying them one after the other. Second,
because local unitary operations~e.g., localSWAP operations!
can be applied as part of the LOCC, all the unitaries can be
applied to the same pair of qubits. Thus the problem reduces
to a sequence of single-copy problems, where all the qubits
thatUAB does not act on can be regarded as ancillas. We can
do no better than if we have the optimal initial state for a
single-copy of UAB available before each application of
UAB . Thus, then-copy entangling capacity can be no greater
than the single-copy entangling capacity that can be obtained
when ancillas are present. Indeed, this maximum can easily
be achieved by acting withUAB on n completely separate
copies of the optimal single-copy input state, where each
separate state contains the necessary number of ancillas.

If initial entanglement is not available, then collective
processing can do better per use of the unitary, since we can
make use of the first few copies of the unitary to generate
entanglement, which can then be used to make a state with
optimal initial entanglement. This can then be used as the
starting state for the subsequent copies.

Protocols that start with initial entanglement can outper-
form protocols that start with product states for all finiten.
However, the asymptotic case, wheren→`, is more subtle
because the operations of entanglement distillation and dilu-
tion are available for the states. In the case where we start
with product states, we can use some of the first few opera-
tions to generate the entanglement required for the optimal

initial state. Then we can keep diluting the entanglement of
the states at each stage so that we always act on the best
initial state. The number of operations required for the first
stage of this protocol is fixed and finite, so asn→` we will
achieve the same entangling capacity as if we have started
with initial entanglement. This means that asymptotic entan-
gling capacity of a unitary starting with a product state is the
same as the capacity that would be obtained starting with
initial entanglement.

V. CONCLUSIONS

We have shown that for all finite number of copies of
UAB , initial entanglement is required to achieve the optimal
entangling capacity. If this initial entanglement and ancillas
are available, then collective processing does not help to
achieve this maximum.

Our results have implications for the asymptotic intercon-
vertibility of bipartite unitary operations. For example, it is
known that theCNOT gate and a singlet state are reversibly
interconvertible under LOCC. Thus, one can asymptotically
simulate the action ofnECE(UAB) CNOT gates usingn copies
of UAB and LOCC by generating entanglement and then dis-
tilling or diluting it to singlets. Further, it is impossible to
generate moreCNOT gates than this, since otherwise one
could generate more thanECE(UAB) e-bits per application of
UAB by first converting toCNOT gates and then using them to
generate singlet states. More generally, it is not known
whether an arbitrary unitary operation is reversibly intercon-
vertible with entangled states under LOCC@i.e., whether one
can asymptotically generaten copies ofUAB acting on an
arbitrary input state givennECE(UAB) e-bits#. However,
nECE(UAB) is a lower bound on how much entanglement is
needed to generate n copies of UAB . Also,
ECE(U1)/ECE(U2) is an upper bound on how many copies
of a bipartite unitaryU2 can be generated asymptotically per
application of another bipartite unitaryU1. Whether these
bounds can be achieved remains an open question.
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