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Optimal entanglement generation from quantum operations

M. S. Leifer} L. Henderson, and N. Linden
Department of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom
(Received 14 May 2002; published 13 January 2003

We consider how much entanglement can be produced by a nonlocal two-qubit unitary opérggierthe
entangling capacityf U,z . For a single application dfl 5, with no ancillas, we find the entangling capacity
and show that it generally helps to act with,g on an entangled state. Allowing ancillas, we present numerical
results from which we can conclude, quite generally, that allowing initial entanglement typically increases the
optimal capacity in this case as well. Next, we show that allowing collective processing does not increase the
entangling capacity if initial entanglement is allowed.

DOI: 10.1103/PhysRevA.67.012306 PACS nuntber03.67—a

I. INTRODUCTION have been obtained on Hamiltonian simulatjsr-17], inter-
conversion of unitary operatiori48,19, entanglement gen-

The fundamental resource used in many quantum inforeration[20—-23, and generating operations from entangled
mation protocols, such as cryptography and teleportation, istates24—26. Most of these results have focused on proto-
the entanglement in a quantum state. A major theme of incols involving a single application of the operation and little
vestigation in quantum information theory is the analysis ands known about the multiple-copy and asymptotic cases.
characterization of entanglement properties of quantum In this paper, we focus on the problem of entanglement
states under local operations and classical communicatiogeneration for two-qubit unitary operations acting on pure
(LOCC). One issue is how to extract the entanglement in tates. Suppose that Alice and Bob share a $taten their
quantum state. The simplest protocols involve taking a singléombined Hilbert spac{,®Hg and that they are able to
copy of the quantum state and using LOCC to extract thémplement an operatiok/ ,ge U(4) on any nonlocal two-
entanglemenitl]. An important realization is that, in general, qubit subspace. They would like to maximize the amount of
collective processingi.e. processing more than one copy of entanglement that they generate per applicatiol gf. We
the state at a timeis more efficient than individual-copy call this maximum the entangling capac#€g of Ug. For
processing. Indeed, for mixed sta{€s, there are examples single applications oll 55, the entangling capacity is given
where no entanglement can be extracted at all if one only hady
one copy, but collective processing does allow extraction of
entanglement. The fact thasymptoticcollective processing ECe(Uap) =MaX ) c 1,03, E(Uasl ) —E([¥))], (1)

(i.e., processing of infinitely many copjes necessary for
the reversibleextraction of entanglement is a key building whereE is an entanglement measure adgg acts on one
block in the general theory of entangleméa4]. qubit in H, and one inHg.

The fundamental resource used in quantum control theory In Sec. I, we review the useful decomposition of two-
and quantum computing is a nonlocal quantum operationgubit unitaries which was introduced in Ref6,21]. Section
such as an interaction Hamiltonian or a unitary gate. Thesdl of the paper concerns the single-copy entangling capacity.
can be used, along with local actions, to perform the steps dh Sec. Ill A, we review an argument due to Reffg27,2§
guantum algorithms and to generate entangled states. Cotiat shows that the single-copy entangling capacity can be
versely, an entangled state and LOCC can be used to applyazhieved whetJ 45 is only allowed to act on pure states. We
nonlocal operation to an arbitrary state, enabling distributedhen extend this argument to show that pure states can still be
guantum processing. used if the entangling capacity is to be achieved using the

Just as for quantum states, it is important to find ways ofminimal amount of initial entanglement. In Sec. Ill B and
classifying and quantifying the nonlocal properties of opera-Sec. Ill C, we show how much entanglement can be created
tions. There is a multitude of inter-related problems hereby a single use of a quantum operation when we allow Alice
Indeed, there seems to be an even richer structure in the caard Bob to share initial entanglement; this work extends Ref.
of quantum operations than there is for states. For exampl¢21] where the authors considered entangling capacities of
one can consider how much entanglement an operation camitaries but did not allow initial entanglement; it also ex-
generate, how much classical communication the operatiotends Ref[20], which allowed initial entanglement but only
can perform, or the power of the operation to simulate otheunitary transformations infinitesimally close to the identity
operations. As with states, we may restrict ourselves to &.e., Hamiltonians In the case where ancillas are not al-
single application of an operation or we may process muliowed (Sec. lll B), we are able to derive analytic results
tiple copies collectively. about the entangling capacities of unitaries. We find that it

