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Abstract. We investigate the concept of entropy in probabilistic theories
more general than quantum mechanics, with particular reference to the
notion of information causality (IC) recently proposed by Pawlowski
et al (2009 arXiv:0905.2292). We consider two entropic quantities, which we
term measurement and mixing entropy. In the context of classical and quantum
theory, these coincide, being given by the Shannon and von Neumann entropies,
respectively; in general, however, they are very different. In particular, while
measurement entropy is easily seen to be concave, mixing entropy need not be.
In fact, as we show, mixing entropy is not concave whenever the state space
is a non-simplicial polytope. Thus, the condition that measurement and mixing
entropies coincide is a strong constraint on possible theories. We call theories
with this property monoentropic.

Measurement entropy is subadditive, but not in general strongly subadditive.
Equivalently, if we define the mutual information between two systems A and B

6 Author to whom any correspondence should be addressed.
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by the usual formula I (A : B)= H(A) + H(B)− H(AB), where H denotes the
measurement entropy and AB is a non-signaling composite of A and B, then
it can happen that I (A : BC) < I (A : B). This is relevant to IC in the sense of
Pawlowski et al: we show that any monoentropic non-signaling theory in which
measurement entropy is strongly subadditive, and also satisfies a version of the
Holevo bound, is informationally causal, and on the other hand we observe that
Popescu–Rohrlich boxes, which violate IC, also violate strong subadditivity. We
also explore the interplay between measurement and mixing entropy and various
natural conditions on theories that arise in quantum axiomatics.
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1. Introduction

One can view quantum mechanics as an extension of the classical probability calculus, allowing
for random variables that are not simultaneously measurable. In order to gain a clearer
understanding of quantum theory from this perspective, it is useful to contrast it with various
(factitious) alternatives that are neither classical nor quantum. The best-known example of such
a ‘foil’ probabilistic theory is probably the theory of ‘non-local boxes’ [1, 28, 29]; but in fact,
there is a standard mathematical framework for such theories, going back to the work of Mackey
in the 1950s [26]. Working in this framework, one can show that many phenomena commonly
regarded as characteristically quantum—no-cloning and no-broadcasting theorems [2, 3], the
trade-off between state disturbance and measurement [1], and the existence and basic properties
of entangled states [1, 2, 23, 24]—are actually quite generic features of all non-classical
probabilistic theories satisfying a basic ‘non-signaling’ constraint. Other quantum phenomena,
such as the possibility of teleportation [4] or remote steering of ensembles [6], are more special
(and in some sense, more classical), but can still be seen to arise outside the boundaries of
quantum theory.
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One might hope to find some reasonably short list of probabilistic or information-theoretic
phenomena that more cleanly separate quantum theory from other possible non-signaling
theories. In a recent paper [27], Pawlowski et al take a step in this direction by showing
that any non-signaling correlation violating the Tsirel’son bound also violates a qualitative
information-theoretic principle they call information causality (IC). In essence, this prohibits
a form of ‘multiplexing’ in which one party (Bob) gains the ability to access a total of more
than m bits of information held by another party (Alice), on the basis of an m-bit message from
Alice, plus some shared non-signaling bipartite state. It is also established in [27] that quantum
mechanics—and hence also classical probability theory—satisfies this IC constraint.

In establishing that quantum mechanics satisfies IC, Pawlowski et al make use only of
standard formal properties of the von Neumann entropy of joint quantum states. This raises
the obvious question of where their proof breaks down in other contexts (e.g. a PR box) in
which IC fails. In order to address this question, we develop some of the basic machinery of
entropy, conditional entropy and mutual information in a very general probabilistic setting—an
independently interesting problem, which seems not to have received much previous attention
(an exception being the paper [20] of Hein).

We begin by identifying two notions of entropy, which we call measurement and mixing
entropy, and which we denote respectively by H(A) and S(A), where A is a general probabilistic
model. Briefly, the measurement entropy of a system is the minimum Shannon entropy of any
possible measurement thereon, whereas the mixing entropy is the infimum of the Shannon
entropies of the various ways of preparing the system’s state as a mixture of pure states.
These coincide classically and in quantum theory, but are generally quite different animals.
For example, measurement entropy is always subadditive, and is concave; mixing entropy is
generally neither. In fact, in appendix A, we show that there are always violations of concavity
of the mixing entropy for any system with a state space that is a non-simplicial polytope. Thus,
the condition that mixing and measurement entropies do coincide, as in quantum mechanics, is
a powerful constraint on the structure of a probabilistic theory. We call theories with this feature
monoentropic.

Next, we develop an account of joint measurement entropy, conditional entropy and mutual
information for composite systems, and apply this apparatus to the notion of IC given in [27].
Somewhat surprisingly, it seems that the main issue is not so much one of the strength of
non-local correlations, but rather the failure of two other, very basic principles. One is the
strong subadditivity or, equivalently, the condition that the mutual information, defined by
I (A : B)= H(A) + H(B)− H(AB), satisfy

I (A : BC)> I (A : C).

This holds both classically and in quantum theory, but is violated in very simple non-classical
models—even models in which A and B are classical, so that no issue of non-locality can arise.
Another basic principle, equivalent to the Holevo bound, is that I (E : B)6 I (A : B), where E
is any particular measurement on system A.

Both strong subadditivity and the Holevo bound can be viewed as special cases of an even
more basic principle, usually called the data processing inequality (DPI). This asserts that, for
any systems A, B and B ′ and for any reasonable process E : B→ B ′, we have I (A : E(B))6
I (A : B) (where E(B) := B ′ is the output system of the process). This is intuitively appealing
as a basic physical postulate.
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Finally, we apply the apparatus just described to the notion of IC. We consider in detail
the basic example, due to van Dam [33], of an IC-violating composite system, and find that it
exhibits a violation of strong subadditivity. We also establish that, within a very broad class of
finite-dimensional monoentropic theories, strong subadditivity together with the Holevo bound
entail IC. It remains an open question whether all three of these conditions are necessary for
this conclusion.

The remainder of this paper is organized as follows. In section 2, we review in some detail
the framework of generalized probability theory, largely following [2]. In section 3, we define,
and establish some elementary properties of, measurement and mixing entropy for states of an
arbitrary probabilistic model. Section 4 discusses composite systems in our framework, and
collects some observations about the behavior of joint measurement entropy and the notion
of mutual information based on this. Using this apparatus, we establish in section 5 that any
monoentropic probabilistic theory in which measurement entropy is strongly subadditive and
satisfies the Holevo bound is informationally causal in the sense of [27]. We also point out that
violations of strong subadditivity are possible in theories having no entanglement. Section 6
collects some final remarks and open questions. Appendix A contains the proof that mixing
entropy is not concave on state spaces that are non-simplicial polytopes. Appendix B establishes
some further properties of monoentropic theories, relevant to axiomatic characterizations of
quantum theories, and also shows that monoentropicity follows from two other properties,
steering and pure conditioning, the physical content of which may be more transparent. Finally
in appendix C, we discuss how the framework of this paper relates to the ‘convex sets’
framework, and consider analogous definitions of measurement entropy in that context.

2. General probabilistic models

As mentioned above, there is a more-or-less standard mathematical framework for discussing
general probabilistic models, going back at least to the work of Mackey in the 1950s, and
further developed (or, in some cases, rediscovered) in succeeding decades by various authors
[1, 13, 15, 16, 18, 25]. In what follows, we work in the idiom of [8], which we briefly recall.

We characterize a probabilistic model, or, more briefly, a system, by a pair A = (A, �),
where A is a collection—possibly infinite—of discrete classical experiments or measurements
and � is a set of states. We make the following assumptions.

(i) Every experiment in A is defined by its set of possible outcomes, so that we may represent
A, mathematically, as a collection of sets E, F, . . .. In the language of [16, 35], this is a
test space; accordingly, we refer to the various sets E, F, . . . ∈ A as tests.

(ii) Every state is entirely determined by the probabilities it assigns to the outcomes of the
various measurements in A. Thus, letting X :=

⋃
A denote the total outcome space of A,

� consists of functions α : X→ [0, 1], with
∑

x∈E α(x)= 1 for every set E ∈ A.

