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ψ-Epistemic Models are Exponentially Bad at Explaining the Distinguishability
of Quantum States

M. S. Leifer*

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5
(Received 26 February 2014; published 25 April 2014)

The status of the quantum state is perhaps the most controversial issue in the foundations of quantum
theory. Is it an epistemic state (state of knowledge) or an ontic state (state of reality)? In realist models of
quantum theory, the epistemic view asserts that nonorthogonal quantum states correspond to overlapping
probability measures over the true ontic states. This naturally accounts for a large number of otherwise
puzzling quantum phenomena. For example, the indistinguishability of nonorthogonal states is explained
by the fact that the ontic state sometimes lies in the overlap region, in which case there is nothing in reality
that could distinguish the two states. For this to work, the amount of overlap of the probability measures
should be comparable to the indistinguishability of the quantum states. In this Letter, I exhibit a family of
states for which the ratio of these two quantities must be ≤ 2de−cd in Hilbert spaces of dimension d that
are divisible by 4. This implies that, for large Hilbert space dimension, the epistemic explanation of
indistinguishability becomes implausible at an exponential rate as the Hilbert space dimension increases.

DOI: 10.1103/PhysRevLett.112.160404 PACS numbers: 03.65.Ta, 03.65.Ud

The status of the quantum state is one of the most
controversial issues in the foundations of quantum theory.
Is it a state of knowledge (an epistemic state), or a state
of physical reality (an ontic state)? Many realist interpre-
tations of quantum theory employ ontic quantum states,
but the rise of quantum information science has revived
interest in the epistemic alternative because many of the
puzzling phenomena employed in quantum information
are explained quite naturally in terms of epistemic quantum
states [1]. For example, consider the fact that two non-
orthogonal quantum states cannot be perfectly distin-
guished. On the ontic view, the two states represent
distinct arrangements of physical reality, so it is puzzling
that this distinctness cannot be detected. However, on the
epistemic view, a quantum state is represented by a
probability measure over the physical properties of a
system and nonorthogonal states correspond to overlapping
probability measures. Indistinguishability is thus explained
by the fact that preparations of the two quantum states
sometimes result in the same physical properties of the
system, in which case there is nothing existing in reality
that could distinguish them.
Recently, several theorems have been proved aiming to

show that the quantum state must be ontic [2–6]. These
have been proved within the ontological models framework
[7], which is a refinement of the hidden variable approach
used to prove earlier no-go results, such as Bell’s theorem
[8] and the Kochen-Specker theorem [9]. Each of these
theorems employs questionable auxiliary assumptions (see
Ref. [10] for a review of these theorems and the criticisms
of them). Without such assumptions, explicit counterex-
amples show that the epistemic view of quantum states can
be maintained [11,12].

Within the ontological models framework, a model is
ψ-ontic if the probability measures corresponding to every
pair of pure quantum states have zero overlap, and it is
ψ-epistemic otherwise. The recent no-go theorems aim to
show that models must be ψ-ontic and the counterexamples
show that, without auxiliary assumptions, ψ -epistemic
models exist. However, being ψ-epistemic is an extremely
permissive notion of what it means for the quantum state to
be epistemic, since any nonzero amount of overlap between
probability measures, however small, is enough to make a
model ψ -epistemic. On the other hand, the ψ-epistemic
explanation of indistinguishability requires that a signifi-
cant part of the indistinguishability of jψi and jϕi should be
accounted for by the overlap of the corresponding prob-
ability measures, which means that the overlap should be
comparable to a quantitative measure of the indistinguish-
ability of jψi and jϕi. For this reason, it is interesting to
bound the overlaps in ontological models, since this can be
done without auxiliary assumptions, and it may still render
ψ-epistemic explanations implausible.
Along these lines, Maroney showed that a measure of

the overlap of probability measures must be smaller than
jhϕjψij2 for some pairs of states in systems with Hilbert
space of dimension d ≥ 3 [13], which was later shown
to follow from Kochen-Specker contextuality [14,15].
Following this, Barrett et al. showed that the ratio of an
overlap measure derived from the variational distance to a
comparable measure of the indistinguishability of quantum
states must scale like 4=ðd − 1Þ in Hilbert spaces of
dimension d ≥ 4 [16]. In this Letter, I exhibit a family
of states in Hilbert space dimensions d that are divisible by
4 for which the same ratio must be ≤ de−cd, where c is a
positive constant. Hence, for large Hilbert space dimension,