This area has attracted much interest recently and resultgenerally helps to start with an entangled state, although this

is dependent on the entanglement measure. Section Il C
concerns the case where we allow ancillas; we mostly de-
*Email address: Matt.Leifer@bristol.ac.uk scribe numerical results here, however these numerical re-
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sults allow us to conclude, quite generally, that allowing ini- i

tial entanglement can increase the entangling capacity even |P3)=—(|01)+|10)),
when ancillas are available. V2
The final part of this papefSec. IV) concerns collective (5)
processing of quantum operations. As described above, col- 1
lective processing is a key idea in understanding entangle- |P4)= E(|01>_|10>)-

ment properties of quantum states. Our main result, essen-

tially that collective processing of quantum operations doe§n Ref. [21], an explicit method is given for calculating

not help in generating quantum entanglement, is in stark con- . .
trast to the situation for processing of quantum states. Wg gé\i)An,IVE?r;\t/Z/r\e,s?eng\i/th:]Oer 32?; unltatLyé T(?IY(\;%?, ?}gﬁﬁo\’ée
conclude with a discussion of the implications of these e an besijsed 5. 9

sults for the interconvertibility of quantum operations and |

the classification of their entanglement properties. First, we define

D:O'2®O'2UTO'2®O'2, (6)
II. DECOMPOSITION OF TWO-QUBIT UNITARY

OPERATORS whereT indicates the transpose in the computational basis.

The entanglement properties of a unitary operation ard he eigenvalues U are local invariants ob, equivalent
invariant under local unitary operations applied before oft@ those found in Refl29]. From, Eq.(3) one can see that

after the operation. This gives a notion of local equivalencdn€se invariants are in fact squares of the eigenvaluk; of
of operations Thus, solving Eq(4) gives the unique decomposition.

Upp~Ulg iff Usg=Va®VaUasWa®Wgs,  (2) lll. SINGLE-COPY ENTANGLING CAPACITY

A. Purity of states in the optimal protocol
whereV,,Vg, W, ,Wg are local unitaries acting on the sys-
tems indicated. In order to simplify our calculations, we
make use of the following decomposition of two-qubit uni-
tary operators. Any two-qubit unitary) g~ U ; Where

In this section we determine whether optimal protocols
can be found for generating entanglement using one applica-
tion of U,g, which only involve pure states at every stage.
We use an argument of Ref27,28 to establish that this is
the case. Further, we extend this argument to show that op-
timal pure state protocols can be found, which start with the
' 3) minimum possible amount of initial entanglement. Thus, all
the important details of the single-copy entangling capacity
of Ug can be established by considering pure states only.

Making a suitable definition of the entangling capacity
over mixed states is not quite as straightforward as the pure
state case. In particular, the choice of entanglement measure
for the initial and final states may be different. For the initial
state, it seems natural to use a measure of the minimum

3
- ; Ao B
Ug=ex Ijzl aj0; Q0]

ml4=a1=ay=|as3)=0 and 01,3 are the Pauli matrices.
SinceUy has the same entangling capacitylswe always
work with this form[31]. Note that the eigenvalues bf; are
given bye'*i, where

N=—ataxtas, average amount of entanglement required to generéite.it
the entanglement of formatipnHowever, for the final state
No=+ay—a,+as, it makes more sense to measure the maximum amount of

4) entanglement that can be extracted fronti.i., the distill-
able entanglemept
To make this more specific, consider an initial mixed state
po- Let po=2p;|4;)( ;| be the decomposition gy with
Na=—a1—ar,—as. minimal ensemble-average entanglement. To generate an en-
semble ofn states described by,, we may prepar¢¢j)

The corresponding eigenbasis is given by ®)) with probability p; and then discard the information about
=eM|®;) which is the Bell basis. For later convenience, weWhich state was prepared. As-, the amount of entangle-

choose the following phase convention: ment per state used in this procedure willlBgpo), where
E; is the entanglement of formation. The operatidgpg can