(iii) The state space � is a convex subset of [0, 1]X (the functions from X to [0, 1]). Hence any
statistical mixture of states is a state.

For a given test space A, one can define the space of all states on A. This is called the
maximal state space and is denoted by �(A). It is clearly convex. The physical state space
� is necessarily either equal to or a subset of the maximal state space.

This framework, although very simple, is broad enough to accommodate both measure-
theoretic classical probability theory and non-commutative probability theory based on von
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Figure 1. The ‘two-bit’ test space A2 = {{a, a′}, {b, b′}}. It is depicted using
a Greechie diagram, wherein vertices denote outcomes and every smooth line
through a set of vertices represents a test.

Neumann algebras7. In this paper, we shall be interested exclusively in discrete, finite-
dimensional systems. Accordingly, from this point forward, we make the standing assumptions
that (i) A is locally finite, meaning that all tests E ∈ A are finite sets8, and (ii) � is finite
dimensional and closed.

As is easily checked, local finiteness guarantees that the maximal state space �(A) is
compact; thus, the closedness of the physical state space � ensures that it, too, is compact9. It
follows that every state can be represented as a finite convex combination, or mixture, of pure
states, that is, extreme points of �.

We now consider several examples. For us, a classical system corresponds to a pair
({E}, 1(E)), where the test space {E} consists of a single measurement and where 1(E)

denotes the entire simplex of probability weights on E . In other words, there is just one test, and
any probability distribution over the outcomes is a possible state. A quantum system corresponds
to (F(H), �(H)), where F(H) is the set of (unordered) orthonormal bases on a complex Hilbert
space H and �(H) is the set of density operators10.

A simple example that is neither classical nor quantum, and to which we shall refer often, is
the ‘two-bit’ test spaceA2 = {{a, a′}, {b, b′}}, consisting of a pair of two-outcome tests, depicted
in figure 1. The full state space �(A2) is isomorphic to the unit square [0, 1]2 under the map
α 7→ (α(a), α(b)) and is depicted in figure 2. Accordingly, we shall call a system of this form a
square bit or squit. A PR box is a particular entangled state of two squits, as discussed below in
section 5.1.

3. Measurement and mixing entropies

Let H be a finite-dimensional Hilbert space, representing a quantum system. The von Neumann
entropy of a state ρ on this system is defined as −Tr(ρ log ρ), where here and elsewhere,
logarithms have base 2. Equivalently, it is the Shannon entropy of the coefficients λi in the

7 Measure-theoretic classical probability theory is, in effect, the theory of systems of the form (D, 2), where
D=D(S, 6) is the set of all finite (respectively, countable) partitions E = {ai } of a measurable space S by non-
empty measurable sets ai ∈6, and 2 is some closed convex set of probability measures on E . The probabilistic
apparatus of states and observables associated with von Neumann algebras can be modeled in a similar way.
8 Alternatively, this condition could be derived from some other mild conditions on test spaces, as discussed in
appendix B.
9 By Shultz [31], any compact convex set can be represented as the full state space �(A) of some locally finite
test space A.
10 To be a bit more precise, a quantum state is the quadratic form associated with a density operator. We shall
routinely identify a density operator ρ with its quadratic form, writing ρ(x) for 〈ρx, x〉 where x is a unit
vector on H.
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Figure 2. The squit state space �(A2). The pure state α1 yields the outcome
a in test {a, a′} and the outcome b in {b, b′}, that is, α1(a)= 1, α1(a′)= 0 and
α1(b)= 1, α1(b′)= 0. Similarly, α2, α3 and α4 yield the pairs of outcomes a, b′,
a′, b and a′, b′, respectively.

spectral decomposition ρ =
∑

i λi Pi (where the Pi are ρ’s rank-one eigenprojections). In effect,
the spectral decomposition privileges a particular convex decomposition of the state, and (up
to phases) a privileged test in F(H). In our much more general setting, where we have nothing
like a spectral theorem, how might we define the entropy of a state? The following definitions
suggest themselves.

Definition 1. Let α be a state on A. For each test E ∈ A, define the local measurement entropy
of α at E, HE(α), to be the classical (Shannon) entropy of α|E , i.e.

HE(α) :=−
∑
x∈E

α(x) log(α(x)).

The measurement entropy of α, H(α), is the infimum of HE(α) as E ranges over A, i.e.

H(α) := inf
E∈A

HE(α).

Note that the measurement entropy of a state of A = (A, �) depends entirely on the structure
of A, and is independent of the choice of state space �. It will often be convenient to write
H(α) as H(A), where context makes clear which state is being considered.

For the remainder of this paper, we make, and shall make free use of, the assumption that
the measurement entropy of a state is actually achieved on some test, i.e. that H(α)= HE(α) for
some E ∈ A. This is the case in quantum theory, and can be shown to hold much more generally,
given some rather weak analytic requirements on an abstract model (A, �)—for details, see
appendix B. It follows that H(α)= 0 if and only if there is a test such that α assigns probability 1
to one of its outcomes.

Definition 2. Let α be a state on A. The mixing (or preparation) entropy for α, denoted
S(α), is the infimum of the classical (Shannon) entropy H(p1, . . . , pn) over all finite convex
decompositions α =

∑
i piαi with αi pure.

Again, we write S(A) for S(α) where α belongs to the state space � of a system
A = (A, �). In contrast to measurement entropy, the mixing entropy of a state depends only
on the geometry of the state space �, and is independent of the choice of test space A. The
mixing entropy is essentially the same as the entropy defined for elements of compact convex
sets by Uhlmann [34]. The mixing entropy of a pure state is 0.

Trivially, in classical probability theory, measurement and mixing entropies coincide, both
being simply the Shannon entropy. Much less trivially, measurement and mixing entropies also
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Figure 3. The Greechie diagram for the test space of the firefly model.

coincide in quantum theory, where they equal the von Neumann entropy11. As the following
example shows, however, measurement and mixing entropies can be quite different.

Example 1. (The firefly model12). Let A= {{a, x, b}, {b, y, c}, {c, z, a}}. This test space is
depicted in figure 3. One can check that �(A) has five pure states, one of which is given by
α(a)= α(b)= α(c)= 1/2, α(x)= α(y)= α(z)= 0: since this is pure, S(α)=0, yet H(α)=1.
On the other hand, consider the pure states β and γ determined by β(b)= β(z)= 1 and
γ (x)= γ (y)= γ (z)= 1: their average ω := 1/2β + 1/2γ has mixing entropy S(ω)= 1. This
follows from the fact that the only convex decomposition of ω into pure states is into β and γ ,
which in turn follows from the fact that these are the only pure states that assign probability one
to z. On the other hand, ω(z)= 1, so H(ω)= 0.

Even in the general case, measurement entropy is quite well behaved. For example, it is
easy to see that H(α) is continuous as a function of α. Further, we have the following theorem.

Theorem 1. Measurement entropy is concave, i.e. if
∑

i tiαi is a convex combination of states
αi on A, then

H

(∑
i

tiαi

)
>
∑

i

ti H(αi). (1)

Proof. Since for each test E the local entropy HE is concave,

H

(∑
i

tiαi

)
= inf

E
HE

(∑
i

tiαi

)
> inf

∑
i

ti HE(αi)>
∑

i

ti H(αi).

ut

Mixing entropy is, by contrast, a curious beast. The following example shows that it need
not be continuous as a function of the state.
11 A proof that the von Neumann entropy minimizes mixing entropy can be found in [14]. The key observation
is that the mixing coefficients for any ensemble for ρ can be obtained from the eigenvalues of ρ by a doubly
stochastic matrix (Schrödinger’s lemma), which can only increase entropy. An easier version of the same argument
(also noted by Hein [20]) shows that the spectral decomposition also minimizes measurement entropy.
12 This example, well known in the quantum-logical literature, has a fairly concrete interpretation in terms of a
firefly in a three-chambered triangular box. See [35] for details.
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Figure 4. Example of a state space � for which mixing entropy is not everywhere
continuous (see example 2).

Figure 5. Failure of concavity of mixing entropy for a squit.