PRL 112, 160404 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

25 APRIL 2014

0031-9007=14=112(16)=160404(4) 160404-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.160404
http://dx.doi.org/10.1103/PhysRevLett.112.160404
http://dx.doi.org/10.1103/PhysRevLett.112.160404
http://dx.doi.org/10.1103/PhysRevLett.112.160404


the ψ-epistemic explanation of indistinguishability bec-
omes increasingly implausible at an exponential rate as the
Hilbert space dimension increases.
We are interested in ontological models that reproduce

the quantum predictions for prepare-and-measure experi-
ments made on a system with Hilbert space Cd, with no
time evolution between preparation and measurement.
An ontological model for this set of experiments is an

attempt to explain the quantum predictions in terms of
some real physical properties—denoted λ and called ontic
states—that exist independently of the experimenter. The
set of ontic states is denoted Λ and we assume that it is a
measurable space (Λ, Σ) with σ-algebra Σ. When the
experimenter prepares a state jψi, the preparation device
might not fully control the ontic state, so jψi is associated
with a probability measure μψ∶ Σ → ½0; 1�. In general, the
probability measure should be associated with the method
of preparing jψi rather than with jψi itself because different
preparation procedures for the same state may result in
different probability measures. This phenomenon is known
as preparation contextuality and it must occur for mixed
states [17]. This complication does not affect the results
presented here as the bounds derived apply equally well to
any of the measures that can represent a preparation of jψi.
Similarly, measurements might not reveal the value of λ

exactly, so each element jai of an orthonormal basis
M ¼ fjai; jbi;…g is associated with a positive measurable
response function ξMðajλÞ, where ξMðajλÞ is the probability
of obtaining the outcome jai when the measurement in the
basisM is performed on the system and the ontic state is λ.
Note that the response functions are allowed to depend on
M to account for contextuality.Additionally, in order to form
a well-defined probability distribution over the measure-
ment outcomes, the response functions must satisfy

X
jai∈M

ξMðajλÞ ¼ 1: (1)

Finally, the ontological model is required to reproduce the
quantum predictions, which means that, for all pure states
jψi, all orthonormal bases M, and all jai ∈ M,

Z
Λ
ξMðajλÞdμψ ¼ jhajψij2: (2)

It will prove useful to define the sets of ontic states

Γa
M ¼ fλjξMðajλÞ ¼ 1g; (3)

which always yield the outcome jaiwith certainty when the
measurement M is performed, and to note that, by Eq. (1),
Γa
M and Γb

M are disjoint for jai ≠ jbi. Further, Eq. (2)
implies

Z
Λ
ξMðψ jλÞdμψ ¼ jhψ jψij2 ¼ 1; (4)

and in order to satisfy this ξMðψ jλÞ must be equal to one
on a set that is measure one according to μψ . By definition,
this must be a subset of Γψ

M, so we also have μψðΓψ
MÞ ¼ 1

for any jψi ∈ Cd and any basis M that contains jψi.
The goal of this work is to bound the overlap of

probability measures in an ontological model, and this
requires a quantitative measure. For this purpose, define the
classical distance DC between two quantum states in an
ontological model to be the variational distance between
the probability measures that represent them, i.e.,

DCðψ ;ϕÞ ¼ sup
Γ∈Σ

½μψ ðΓÞ − μϕðΓÞ�: (5)

This measure has the following operational interpretation.
Suppose a system is prepared either in the state jψi or the
state jϕi with equal a priori probability. If you are told
the exact value of λ then your optimal success probability
of guessing which state was prepared is 1

2
½1þDCðψ ;ϕÞ�.

When DCðψ ;ϕÞ ¼ 1, the ontic state λ effectively deter-
mines which quantum state was prepared uniquely, so the
states have no overlap at the ontic level. Smaller values of
DC indicate a larger amount of overlap of the probability
measures. For this reason, it is more convenient to work
with the quantity

LCðψ ;ϕÞ ¼ 1 −DCðψ ;ϕÞ ¼ inf
Γ∈Σ

½μψ ðΓÞ þ μϕðΛnΓÞ�; (6)

which is called the classical overlap.
It is important to compare this quantity with a measure of

the indistinguishability of quantum states that has an ana-
logous interpretation, so that we are comparing like with
like. Therefore, consider the trace distance DQ between
quantum states, which, for pure states, is given by

DQðψ ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhϕjψij2

q
: (7)

The operational interpretation of this quantity is the same
as that of DC except that now, instead of being told the
ontic state λ, you must base your guess as to which state
was prepared on the outcome of a quantum measurement.
In this case, 1

2
½1þDQðψ ;ϕÞ� is your optimal success

probability for guessing which of jψi or jϕi was prepared.
It is again more convenient to work with the quantity