) then be applied to each state individually, yieldimgopies
)= __'(|00>_|11>), of the statep;=UagpoUhg. These states can then be dis-
V2 tilled to singlets by LOCC, and as— the yield of singlets
per copy ofp; will be D(p;), whereD is the distillable
entanglement. Note that, although this protocol involves col-
(]00) +|11)), lective processing of the states, the fact tag is applied to
2 each copy ofpy individually means that it can still be re-

)\3: + C(l+ ay— g3,

|q’2>:

ol -
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garded as a single-copy protocol with respect to the nonlocal

operation. AC?=Cf-Ch= 2 e”Mib
With this in mind, we define the mixed state single-copy

entangling capacity as

CE™=max, [D(p1) —Eq(po)]. (7)

=% (€2 M7 —1)b%py 2, (11)

whereC, is the initial concurrence an@; is the final con-
Then currence after applyinQy .
This can be optimized by imposing the normalization con-
dition =;|bj|>=1 with a Lagrange multiplier, 2, i.e., we

maximize
D(pl)—Ef<po>$Ef<p1>—Ef<po)$$ PiLEr(Ungl¥;)
_ 2i(N =N 2k 2 .

(51 UAe) — Exl 45)(ui )] (8) L=2 (0 —1)bjb} (2 b;bf 1)-

(12
<max, [Eq(Ungl ;) —Es(| #))]. Differentiating gives
9) L

——=2b;e? N> e 2Mbr2-2b; > bj?—2ubf =

This demonstrates that, for every mixed state, there is a pure = ! K K (19

state for which the action dl oz generates at least as much

entanglement. multiplying by b; and summing ovey gives
Next we show that any mixed state that achieves the en-

tangling capacity cannot be formed using less entanglement v 2 %2

than there is in a pure state that achieves the entangling ca- % (e )\k)—l)bj bi —,u; |bi|2:0' (14

pacity with minimal initial entanglement. Léts) be a pure '

state that achieves the entangling capacity with the minimalvhich yields

possible initial entanglement. Lptbe a mixed state that also A

achieves the entangling capacity. From E@.and (9) it is u=Ci—Cqp. (15

clear that the optimal decomposition @fmust be a mixture

of pure states that achieve the entangling capacity. Since th

is the optimal decomposition @f, E¢(p) is just the weighted

average of the entanglements of these pure states. Thus,

E+(p)=E(|1)) becausdy) has the minimal entanglement yheree, 5 are phases depending on all of thiés. One pos-
of any possible state in this ensemble. sible solution isb;=0. To find the other solutions we write
bj=p; el Where,Bl yj € R. These solutions must hayg
B. Single application with no ancillas 9&0 and so Eq(16) reduces to

We now determine the entangling capacity of two-qubit CZ—e? Mt aC—C2+e2 (T 9C,=0. (17
unitaries of the form of Eq(3) when no ancillas are allowed.
This depends on the entanglement measure we choose There are as many equatio(is’) as there are nonzein's.
optimize over. In Sec. Il B 1 we optimize over the square ofFor generic\;'s, we will show that at most two of these
concurrence and then in Sec. Il B2 we show how our re-equations can be satisfied simultaneously.
sults can be extended to other measures of entanglement.  First, consider the case when the optimal starting state has
Co=0. Then we have

%ubstituting Eqgs(15) and(11) into Eq. (13) gives
bje?*ie?"C;—b;e?“Co—Cfb¥ +CfbF =0,  (16)

1. Square of concurrence

—e2i\jtyjt )y =
One entanglement measure that is particularly convenient Cr(Cr—em™mn77)=0. (18

to optimize is the square of the concurrefgé], C, defined SinceC; is real and we are looking for the maximum, we

by must haveC;=1. This shows that it is only best to start in a
product state iU g can generate onebit of entanglement
C|p))=Kylo2® ool )], (100 when no ancillas are present. The conditions for this were
found in Ref.[21] to be

where|#*) is the state vector obtained by taking the com- ™ T

plex conjugates of the components |@f) in the computa- ayta= o and a;+ az< 4 (19)

tional basis. We can adapt an argument from R21] to

perform the optimization here. so here we will focus on the cases where E¢) is violated
Writing |4)=3b;|®;) gives and the optimal starting state must have nonZggo