Example 2. Let �⊆ R3 be the convex hull of the circle C = {(x, y, 0)|x2 + y2
= 1} and the line

segment I = {(1, 0, t)| − 16 t 6 1} (figure 4). Let α denote the point of intersection of I and C,
i.e. the point (1, 0, 0). The extreme points of this set are evidently the endpoints of I , together
with the points of C \ {α}. Note that α has a unique decomposition as a mixture of extreme
points of �, namely, as an equal mixture of the endpoints of I . Thus, S(α)= 1. On the other
hand, α can be approached as closely as we like by extreme points belonging to C \ {α}, which
have mixing entropy 0. The mixing entropy is therefore discontinuous at α.

Example 3. Let � be a square, as illustrated in figure 5. Let α and β be the midpoints
of adjacent faces, noting that these each have unit mixing entropy, S(α)= S(β)= 1. Let
γ = 1/2(α + β) be the midpoint of the line segment between α and β, and note that it also lies on
the line segment between antipodal vertices of � (the diagonal through the square between the
chosen faces). But given that γ is not at the midpoint of this diagonal, the Shannon entropy
for the associated convex decomposition is less than one, as is therefore the infimum over
convex decompositions. Therefore, the mixing entropy for γ satisfies S(γ ) < 1. Consequently,
S(γ ) < 1/2S(α) + 1/2S(β), and we have a failure of concavity of the mixing entropy.

In fact, the failure of concavity for the mixing entropy is quite generic.

Theorem 2. Mixing entropy is not concave whenever the state space � is a non-simplicial
polytope.

The proof is given in appendix A. It follows that an assumption of concavity for the mixing
entropy forces the state space to be either a simplex (i.e. classical) or not a polytope. Hence such
an assumption or one that implies it may be a useful tool in axiomatizing quantum theory.
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It is natural to ask what follows from the condition that, as in classical and quantum
theories, measurement and mixing entropy coincide. One immediate consequence is that mixing
entropy will be concave. In view of theorem 2, this implies that either the system is essentially
classical or there are an infinite number of pure states. Hence equality of measurement and
mixing entropies narrows down possible theories quite a lot. We discuss this matter further in
appendix B.

Both measurement and mixing entropies have been considered before, notably by
Uhlmann [34] (who considered preparation entropy) and by Hein [20] in a similar context, albeit
with somewhat different aims than ours in view. There are various other entropic quantities
one could reasonably consider. For example, a concept of entropy that might be more closely
related to operational tasks is the supremum, over convex decompositions of the state and over
tests, of the classical mutual information between the random variable specifying the element
of the convex decomposition, and the random outcome of the test. Natural analogues of this
quantity and of the measurement and preparation entropies defined above exist in the closely
related ordered linear spaces framework (also known as the convex sets framework) for theories.
Test space models such as we have defined above induce ordered linear spaces models by a
linearization procedure that embeds the test space in a vector space and identifies outcomes in
the test space with certain elements of the dual vector space; this procedure allows one to define
concepts of measurement entropy more tightly related to the geometry of the state space, but
that can usually be viewed as special cases of the test space definition. Appendix C gives a
further brief discussion of this.

From this point on, we focus mainly on measurement entropy. As always with
mathematical definitions, there is a certain tension between the ideals of flexibility and
generality, on the one hand, and the desire to avoid annoying pathologies, on the other. Our test-
space-dependent definition of measurement entropy definitely errs on the side of the former,
in that it is consistent with quite absurd examples. For example, if one includes in one’s test
space a test having a single outcome, then all states will automatically have zero entropy. One
can avoid such difficulties by placing various restrictions on the test spaces to be considered,
at the cost of a slightly more involved technical development. Going to the linearized setting
mentioned above may also help. Our work in this paper does not demand such fastidiousness,
however, as our results are of a very general character.

4. Composite systems and joint entropy

Most of the interesting problems of information theory involve more than one system. The
following subsection describes how to treat composite systems in the language of test spaces.
The idea is that, given systems A and B, the joint system AB should be associated with a test
space and state space of its own. However, there is not a unique recipe for determining test
and state spaces for AB given the test and state spaces for A and B. Instead, a theory must
give additional rules that specify how systems combine13. Our results will pertain to a variety
of notions of composition, although we limit the scope by requiring certain properties to hold.
In particular, we assume that the test space of the composite includes all product tests and

13 Quantum theory does just that: the rule is that the joint measurements and states correspond respectively to
maximal sets of pairwise orthogonal projections and density operators on the tensor product of the individual
Hilbert spaces.
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conditional two-stage tests (where one party’s choice of test is conditioned on the outcome of
the other party’s test). One motivation for this is to have a test space that is sufficiently rich
to be interesting. Another motivation is that this assumption guarantees that all states are non-
signaling. We go on to define analogues of familiar quantities, such as joint entropies and mutual
information, which are used later to analyze IC.

4.1. Composite systems

Consider two systems A and B, where A = (A, �A) and B = (B, �B). For convenience,
assume that these are controlled by two parties, called Alice and Bob. The first, and most basic,
assumption we shall make is that Alice can perform any test E ∈ A simultaneously with Bob
performing any test F ∈B. This can be regarded as a single product test. The possible outcomes
of this product test are pairs of the form (e, f ) ∈ E × F .

Definition 3. The Cartesian product of the test spaces A andB is the collection of all product
tests. It is denoted A×B.

The set �(A×B), of all states that can be defined on the Cartesian product test space,
typically includes signaling states, which allow Alice to send messages instantaneously to Bob,
or vice versa, by varying her choice of which test to perform.

Definition 4. A state ωAB on A×B is non-signaling iff∑
f ∈F

ωAB(e, f )=
∑
f ′∈F ′

ωAB(e, f ′) ∀e, F, F ′,

(2)∑
e∈E

ωAB(e, f )=
∑
e′∈E ′

ωAB(e′, f ) ∀ f, E, E ′.

If a state ωAB is non-signaling, it is possible to define the marginal (or reduced) state ωA via

ωA(e)=
∑
f ∈F

ω(e, f ), (3)

where equation (2) ensures that the right-hand side is independent of F ∈B. The marginal ωB

is defined similarly.
If ωAB is non-signaling, it is also possible to define a conditional state, ωB|e. Informally,

this is the updated state at Bob’s end following the outcome e being obtained for a test at
Alice’s end:

ωB|e( f ) := ωAB(e, f )/ωA(e).

By convention, ωB|e is zero if ωA(e) is zero. The conditional state ωA| f is defined similarly.
Note that a particular type of measurement, which might be thought reasonable, is not

included in the Cartesian product. This is a joint measurement, where Alice first measures her
system and then communicates the result to Bob, who performs a measurement that depends on
Alice’s outcome. Entangled measurements, such as are allowed in quantum theory, are also not
included. Hence the Cartesian product A×B models a situation in which Alice and Bob are
fairly limited—they can act independently and collate the results of their actions at a later time,
but cannot otherwise communicate.
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It is possible to construct a more sophisticated product of two test spaces, which does
allow for the kind of two-stage measurements just described (although still not entangled

measurements). Let
←→

AB denote the test space consisting of the following:

1. All two-stage tests, where a test E ∈ A is performed and then, depending on the outcome
e that is obtained, a pre-selected test Fe ∈B is performed.

2. All two-stage tests, where a test F ∈B is performed and then, depending on the outcome
f that is obtained, a pre-selected test E f ∈ A is performed.

←→

AB is called the Foulis–Randall or bilateral product of test spaces A andB.

The Foulis–Randall product contains the Cartesian product, A×B⊆
←→

AB, because
product tests are a special case of two-stage tests. Furthermore, if either A or B is non-classical,
then not all two-stage tests are product tests, so that the containment is strict. The containment
of one test space in another has consequences for their state spaces. Specifically, if X andY are
test spaces such that X⊆Y, then the convex set �(Y) may be in a higher dimensional space
than �(X), but the restrictions of states in �(Y) to X (which are well defined, because every
test in X is also a test in Y ) are all contained in �(X). In other words, writing �(Y)|X for
the set of restrictions to X of states on Y, we have �(Y)|X ⊆�(X). Because the additional
measurements in Y place additional constraints on these states, the containment may well be
strict.