LQðψ ;ϕÞ ¼ 1 −DQðψ ;ϕÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhϕjψij2

q
; (8)

which is called the quantum overlap.
In general, LCðψ ;ϕÞ ≤ LQðψ ;ϕÞ. This is because the

response functions representing measurements provide
only coarse-grained information about λ, so even the
optimal quantum measurement may render jψi and jϕi
less distinguishable than they would be if you knew λ
exactly. Naively, one might expect that the ψ-epistemic
explanation of quantum indistinguishability requires that
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LQðψ ;ϕÞ ¼ LCðψ ;ϕÞ, since then the indistinguishability
of jψi and jϕi would be entirely accounted for by the
classical indistinguishability of μψ and μϕ. However, a
certain amount of coarse graining of measurements should
be expected in an ontological model. For example, if the
theory is deterministic, i.e., if λ determines the outcomes of
all measurements uniquely, then quantum measurements
must only reveal coarse grained information about λ on
pain of violating the uncertainty principle. Therefore, both
the overlap of probability measures and the coarse-grained
nature of measurements play a role in explaining quantum
indistinguishability, and one should expect a balance bet-
ween these two effects in a viable ψ -epistemic theory. It is
only if LCðψ ;ϕÞ ≪ LQðψ ;ϕÞ that the ψ-epistemic explan-
ation is in trouble, since then the overlap plays almost
no role in explaining indistinguishability. For this reason,
the scaling of the ratio kðψ ;ϕÞ ¼ LCðψ ;ϕÞ=LQðψ ;ϕÞ, i.e.,
how quickly it tends to zero in Hilbert space dimension,
is of more interest than its precise value.
The following proposition is the main tool used to bound

the classical overlap.
Proposition 1: Let Γ ∈ Σ be a set that is measure one

according to μϕ. Then LCðψ ;ϕÞ ≤ μψ ðΓÞ.
Proof.— Since μϕðΓÞ ¼ 1, μϕðΛnΓÞ ¼ 0. Hence,

LCðψ ;ϕÞ¼ infΩ∈Σ½μψ ðΩÞ−μϕðΛnΩÞ�≤μψðΓÞ−μϕðΛnΓÞ¼
μψðΓÞ. ▪
A few more definitions are required before proving the

main results. Let V be a finite set of pure states in Cd. Its
orthogonality graphG ¼ ðV; EÞ has the states as its vertices
and there is an edge ðjai; jbiÞ ∈ E iff hajbi ¼ 0. For every
such edge, there exists an orthonormal basis M such that
jai; jbi ∈ M. A covering set M is a finite set of ortho-
normal bases such that, for every ðjai; jbiÞ ∈ E, there exists
an M ∈ M such that jai; jbi ∈ M. Finally, the independ-
ence number αðGÞ of a graph G ¼ ðV; EÞ is the cardinality
of the largest subsetU⊆V of vertices such that if u ∈ U and
ðu; vÞ ∈ E then v∉U; i.e., U contains no pairs of vertices
that are connected by an edge.

Theorem 2: Let V be a finite set of pure states in Cd and
let G ¼ ðV; EÞ be its orthogonality graph. Then, for any
pure state jψi ∈ Cd, in any ontological model,

X
jai∈V

LCðψ ; aÞ ≤ αðGÞ: (9)

Proof.— Let M be a covering set of bases. Then, for
jai ∈ V, define the sets Γa

M ¼ ∩fM∈M∥ai∈MgΓa
M. Now, Γa

M
is a measure one set according to μa because it is the
intersection of a finite collection of measure one sets.
Proposition 1 then implies that LCðψ ; aÞ ≤ μψðΓa

MÞ for any
jψi. Hence,Pjai∈VLCðψ ;aÞ≤

P
jai∈Vμψ ðΓa

MÞ. Now, let χa
be the indicator function of Γa

M, i.e., χaðλÞ ¼ 1 if λ ∈ Γa
M

and is zero otherwise. Then,

X
jai∈V

μψ ðΓa
MÞ ¼

X
jai∈V

Z
Λ
χaðλÞdμψ (10)

¼
Z
Λ

�X
jai∈V

χaðλÞ
�
dμψ (11)

≤ sup
λ∈Λ

�X
jai∈V

χaðλÞ
�
; (12)

where the last line follows from convexity. The last line is
upper bounded by the maximum number of sets Γa

M that
any given λ can be in as jai varies over V. However, Γa

M
and Γb

M are disjoint whenever ðjai; jbiÞ ∈ E because they
are subsets of Γa

M and Γa
M for some basis M and the latter

are disjoint. Therefore, λ can only be in one of Γa
M or Γb

M
whenever jai and jbi are connected by an edge in the
orthogonality graph. Therefore, the maximum number of
such sets that λ can be in is upper bounded by the
independence number of G. ▪
Readers familiar with the literature on noncontextuality

inequalities will note a similarity between theorem 2 and
a result of [18,19], which shows that the maximal non-
contextual value of a class of noncontextuality inequalities
is bounded by the independence number of the orthogon-
ality graph. This is not accidental as, up to the removal of
measure zero sets, a model is Kochen-Specker noncontex-
tual if and only if