012306-3
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Subtracting any two of Eq$17) gives 1 Lt ECR
SIN(Nj— Nt 7= 7o) Cr=€' 27X Msin( ;- 9,) Co. 0.8 L '
(20) ¢
This gives consistency conditions for the simultaneous solu- 0.6 o
tion of any pair of Eqs(17). In particular, sinceC; andC, *
are both real, we have that 041 o L
g
o4
2(e—n)—\j—\=nm, neZ (21) L
0.2‘ < O o

. . i - * o
For generic\j’s this condition cannot be satisfied for more + °00, N E
than one pair of equations in Eg4.7). Thus, at most two 0 02 04 36" “ s 0
b;’s can be nonzer§32]. This means that the optimal start- | o T o ' ’

ing state will always be in a subspace spanned by two of the

eigenvectors ofJ 5. We will choose the two eigenvectors FIG. 1. Single-copy entangling capacity and optimal initial en-

and the coefficients; that maximizeA C?. Reexpressing Eq. tanglement for a general two-qubit unitary of the form of E8).

(12) in terms of,BJ- Vi gives when no ancillas are allowed. Crosses show the entangling capacity
and diamonds show the minimum initial entanglement of a state

5 - . that achieves the capacity.
AC*=42, BTASIT2(y,= 70+ N~ Mdsinhe— )}

(22 . dE;
SIN(Nj =Nty — 7 Ct

2
Only one term in this sum can be nonzero, and for this term d(C?)
we may choosey;,yx so that AC*=487AF|sin(\c—\j)|.
This is maximized bys;=B,=1/y/2. Thus the entangling = 2N Msin(yj— y)Co—-. (24
capacity is given by d(Cg
ECcz=max | sin(A—\;)]. (23)  This gives the same consistency conditions as(&t).so we

still have that at most twd;’s can be nonzero. The only

Note that this is greater than the corresponding result oéxception is whemlE/d(C?)=1/C, which occurs when our
max - |sin(\—X\;)|* found in Ref.[21] when the starting entanglement measure is the concurrence itself. In this case,
state is restricted to be a product. This shows that when Egimilar methods show that the only consistent solutions are
(19 is violated, initial entanglement is always required toCy=0 and C,=1, meaning that the optimal starting state
achieve the optimal capacity when no ancillas are allowedmust always be a product.
There are two parameter regions where Etf) does not For all other entanglement measures we focus on the case
hold. wherea; + a,< m/4,a,+ az< /4. If we choose onlyp; and

(1) ay+ ax<wl4, ay+az<m/4. In this region, the maxi- b, to be nonzero for some choice p#k=1,2,3,4, then the
mum is given by making th¢=3k=4 term nonzero. We resulting optimalAE is always a function of the correspond-
find that £Cc2=siN2(a;+ay)] and the optimal starting ing \; and\, only. In fact, it must be the same function)of
state is |¢)=(sin(a;+a)l2— m/8]|01) —icod(ay+@y)/2  and\, for all choices ofj andk. For all the measures con-
— m/8]|10)). This gives an optimal initial entanglement of sidered below, we found that the optimAE is always a
C§=3[1-sin2(+ay)]. monotonically increasing function ¢k;—\,| [33]. As with

(2) ay+ a>ml4, ay+ az>mw/4. In this region, the maxi- the square of concurrence, we choosejthedk that give the
mum is given by making thg=1k=4 term nonzero. We largest value of\;—\|, namely,j=3k=4. Thus, we can
find that€Cc2=sin2(ay+ a3)] and the optimal starting state write the optimal starting state in its Schmidt decomposition
S | ) = LN2(|@ 1)+ (T4 w2t a3| ) as

Note that the entangling capacity is always found to be a
function of a1+ a, or @, + a3, i.e., a sum of only two of the | )= cog 0)|01>+ei‘/’sin( 6)|10) (25)
parameters of the unitary. The value of the third parameter
does not affect the entangling capacity at all when no ancillag,q e simply have to optimizAE over the Schmidt pa-

are allowed. rameter 6 and relative phases. We found the following
results.