It follows that the restriction of the maximal state space of the Foulis–Randall product to
the Cartesian product is contained within the maximal state space of the Cartesian product,

�(
←→

AB)|A×B ⊆�(A×B). The containment is strict if one of the systems is non-classical.

Indeed, the states in �(
←→

AB)|A×B correspond exactly to the non-signaling states in �(A×B).
This is demonstrated in [16]. See [5] and [37] for further examples and properties of the
Foulis–Randall product and related constructions.

We are now prepared to define the class of test and state spaces for composites in which
we shall be interested. The test space for the composite, which we denote by C, is required

to contain the Foulis–Randall product of the components,
←→

AB⊆ C. The state space of the
composite, which we denote by �AB , is unconstrained beyond being a subset of the maximal

state space, �AB
⊆�(C). Recalling that

←→

AB⊆ C implies �(C)|←→
AB
⊆�(

←→

AB) and that all the

states in �(
←→

AB) are non-signaling, it follows that all states in �AB are non-signaling. Indeed,

the main motivation for confining our attention to test spaces containing
←→

AB is that this is
sufficient to ensure no-signaling without any further constraints on the state space.

Given a state ωAB
∈�AB , the marginals ωA, ωB , and conditionals of the form ωA| f , ωB|e,

are defined in the obvious way by the probabilities that ωAB assigns to the product tests.
Furthermore, we assume that the composite systems we consider satisfy the following natural
requirement: that if a test is performed on system A, the conditional state on system B must
be allowed in the theory, i.e. be contained in �B , and vice versa. Hence �AB satisfies the
constraint that for all e and f such that ωA(e), ωB( f ) 6= 0, ωB|e and ωA| f belong to �B and
�A, respectively. This is enough to ensure that the marginal states ωA, ωB also belong to
the state spaces of the component systems.

A general composite test space C may contain non-product measurements, which are
not contained in the Foulis–Randall product. Quantum theory, for instance, has a test space
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for composites that is larger than the Foulis–Randall product. If A and B are quantum
systems, so that A = (F(H), �(H)) and B = (F(K), �(K)), then the quantum joint system is
AB := (F(H⊗K), �(H⊗K)), which is a composite in our sense and contains non-product
measurement outcomes, for instance entangled ones.

Henceforth, AB will stand for a general non-signaling composite of systems A and B. In
the particular case where A = ({E}, 1(E)) is a classical system, we always take C to be the

Foulis–Randall product
←→

{E}B. We also assume that composition of systems is associative, so
that for any three systems A, B and C , there is a natural isomorphism A(BC)' (AB)C .

In addition to specifying how systems combine, a probabilistic theory must specify
what sorts of systems are allowed. For instance, in finite-dimensional quantum theory, every
dimensionality of Hilbert space defines a different type of system and they are all allowed.
Furthermore, a classical system of arbitrary dimensionality (that is, arbitrary cardinality for the
test) can be defined within quantum theory as a restriction upon a quantum system of the same
dimensionality, so in this sense classical systems are allowed as well. A probabilistic theory
must specify the types of systems that are allowed and how these compose. We shall confine
our attention to theories incorporating only finite-dimensional systems, and those that contain,
for any finite set E , the classical system (E, 1(E)). (Thus, for us, quantum theory means finite-
dimensional quantum theory in conjunction with classical systems.) For a discussion of what
such theories might look like in category-theoretic terms, see [9, 10].

4.2. Joint entropies, conditional entropies and mutual information

Consider a composite system AB = (C, �AB). The measurement entropy H(ωAB) of a state
ωAB
∈�AB , which we will sometimes denote by H(AB), is the infimum over E ∈ C of

HE(ωAB). In this context, it will also be understood that H(A) and H(B) stand for the entropies
H(ωA) and H(ωB) of the marginal states ωA and ωB .

Theorem 3. Measurement entropy is subadditive. That is, for any composite AB,

H(AB)6 H(A) + H(B).

Proof. Let ω be the joint state of AB, with marginal states ωA and ωB . Choose E and F
with H(ωA)= HE(ωA) and H(ωB)= HF(ωB). By the definition of measurement entropy,
the definition of a composite and the subadditivity of Shannon entropy, we have H(AB)6
HE F(ω)6 HE(ωA) + HF(ωB)= H(A) + H(B). ut

Definition 5. The conditional measurement entropy between A and B is defined as

H(A|B) := H(AB)− H(B). (4)

Our notation here is less precise than it might be, because the joint entropy H(AB) depends on
the test space associated with the joint system, hence so do conditional entropies. We will try to
be clear, at any point where the question could arise, as to what product is in play.

Classically, given a joint distribution ωAB over variables A and B, one defines mutual
information by

I (A : B)= H(A) + H(B)− H(AB), (5)
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where H denotes the Shannon entropy. One can regard this as a measure of how far A and B
are from being independent: by subadditivity, I (A : B)> 0, with I (A : B)= 0 iff A and B are
independent, i.e. ωAB factorizes. In attempting to extend the concept of mutual information to
more general models, one might very naturally consider defining I (A : B) to be the maximum
of the mutual informations I (E : F) as E and F range over tests belonging to systems A
and B, respectively. However, the usual practice in quantum theory is simply to take equation
(5), with von Neumann entropies replacing Shannon entropies, as defining mutual information.
In general, this gives a different value. In order to facilitate comparison with quantum theory,
we shall adopt the following.

Definition 6. Let AB be a composite system. The measurement-entropy-based mutual
information between A and B is

I (A : B) := H(A) + H(B)− H(AB). (6)

With this definition, the subadditivity of measurement entropy (theorem 3) implies that
measurement-entropy-based mutual information is non-negative. Hereafter, we will refer to this
simply as ‘mutual information’. Note that equation (5) is a special case of this definition.

Now intuitively, one might expect that the mutual information I (A : B) between two
systems should not decrease if we recognize that B is a part of some larger composite system
BC , i.e. that I (A : B)6 I (A : BC). Simple algebraic manipulations (using equations (4) and
(6)) allow us to reformulate this condition in various ways.

Lemma 1. The following are equivalent:

(a) I (A : BC)> I (A : B),

(b) H(A|BC)6 H(A|B),

(c) H(A, B) + H(B, C)− H(B)6 H(A, B, C) and

(d) I (A : B|C)> 0, where I (A : B|C)= H(A|C) + H(B|C)− H(AB|C).

Definition 7. The measurement entropy is said to be strongly subadditive if it satisfies the
equivalent conditions (a)–(d).

(We use this terminology despite the fact that it is usually only condition (c) that goes by
the name of ‘strong subadditivity’ and despite the fact that conditions (a) and (d) constrain
the measurement entropy only through the definitions of I (A : BC) and I (A : B|C).) A
probabilistic theory in which conditions (a)–(d) are satisfied for all systems A, B and C will
also be called strongly subadditive.

Both the Shannon and von Neumann entropies are strongly subadditive. In the former
case, this is a straightforward exercise, but in the latter, a relatively deep fact. Colloquially,
this means that in classical and quantum theories, just forgetting about or discarding a system
C never increases one’s mutual information between systems A and B. As the following shows,
however, strong subadditivity can fail in general theories, even when two of the three systems
are classical. One potential gloss is that discarding or forgetting about system C can increase
the mutual information between systems A and B. But a more sensible reading is perhaps that
the quantity defined as mutual information should not in the general case be interpreted as
‘the information one system contains about another.’
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Figure 6. Component test spaces for example 4.

Example 4. (Failure of strong subadditivity of the measurement entropy). Consider a tripartite
system ABC, where A and B are classical bits and C is a squit, with test space {{e, e′}, { f, f ′}}.
Figure 6 illustrates this situation, with A, B held by Alice and C by Bob. Consider the joint state
described by the following table:

e e′ f f ′

00 1/4 0 1/4 0
01 1/4 0 0 1/4
10 0 1/4 1/4 0
11 0 1/4 0 1/4 .

In words, the outcome of test {e, e′} is perfectly correlated with A whereas the outcome of test
{ f, f ′} is perfectly correlated with B. It is easily verified that

H(C)= H(AC)= H(BC)= 1.