R
Λ ξMðajλÞdμψ ¼ μψ ðΓa

MÞ, where now
M is the set of measurement bases involved in the
noncontextuality inequality [10]. Thus, in a noncontextual
model μψðΓa

MÞ is the total probability of obtaining outcome
jai when measuring a system prepared in the state jψi, so
the sum of such probabilities is bounded in the same way.
Corollary 3: Let V be a finite set of pure states inCd and

let G ¼ ðV; EÞ be its orthogonality graph. For any pure
state jψi ∈ Cd let

k̄ðψÞ ¼ 1

jVj
X
jai∈V

LCðψ ; aÞ
LQðψ ; aÞ

; (13)

be the average ratio of classical to quantum overlaps in an
ontological model. Then,

k̄ðψÞ ≤ 2αðGÞ
jVjminjαi∈V jhajψij2

; (14)

where αðGÞ is the independence number of G.
Proof.— For 0 ≤ x ≤ 1, note that 1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
≥ x=2,

and, hence, LQðψ ;ϕÞ ≥ 1
2
jhψ jϕij2. Thus,

k̄ðψÞ ≤ 2

jVj
X
jai∈V

LCðψ ; aÞ
jhϕjaij2 ≤

2
P

jai∈VLCðψ ; aÞ
jVjminjai∈V jhajψij2

:

The result then follows from Theorem 2. ▪
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Theorem 4: When d is divisible by 4, there exists a set of
pure states V in Cd and a state jψi ∈ Cd such that, in any
ontological model,

k̄ðψÞ ¼
X
jai∈V

LCðψ ; aÞ
LQðψ ; aÞ

≤ de−cd; (15)

where c is a positive constant.
Proof.— The construction is based on the Hadamard

states and the Frankl-Rödl theorem, which are commonly
used in quantum information theory (see, e.g., [20–22]).
Let V be the set of Hadamard states, i.e., the set of

vectors of the form 1=
ffiffiffi
d

p ð�1;�1;…;�1ÞT and let
jψi ¼ ð1; 0; 0;…; 0ÞT . There are 2d vectors in V and each
vector jai ∈ V satisfies jhajψij2 ¼ 1=d, so this is also the
minimum. The orthogonality graph G ¼ ðV; EÞ of V is
known in the literature as a Hadamard graph [22]. It follows
from the Frankl-Rödl theorem (theorem 1.11 in [23])
that, for d divisible by 4, there exists an ϵ > 0 such that
αðGÞ ≤ ð2 − ϵÞd and thus corollary 3 implies

k̄ðψÞ ≤ 2ð2 − ϵÞd
2d 1

d

¼ 2de−cd; (16)

where c ¼ ln 2 − lnð2 − ϵÞ is a positive constant. ▪
Remarks.—When d is not divisible by 4, the Hadamard

states of dimension ~d ¼ 4⌊d=4⌋ can be embedded in Cd

by setting the remaining components of the vectors to zero.
This yields k̄ðψÞ ≤ 2~de−c ~d for all Hilbert space dimensions.
Since k̄ðψÞ is an average over V, there must exist at least

one jai ∈ V such that kðψ ; aÞ ≤ k̄ðψÞ ≤ 2~de−c ~d. It is fairly
reasonable to assume that kðψ ; aÞ only depends on
jhajψij2, in which case the bound kðψ ; aÞ ≤ 2~de−c ~d would
apply to all jai ∈ V, since jhajψij2 ¼ 1=d is the same for
the states used in this construction.
Conclusions.—In this Letter, I have exhibited a family of

states for which the ratio of classical to quantum overlaps
must be ≤ 2e−cd in Hilbert space dimensions d that are
divisible by 4, and where c is a positive constant. This
represents an exponential improvement in asymptotic
scaling over the previous result of 4=ðd − 1Þ [16]. This
presents a severe problem for the ψ-epistemic explanation
of quantum indistinguishability, as the portion of the
indistinguishability that can be accounted for by the overlap
of probability measures decreases rapidly in large Hilbert
space dimension. It would be interesting to further pin
down the value of c to see which result gives the best bound
for small Hilbert space dimension, for which the results
may be amenable to experimental test. Similarly, the
connection to contextuality could be further exploited to
derive additional bounds.
Finally, Montina has derived an upper bound on the

classical communication complexity of simulating a qubit

identity channel using the existence of a ψ -epistemic
ontological model for d ¼ 2 [24]. It would be interesting
to determine if lower bounds on this task in higher
dimensions could be derived from overlap bounds.
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