(1) Concurrence C=|[{if|o,®@0,|p*)|. As discussed

All bipartite entanglement measurel§, are monotonic above, this measure is unusual in that we must always start
functions of one another and in particular of the concurrencérom a product state. ThugCc=sin2(a;+ ay)], which co-
squaredi.e., E=E(C?)]. Generalizing the strategy of Eqgs. incides with the result of Ref21].
(11)—(20) to an arbitrary entanglement meastrby making (2) Entropy of entanglementE = — Tr(p”log,p”), where
use ofJE/db;= JE/J(C?)39(C?)/db; gives p” is Alice’s reduced density matrix. We end up with a tran-

2. Other entanglement measures

012306-4
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FIG. 2. Single-copy entangling capacity for thenot family. FIG. 3. Single-copy entangling capacity for the SWAP family.
Crosses are for no ancillas and diamonds are for one ancilla on ea€rosses are for no ancillas and diamonds are for one ancilla on each
side. side.

scendental equation i, which can be optimized numeri- . . . S
cally for eacha; + a,. For results see Fig. 1 ‘Hg/). Adding one ancillary qubit on each side increased the

(3) Linearized entropy R=1—Tr[(p?)2]. We find that eptangling capacity for thecnoT and SWAP families (see'

— i Figs. 2 and 3 but there was no further increase on adding
ECr=siN2(a;+ay)]. : _ . ; -
more ancillary qubits. We conjecture that one ancillary qubit
on each side is the most general system required to optimize
) _ _ ) single-copy entangling capacity. Note that, for evefythe

Next we consider whether adding ancillas can increase thgyap family has a higher entangling capacity than tieaioT
entangling capacity. We have not yet solved this problem iy This shows that the entangling capacity is generally a
analytically; but we present some numerical optimizations - ~ion of all three parametersy(,a,,as) of the unitary,

using entropy of _entangl_er_n_ent as the measure. Specificallyn contrast to the case considered above where no ancillas are

we use the following definition of entangling capacity when allowed

ancillas are present: For thecNoT family, adding ancillas had no effect at all
£Ce= max Trea U ut (see Fig. 4 In Ref. [21], the entangling capacity for the

8 (ST [Unel ) Uel} cNoT family starting from a product state with ancillas

was found to be H(coSa)=—cof(a)log[cos ()]

—S[Tree ([){¥DD), (260 —sirX(a)log,[sir?(a)]. No ancillas were required to achieve

. : . . this capacity. Our results exceed this capacity, which demon-
whereH, (Hg) is the Hilbert space of the qubit that Alice LU g
(Bob) acts on with Uss and Ha (Hg) is a finite- strates that allowing initial entanglement can still increase

dimensional ancillary Hilbert space for AlicéBob). Only the entangling capacity even if ancillas are present.
pure states over the Hilbert spatg s gg = Ha® Ha @ Hg

C. Ancillas

[y e Han'BB"

®Hg: need to be considered because the argument of Sec. ECgp
[l A implies that they are optimal. H
Note that, here we are only concerned with the extent to 0%
which interaction between Alice and Bob, represented by 0.8 &/
Uag, Can generate entanglement between Alice and Bob. ®*
Thus, only the initial and final entanglements between Alice 0.64 .
and Bob are relevant and we do not count the entanglement . &
of Alice or Bob with their local ancillas as part of this en- &
tanglement. 0.41 +
We chose three different families of operations: &
(a) The controlledNoT(cNOT) family e/ #1277, 027 & '
(b) The doublecNoT (DcNOT) family gla(ofeoi+oye0y) *
i ) A_ B, A_B, A_ B T T T T T T T
(c) The swap family e «(718 01+ 0;@05to5@03) 0 01 02 03 04 05 06 07
The families are so named because settirgm/4 gives @
operations that are locally equivalent to th®OT, DCNOT, FIG. 4. Single-copy entangling capacity for tloT family.
and SWAP operations. Crosses are for no ancillas, diamonds are for one ancilla on each

The simulations were run with both one and two ancillaryside, and the line shows the equivalent result when the starting state
qubits on each sid@.e., with dimension 2 and 4 fdr{,, and s restricted to be a product between Alice and Bob.