If all three systems are measured, with the test on C perhaps depending on the values of A and
B, there are always four distinct outcomes, each with probability 1/4. Hence H(ABC)= 2 and

I (A : B|C)= H(AC) + H(BC)− H(C)− H(ABC)

= 1 + 1− 1− 2=−1 < 0,

which contradicts form (d) of strong subadditivity.

Note that the foregoing example is all but classical, depending not on any notion of entanglement
or non-locality, but only on the fact that one can measure either, but never both, of {e, e′} and
{ f, f ′}.

This section concludes with some lemmas, which hold in the special case that one or more
of the systems in the composite is classical. Some of these are useful later on.

Lemma 2. Let ωAB be a state on AB, where A is classical. Then

H(ωAB)= H(ωA) +
∑
e∈E

ωA(e)H(ωB|e). (7)

The proof is straightforward. As a shorthand, when A is classical we might write

H(AB)= H(A) +
∑

e

p(e)H(B|e).

Corollary 1. If A is classical, then H(B|A)> 0 for any system B.

The proof is immediate from equations (4) and (7).
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Corollary 2. If A is classical and independent of B, then H(AB)= H(A) + H(B).

Proof. The assertion that A and B are independent means that the joint state is ωAB
= ωA

⊗ωB ,
i.e. that ωB|e

= ωB for all e ∈ E . By lemma 2, we have

H(AB)= H(A) +
∑
e∈E

ωA(e)H(ωB|e)

= H(A) +

(∑
e∈E

ωA(e)

)
H(B)= H(A) + H(B).

ut

Finally, strong subadditivity does hold in the special case that systems A and C in lemma 1
are classical. Colloquially, discarding a classical system can never result in an increase in the
mutual information between a general system and another classical system.

Lemma 3. Let A and C be classical. Then for any system B,

H(A|BC)6 H(A|B).

Hence, the equivalent conditions of lemma 1 are satisfied.

Proof. Let A = {E} and C = {G}, and let the joint state of ABC be ωABC . Then the marginal
state of BC satisfies ωBC( f g)= ωC(g) ·ωB|g( f ), where, for all g ∈ G,

ωB|g
=

∑
e∈E

ωAC(eg)

ωC(g)
ωB|eg.

By lemma 2, we have

H(A|BC)= H(ABC)− H(BC)

= H(AB) +
∑
g∈G

∑
e∈E

ωAC(eg)H(ωB|eg)−H(C)−
∑
g∈G

ωC(g)H(ωB|g).

We can rewrite this as

H(A|BC)= H(A|C) +
∑
g∈G

∑
e∈E

ωAC(eg)H(ωB|eg)−
∑

y

ωC(g)H(ωC |g). (8)

Since measurement entropy is concave,

H(ωC |g)>
∑
e∈E

ωAC(eg)

ωC(g)
H(ωB|g),

whence ∑
g

ωC(g)H(ωB|g)>
∑
g∈G

∑
e∈E

ωAC(eg)ωC |eg.

It follows that
∑

e,g ωAC(eg)H(ωB|eg)−
∑

y ωC(g)H(ωB|g)6 0, which, combined with
equation (8), gives the desired result that H(A|BC)6 H(A|C). ut
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4.3. Data processing and the Holevo bound

A fundamental result in quantum information theory, the Holevo bound, asserts that if Alice
prepares a quantum state ρ =

∑
x∈E pxρx for Bob, then, for any measurement F that Bob can

make on his system,

I (E : F)6 χ,

where χ := H(ρ)−
∑

x∈E px H(ρx) (often called the Holevo quantity).
This inequality makes sense in our more general setting. Suppose that Alice has a classical

system A = ({E}, 1(E)) and Bob a general system B. Alice’s system is to serve as a record
of which state of B she prepared. Hence the situation above is modeled by the joint state
ωAB
=
∑

x∈E pxδx ⊗βx , where δx is a deterministic state of Alice’s system with δx(x)= 1.
Bob’s marginal state is ωB

=
∑

x∈E pxβx . By lemma 2, H(ωAB)= H(A) +
∑

x∈E px H(βx).
Hence,

I (A : B)= H(A) + H(B)− H(AB)

= H(A) + H(B)−

(
H(A) +

∑
x∈E

px H(βx)

)
= H(ωB)−

∑
x∈E

px H(βx)= χ.

Accordingly, the content of the Holevo bound is simply that the mutual information between the
measurement of Alice’s classical system and any measurement on Bob’s system is no greater
than I (A : B),

I (E : F)6 I (A : B).

While this is certainly natural, it does not always hold.

Example 5. (Failure of the Holevo bound). Let A be a classical bit, A = {{0, 1}}, and B a squit,
B = {F = { f, f ′}, G = {g, g′}}, and consider the state

f f ′ g g′

0 1/2 0 1/2 0
1 1/2 0 0 1/2 .

It is easy to check that H(A)= H(AB)= HG(B)= 1 and H(B)= HF(B)= 0. Hence,

I (A : B)= H(A) + H(B)− H(AB)= 1 + 0− 1= 0

while

I (E : G)= 1 + 1− 1= 1 > 0.

Both strong subadditivity and the Holevo bound are instances of a more basic principle.
The DPI asserts that, for any systems A and B and any physical process E : B→ C,14

I (A : E(B))6 I (A : B).

14 Clearly, the content of the DPI depends on the definition of mutual information, which in turn depends on the
definition of entropy used. As before, we continue to define mutual information in terms of the measurement
entropy, as in definition 6. But note that if the DPI fails for one definition of mutual information, the corresponding
condition may hold for another—indeed this may be a reason to prefer the latter. In this paper, we omit a formal
treatment of ‘processes’.
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The strong subadditivity of entropy amounts to the DPI for the process that simply discards a
system (the marginalization map BC→ C). The Holevo bound is the DPI for the special case
of measurements, which can be understood as processes taking a system into a classical system
that records the outcome.

It seems reasonable that discarding a system, or performing a measurement, should be
allowed processes in a physical theory. But a notion of mutual information, according to which
discarding a system, or performing a measurement, causes a gain of mutual information seems
bizarre. So it is an attractive idea that a physical theory should allow at least some definition of
entropy and mutual information such that the corresponding DPI is satisfied.

5. Information causality

In [27], Pawlowski et al define a principle they call ‘IC’ in terms of the following protocol.
Alice and Bob share a joint non-signaling state, known to both parties. Alice receives a random
bit string E of length N , makes measurements, and sends Bob a message F of no more than
m bits. Bob receives a random variable G encoding a number k = 1, . . . , N , instructing him to
guess the value of Alice’s kth bit Ek . Bob thereupon makes a suitable measurement and, based
upon its outcome and the message from Alice, produces his guess, bk . IC is the condition that

N∑
k=1

I (Ek : bk|G = k)6 m. (9)

The main result of [27] is that if a theory contains states that violate the CHSH
inequality [11] by more than the Tsirel’son bound [32], then it violates IC. In particular, if
Alice and Bob can share PR boxes, then using a protocol due to van Dam [33], they can violate
IC maximally, meaning that Bob’s guess is correct with certainty, and the left-hand side of
equation (9) is N . Pawlowski et al also give a proof, using fairly standard manipulations of
quantum mutual information, that quantum theory does satisfy IC.

Having seen how to define notions of entropy and mutual information for general systems,
it is interesting to consider where Pawlowski et al’s quantum proof breaks down for some
non-quantum systems such as PR boxes. One issue is that the proof uses strong subadditivity.
As the following subsection shows, in the case where a PR box is the shared state, the van Dam
protocol itself provides an example of the failure of strong subadditivity of the measurement
entropy. Section 5.2 provides a converse result. Any theory that is monoentropic, strongly
subadditive and where the Holevo bound holds must satisfy IC.

First, a few words about how to describe this setting in our terminology. Let Alice and Bob
share two systems A and B, where each of these, as usual, has an associated test space. The joint
test space of AB is immaterial, as long as it includes the Foulis–Randall product (i.e. allows all
the separable measurements). The bit strings E and F are regarded as classical systems in their
own right and the joint test space for a classical and a general system is, as always, assumed to
be the Foulis–Randall product. Systems A and B begin the protocol in some joint non-signaling
state ωAB .

5.1. The van Dam protocol

Consider a special case of the protocol described above, in which Alice and Bob share a PR
box. Alice is supplied with a two-bit string E = E1 E2, and transmits one bit F to Bob. Let the
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PR box be a state of two systems A and B, where A and B are squits corresponding to the test
spaces {{a1, a′1}, {a2, a′2}} and {{b1, b′1}, {b2, b′2}}, respectively. The joint state of A and B is

a1 a′1 a2 a′2
b1 1/2 1/2
b′1 1/2 1/2
b2 1/2 1/2
b′2 1/2 1/2 .

It can be verified that these outcome probabilities are indeed the PR box correlations, violating
the CHSH inequality maximally. In van Dam’s protocol, Alice determines the parity, E1⊕ E2

(where ⊕ denotes addition mod 2). If this is zero, she performs the {a1, a′1} measurement on
her system; if it is 1, she performs the {a2, a′2} measurement. She then sends Bob a single bit
with a value equal to the parity of her outcome and E1 (where unprimed outcomes correspond
to 0 and primed outcomes to 1). Bob can then determine the value of E1 by measuring {b1, b′1},
or the value of E2 by measuring {b2, b′2}.

Consider now an intermediate stage in this protocol, at which Alice has measured her
system, and sent the bit F to Bob, who has not yet measured his system. Bob has access to
systems B and F , but does not know the outcome of Alice’s measurement. Hence consider
the joint state of E F B, averaged over the outcomes of Alice’s measurement. This is easily
verified to be

E1 E2 F b1 b′1 b2 b′2
000 1/8 1/8
001 1/8 1/8
111 1/8 1/8
110 1/8 1/8
010 1/8 1/8
011 1/8 1/8
101 1/8 1/8
100 1/8 1/8 .

Minimizing over the possible measurement choices on B,

H(E1, F, B)= H(E2, F, B)= H(F, B)= 2.

But clearly, H(E, B)= 3; hence

I (E1 : E2|F, B)= 2 + 2− 2− 3=−1 < 0.

5.2. Theories satisfying IC

As the previous subsection observes, the van Dam protocol involves a joint state on a
classical–nonclassical composite system, which does not satisfy strong subadditivity of entropy.
This is enough to prevent the proof of IC going through. This subsection proves a converse
result.
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Theorem 4. Suppose that a theory

(a) is monoentropic, meaning that measurement entropy equals mixing entropy for all systems,

(b) is strongly subadditive and

(c) satisfies the Holevo bound.

Then the theory satisfies IC. It follows that any theory satisfying these conditions cannot violate
Tsirel’son’s bound.

Note that, as discussed in section 4.3, the second and third conditions both follow from a single
assumption, the data processing inequality. Note also that in proving theorem 4, the condition
that a theory be monoentropic is only used to establish the technical condition that H(A|B)> 0
when A is classical15. So the theorem would still be valid if the monoentropic assumption were
replaced by a direct assumption that for classical A, H(A|B)> 0. Otherwise, begin with the
following lemma.

Lemma 4. Suppose that a theory is monoentropic and that A is a classical system. Then
H(A|B)> 0 for any system B.

Proof. (Lemma 4). Suppose that A is a classical system and that the joint state of AB is ωAB .
If the measurement and mixing entropies are equal, then lemma 2 immediately gives

S(AB)= S(A) +
∑

x

px S(βx),

where px = ωA(x) and βx is the state of B conditioned on x . Recall that the mixing entropy of a
state is defined in terms of an infimum over convex decompositions into pure states. For a fixed
ε, call a convex decomposition of a state ω into pure states ε-optimal if the Shannon entropy of
the coefficients is 6S(ω) + ε. For any ε > 0, there is an ε-optimal decomposition. Let

βx =

∑
y

qy|xβxy

be an ε-optimal convex decomposition of βx into pure states βxy . It follows that

ωB
=

∑
x

∑
y

pxqy|xβxy

is a (possibly far from optimal) convex decomposition of ωB into pure states. Hence S(B)

is less than or equal to the Shannon entropy of the coefficients on the right-hand side.
Therefore,

S(B)6 H(px) +
∑

x

px H(qy|x)

6 S(A) +
∑

x

px(S(βx) + ε)

= S(AB) + ε.

15 This does not hold in all theories.
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Since this holds for any ε, we have S(B)6 S(AB) and S(A|B)= S(AB)− S(B)> 0, as
required. ut

Given lemma 4, the proof of theorem 4 is essentially a reconstruction of the quantum
argument of appendix A of [27], adapted to the broader setting of non-signaling states on test
spaces. In its form the proof is the same, but great care must be taken at each step to ensure that
the relevant properties of entropies and mutual information still hold. Many of the steps still go
through by virtue of generic properties of the measurement entropy. The explicit assumptions
of theorem 4 are needed for the rest.

Proof. (Theorem 4). Assume that Alice and Bob share a joint system AB. Consider the N -bit
string that Alice receives as a classical system E , and consider the m-bit message that Alice
sends to Bob as a classical system F . Let Ek denote Alice’s kth bit. Consider the stage of the
protocol where Alice has measured system A, and sent F to Bob, but Bob has not yet measured
system B. Bob has control of systems F and B at this point, and does not know the outcome of
Alice’s measurement. Hence the strategy is to consider the joint state of systems E , F and B,
averaged over Alice’s outcomes.

The first goal is to show that the joint state at this point satisfies

I (E : F B)6 m. (10)

By the fact that the initial state of AB is non-signaling, E is independent of B. Therefore
corollary 2 yields I (E : B)= 0. Using this, along with the definitions and straightforward
algebraic manipulation, we obtain

I (E : F B)= I (E : B) + I (E : F |B)= I (E : F |B)

= I (E B : F)− I (B : F).

By theorem 3, mutual information is non-negative, so

I (E : F B)6 I (E B : F). (11)

Now, I (E B : F)= H(E B) + H(F)− H(E F B)= H(F)− H(F |E B). By the assumption that
the theory is monoentropic, and lemma 4, H(F |E B)> 0. Hence

I (E B : F)6 H(F)6 m. (12)

This gives equation (10).
The next step is to establish

N∑
k=1

I (Ek : F B)6 I (E : F B). (13)

Rearrangement of definitions yields

I (E : F B)= I (E1 . . . EN : F B)

= I (E1 : F B) + I (E2 . . . EN : F B|E1)

and

I (E2 . . . EN : F B|E1)= I (E2 . . . EN : F B E1)− I (E2 . . . EN : E1).
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Because the distribution on E is uniform, the bits Ei are independent, so I (E2 . . . EN : E1)= 0.
Hence,

I (E : F B)= I (E1 : F B) + I (E2 . . . EN : F B E1).

By strong subadditivity,

I (E2 . . . EN : F B E1)> I (E2 . . . EN : F B).

Hence

I (E : F B)> I (E1 : F B) + I (E2 . . . EN : F B).

Applying this inequality recursively gives equation (13).
Finally, consider the last stage of the protocol. If Bob is instructed to guess the kth bit,

then, depending on the message F , he measures system B. This can be seen as a single joint
measurement Xk on the system F B16. The Holevo bound, combined with equations (10) and
(13), gives

N∑
k=1

I (Ek : Xk)6 m.

Finally, Bob outputs a guess bk for the value of Ek , where the guess depends on k and on the
outcome of the measurement Xk . The usual DPI applied to classical mutual information yields

N∑
k=1

I (Ek : bk|G = k)6 m,

which is IC. ut

6. Conclusions, discussion and further questions

We have defined preparation and measurement-based generalizations of quantum and classical
entropy and mutual and conditional information, and studied some of their basic properties.
We called theories in which they coincide monoentropic, and showed that if they in addition
satisfy the DPI (or at least its corollaries strong subadditivity and the generalized Holevo bound),
Pawlowski et al’s IC principle holds. By their remarkable result that any correlations violating
the Tsirel’son bound can be used to violate IC, it follows that monoentropic theories satisfying
data processing must, like quantum theory, obey the Tsirel’son bound. Monoentropicity is a
strong constraint on theories, as we have shown by establishing that it fails for all polytopes
except simplices.