012306-5
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IV. COLLECTIVE PROCESSING initial state. Then we can keep diluting the entanglement of
the states at each stage so that we always act on the best
initial state. The number of operations required for the first
tstage of this protocol is fixed and finite, soras>o we will
achieve the same entangling capacity as if we have started

We now turn to the question of whether the entangling
capacity is increased by applyingcopies of a unitary op-
eration to pairs of qubits in the most general initial state tha

may _be entangleql and may contain ancﬂlas._'lﬁlrcm_py €N with initial entanglement. This means that asymptotic entan-
tangling capacity is then defined to be the optimal increase in

entanglement over Alice and Bob’s entire Hilbert space pe|g|mg capacity of a umtary starting with a prc_)duct statga 'S th_e
O . . o ! same as the capacity that would be obtained starting with
application of the unitary. In this definition, we again allow

Alice and Bob to have arbitrarily large, but finite- initial entanglement.
dimensional, ancillary Hilbert spaces. We restrict our atten-
tion to the case where we have a pure state in the entire

Hilbert space at every stage of the protocol, but note that the \we have shown that for all finite number of copies of
results also hold for the case where mixed states are allowad, . - initial entanglement is required to achieve the optimal
[27,28. In this setting, the unitaries may be applied simulta-entangling capacity. If this initial entanglement and ancillas
neously or one after another. Collective LOCC may be pergre available, then collective processing does not help to
formed on all the qubits between applications and each uniychieve this maximum.
tary may be applied to arbitrarily chosen pairs of qubits.  Qur results have implications for the asymptotic intercon-
However, all protocols of this form can be reduced to simpleRertibility of bipartite unitary operations. For example, it is
protocols, which yield the same amount of entanglement. known that thecNoT gate and a singlet state are reversibly

First, observe that applying unitaries simultaneously ispterconvertible under LOCC. Thus, one can asymptotically
less general than applying them one after the other. Secondyyylate the action afECe(U Ag) CNOT gates using) copies
because Ioc_al unitary operatiofesg., localswap operf_:ltionis of Ug and LOCC by generating entanglement and then dis-
can be applied as part of the LOCC, all the unitaries can bgjjing or diluting it to singlets. Further, it is impossible to
applied to the same pair of qubits. Thus the problem reduce&enerate morecNOT gates than this, since otherwise one
to a sequence of single-copy problems, where QII the qubitsy g generate more thdiCe(U »g) e-bits per application of
thatU 5 does not act on can be regarded as ancillas. We cap , . py first converting tacNoOT gates and then using them to
do no better than if we have the optimal initial state for Agenerate singlet states. More generally, it is not known
single-copy of U,g available before each application of \yhether an arbitrary unitary operation is reversibly intercon-
Uag. Thus, then-copy entangling capacity can be no greateryertiple with entangled states under LOQI®., whether one
than the single-copy entangling capacity that can be obtainegh, asymptotically generate copies ofU,g acting on an
when ancillas are present. Indeed, this maximum can eas”drbitrary input state givem&Cg(U,g) e-bits]. However,
be achieved by acting wit) s on n completely separate ec (U ,g) is a lower bound on how much entanglement is
copies of the optimal single-copy input state, where eachceded to generaten copies of Uag. Also,
separate state contains thg necessary number of ancilla}s. £Ce(U,)/ECL(U,) is an upper bound on how many copies

If |n|t_|al entanglement is not avallable,_ then _collectlve of a bipartite unitaryJ, can be generated asymptotically per
processing can do better per use of the unitary, since we Cathplication of another bipartite unitaty,. Whether these
make use of the first few copies of the unitary to generate(-?]oundS can be achieved remains an open question.

t
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