Our results indicate that it is interesting and profitable to develop notions of entropy, and
allied notions of conditional entropy and mutual information, for abstract probabilistic models.
This paper should be regarded as only a preliminary exploration of this possibility.

A natural direction for further research is to study data compression and channel capacities
in the abstract setting of this paper. It is natural to seek a measure of entropy that governs

16 Recall that the joint test space for a classical and general system is always assumed to be the Foulis–Randall
product, and that this includes measurements of the form: measure F first and, depending on the outcome,
measure B.
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the rate of high-fidelity data compression, as Shannon and von Neumann entropy do in
classical and quantum theory. A first step toward exploring classical channel capacities in
generalized probabilistic theories might be to identify sufficient conditions for the Holevo bound
to hold. This is related to the issue of finding an operationally motivated definition of mutual
information. Arguably, a properly motivated notion of mutual information should manifestly
be monotonic. Of course, the monotonicity of quantum mutual information—equivalently,
the strong subadditivity of quantum entropy—is not manifest from its usual functional form.
Still, the outright failure of the measurement-entropy-based mutual information to satisfy
monotonicity in some cases raises a question as to its significance. Although in such cases
measurement-based mutual information cannot be used to establish IC through a proof parallel
to Pawlowski et al’s quantum proof, it could be that IC nevertheless holds in some such cases.
One should be cautious, though, about dismissing natural generalizations of classical quantities
on the grounds that they fail to satisfy intuitively compelling properties. A case in point is
the history of skepticism, based on the fact that it can be negative, about the operational
significance of conditional information in quantum information theory. It was known for many
years that conditional mutual information can be negative, but it was eventually shown to have
an operational interpretation, involving the rate for quantum state merging protocols. It is also
good to keep in mind that different operational motivations might turn out to be naturally
associated with different entropic quantities, each with reasonable claim to be called mutual
information.

At a more fundamental level, one would like to understand better the operational
significance of various notions of entropy for abstract probabilistic models and theories. It is
likely that the entropic quantities we have discussed here, measurement and mixing entropies,
will turn out not to be the best notions of entropy to use in many situations. For example,
in appendix C a variation (or perhaps better, a specialization) of the notion of measurement
entropy that is more tightly coupled to the geometry of the state space is considered.

We have seen that, taken together, the conditions of monoentropicity, strong subadditivity
and the Holevo bound imply IC. It is not out of the question that some subset of these conditions
would suffice (especially since we need only very special cases of strong subadditivity).
Alternatively, it would be of interest to find a single, reasonably simple physical postulate that
would imply all three of these conditions. It seems plausible that such a postulate exists. On the
one hand, strong subadditivity and the Holevo bound are both special cases of the DPI, which
in turn can be derived (as we will detail in a future paper) from the assumption that arbitrary
processes can be dilated to reversible ones. On the other hand, as we show in appendix B,
monoentropicity can be derived from conditions of a similar flavor, involving the dilatability
of mixed states to pure states with a ‘marginal steering’ property. Another avenue to explore
is the consequence of monoentropicity that is needed for the IC proof: positivity of conditional
information when a classical system is conditioned upon a general one. Although its operational
interpretation is not evident at first blush, it warrants further study.

We hope to discuss all of these matters in detail in a future paper.
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Appendix A. Non-concavity of mixing entropy

In this appendix we prove theorem 2, which states that the mixing entropy is not concave for
non-simplicial polytopes. As a preliminary to the proof, we state some basic definitions and facts
that we will use. A face of a convex set C , which is a set F ⊆ C such that every x ∈ C that can
appear in a convex decomposition of something in F , is also in F . A maximal face of C is one
that is not a proper subset of any face in C other than C itself. An exposed face of C is a subset of
C that is the intersection of C with a hyperplane supporting it (such a subset is easily shown to
be a face). All faces of a polytope are exposed, and the maximal ones have affine codimension
1, i.e. their spans are affine hyperplanes. We denote the affine space generated by a set S by
aff(S), the linear span of S by lin(S) and the cone generated by S (i.e. the set of non-negative
linear combinations of elements of S) by cone(S). Note that when a subset of a real vector space
contains 0, aff(S)= lin(S). The relative interior of a convex compact set C is the interior of C
when it is considered as a subset of aff(C). Finally, we will use the term Z -ball, where Z is an
affine subspace of the ambient vector space, to mean a subset of Z that is a ball in Z .

The proof relies on the following lemma, proven below.

Lemma 5. The mixing entropy fails to be concave for any d-dimensional non-simplicial
polytope, all the maximal faces of which are (d − 1)-dimensional simplices.

We begin by proving the theorem.

Proof. (Theorem). First note that any counterexample to concavity of the mixing entropy in a
polytope S will also be a counterexample in a polytope S′ that has S as a face. This follows from
the fact that if S is a face, only states in S can appear in convex decompositions of states in S.
The proof of the theorem is by induction.

Suppose as our induction hypothesis that the mixing entropy fails to be concave for non-
simplicial polytopes in dimension d . For every polytope in dimension d + 1, either (i) every
maximal face is simplicial or (ii) there is a maximal face that is non-simplicial. If case (ii)
applies, then there is a face that constitutes a non-simplicial polytope of dimension d and, by our
induction hypothesis, the mixing entropy fails to be concave for this face. If case (i) applies, then
the polytope satisfies the conditions of the lemma and the mixing entropy fails to be concave by
virtue of the lemma.

To complete the inductive argument, we need to show that the mixing entropy fails to be
concave for non-simplicial polytopes in dimension d = 2, the lowest dimension in which there
exist non-simplicial polytopes. This follows from the fact that all of the maximal faces of a
two-dimensional non-simplicial polytope are line segments, which are simplices, so that the
conditions of the lemma apply. ut

We now prove the lemma.
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Figure A.1. Example of failure of concavity for a two-dimensional non-
simplicial polytope.

Figure A.2. Example of failure of concavity for a three-dimensional non-
simplicial polytope. Here ρ is in the interior of H.

Proof. (Lemma). Suppose S is a d-dimensional polytope that satisfies the conditions of the
lemma, that is, it is non-simplicial, but all of its maximal faces are simplicial. In this case,
one can always find two maximal faces ((d − 1)-dimensional simplices), F1 and F2, whose
intersection, F1 ∩ F2, is a (d − 2)-dimensional simplex. We define V1 to be the vertex of F1

that is not contained in F2 ∩ F2. V2 is defined similarly. Let ρ1 be the barycenter of F1, ρ2 the
barycenter of F2 and ρ3 the barycenter of F1 ∩ F2. Figure A.1 illustrates this situation for d = 2,
while figures A.1 and A.2 illustrate two cases of it in d = 3.

Let V be a vertex of S that is not contained in F1 or in F2. Such a vertex always exists
because if it did not, then the total number of vertices in S would be d + 1 and S would be a
simplex, contrary to hypothesis.

Define the (d − 1)-dimensional polytope H to be the convex hull of F1 ∩ F2 and V . Note
that H is a simplex.

Define T to be the triangle with vertices ρ1, ρ2 and ρ3.

Define L to be the intersection of T and the (d − 1)-dimensional polytope H . L is a line
segment; we defer establishing this to the end of the proof, because it is somewhat technical.

Finally, we define the state ρ for which the mixing entropy will fail to be concave. It is
defined as the second vertex of L , that is, L is the line segment extending from ρ3 to ρ.
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Figure A.3. Example of failure of concavity for a three-dimensional non-
simplicial polytope. Here ρ is on the boundary of H.

Now the proof proceeds differently, depending on whether ρ is in the interior or in the
boundary (relative to aff(H)) of H .

(i) ρ is in the relative boundary of H . (Figure A.2 illustrates this for d = 3.)
In this case, ρ lies on a face of H. Because H is a simplex of dimension d − 1, every such

face has d − 1 vertices and consequently the mixing entropy of ρ satisfies

S (ρ)6 log(d − 1). (A.1)

By definition, ρ ∈ T, so that it is a convex combination of ρ1, ρ2 and ρ3,

ρ = p1ρ1 + p2ρ2 + p3ρ3, (A.2)

where the pi form a probability distribution. Because ρ1(ρ2) is the barycenter of F1(F2), which
has d vertices, its mixing entropy is

S(ρ1)= S(ρ2)= log d, (A.3)

while because ρ3 is the barycenter of F1 ∩ F2 with d − 1 vertices, we have

S(ρ3)= log(d − 1). (A.4)

Recalling that L is one dimensional, we know that ρ 6= ρ3 or, equivalently, p1 + p2 > 0, which
implies that

3∑
i=1

pi S(ρi) > log(d − 1). (A.5)

From equations (A.1) and (A.5) we infer that

S(ρ) <
∑

i

pi S(ρi), (A.6)

that is, the mixing entropy fails to be concave.
(ii) ρ is among the relative interior points of H. (Figure A.3 illustrates this for d = 3.)
In this case,

ρ = p1ρ1 + p2ρ2, (A.7)

that is, ρ lies on the line segment defined by ρ1 and ρ2. The proof of (A.7) is by contradiction.
Suppose that ρ lies in the relative interior of T as well as in the relative interior of H. Then,
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there is an aff(T )-ball B1 around ρ contained in the relative interior of T and an aff(H)-ball
around ρ contained in the interior of H. B1 ∩ B2 is a line segment Lρ ⊂ L with midpoint ρ. But
the fact that ρ is the midpoint of Lρ contradicts the fact that it is an extremal point of L .

It follows from equation (A.7) and the fact that ρ1, ρ2 are barycenters of (d − 1)-
dimensional simplices that∑

i

pi S(ρi) (= p1S(ρ1) + p2S(ρ2))= log d. (A.8)

Next, we show that ρ cannot be the barycenter of H. We begin by demonstrating that ρ

is the barycenter of H ′ ≡ conv(F1 ∩ F2, V ′), where V ′ ≡ p1V1 + p2V2 and where conv(S, S′) is
the convex hull of S ∩ S′. Letting bary(F) denote the barycenter of F, the proof is as follows,
writing xi , i ∈ {1, . . . , d − 1}, for the d − 1 vertices of F1 ∩ F2.

ρ = p1 bary(F1) + p2 bary(F2) (A.9)

= p1
1

d

(
d−1∑
i=1

xi + V1

)
+ p2

1

d

(
d−1∑
i=1

xi + V2

)
(A.10)

=
1

d

(
d−1∑
i=1

xi + p1V1 + p2V2

)
(A.11)

= bary(conv(F1 ∩ F2, p1V1 + p2V2)) (A.12)

= bary(H ′). (A.13)

However, H ′ = conv(F1 ∩ F2, V ′) has a different barycenter from H ≡ conv(F1 ∩ F2, V )

because V is distinct from V ′. The latter follows from the fact that V, V1 and V2 are all vertices
of the non-simplicial polytope S, and consequently V cannot be in conv(F1 ∩ F2, V1, V2), unlike
V ′ which is.

Given that ρ ∈ H but is not at its barycenter, and given that H has d vertices, we have

S(ρ) < log d. (A.14)

From equations (A.8) and (A.14), we infer the failure of concavity of the mixing entropy.
We finish the proof by establishing the claim that L , defined above, is a line segment. First

note that because it is an intersection of convex compact sets, it is compact and convex. Because
dim(aff(T ))= 2 and dim(aff(H))= d − 1, aff(T )∩ aff(H) is one or two dimensional. For it
to be two dimensional would require T ⊂ aff(H), implying ρ1, ρ2 ∈ aff(H), and hence since
F1 ∩ F2 ⊂ H , that V1, V2 lie in the hyperplane aff(H). This contradicts the assumption that F1,
F2 are distinct maximal faces.

Since L ⊂ aff(T )∩ aff(H), L is at most one dimensional. To show it is at least one
dimensional, we begin by observing that because they are subsets of S, both T and H lie in the
‘tangent wedge’ W to S at ρ3, i.e. the intersection of the half-spaces aff(F1)+ and aff(F2)+. Here
aff(Fi)+ is defined to be the closed half-space to the polytope S’s side of aff(Fi). In fact, V lies
in the interior of W because if it lay in aff(F1) or aff(F2), our assumption that all maximal faces
were simplices would be violated. Viewing ρ3 as the origin of a real linear space, and noting that
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lin T and lin (F1 ∩ F2) are complementary subspaces (they span the space and intersect only at
0, i.e. ρ3), we can decompose V in a unique way into a component in lin (T ) and a component
in the edge, lin (F1 ∩ F2), of the tangent wedge.

Let q be the linear projection with kernel lin (F1 ∩ F2) and image lin (T ). For any set X
such that X = X + lin (F1 ∩ F2), q(X)= lin (T )∩ X . Both W and aff(H) satisfy this condition.
As already noted, V ∈ int W ; this is equivalent to q(V ) being in the relative interior of cone(T ).
Because V ∈ H , q(V ) is also in aff(H). Therefore, cone(T )∩ aff(H) is an interior ray r
of cone(T ). Now, because ρ3 is the barycenter of F1 ∩ F2, there is a (d − 2)-dimensional
aff(F1 ∩ F2)-ball B0 around ρ3 contained entirely in F1 ∩ F2. Furthermore, B0 is the intersection
of a (d − 1)-dimensional aff(H)-ball B around ρ3, with F1 ∩ F2. aff(F1 ∩ F2) divides aff(H)

into half-spaces, and the H -side half-ball B\B0 is contained entirely in the relative interior of
H . Because, as established near the beginning of our argument, aff(T )∩ aff(H) is a line in
aff(H), and we now know that while it contains ρ3 it is not entirely contained in F1 ∩ F2, it must
intersect B\B0. Its intersection with B\B0 is contained in H . By choosing B small enough, we
can ensure that this intersection is also contained in T . This is obvious from two-dimensional
geometry. To be slightly more explicit, the facts that r , i.e. the half of aff(H)∩ aff(T ) on the
H -side of aff(F1 ∩ F2), is interior to cone(T ), cone(T ) is generated by T and T is closed under
multiplication by scalars in [0, 1], ensure this. Because aff(T )∩ aff(H)∩ B is contained in both
H and T , it is contained in L; because it is one dimensional, so is L and so, because L is a
compact convex set, L is a line segment. ut

In generalized theories we can define (cf [7], where analogous quantities for convex-sets-
based theories were defined, and their failure to be concave in general was also observed)
measurement-entropy-like quantities HT based on any function T that (like entropy) is Schur
concave and defined on finite lists of classical probabilities. For a state ρ, HT (ρ) is defined as
the infimum over tests of the value of T on the probabilities for the results of the test. We define
Ud for positive integers d as the uniform distribution on d alternatives. The same proof as before
(with F(Ud) in place of log d) gives us the following proposition.

Proposition 1. For any T whose value on Ud+1 is strictly greater than its value on Ud , for all d,
for example any strictly Schur-concave T , the only polytopes on which HT is concave are
simplices.

Appendix B. Entropy and quantum axiomatics

That mixing and measurement entropies coincide, as they do in classical and quantum theory,
has powerful consequences for the structure of a probablistic model and, perhaps even more
profoundly, for the structure of a probabilistic theory. As already noted, it implies that mixing
entropy is concave, which places sharp restrictions on the geometry of state spaces. It also
figures importantly in our derivation, in section 5, of IC. In this appendix, we explore some
further consequences of monoentropicity, and also suggest some other postulates, the physical
content of which may be clearer, that enforce this property.

It will be helpful to impose some mild restrictions on the models we consider. (These
are satisfied by all of the examples discussed earlier.) First, we want to have enough analytic
structure to guarantee that measurement entropies will be well behaved. Accordingly, in this
appendix we shall require of all models A = (A, �) that � be a compact, finite-dimensional
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convex set, as already assumed in section 2; additionally, we make the following technical, but
reasonable and fairly weak, assumptions:

(i) The total outcome-set X is compact in some Hausdorff topology that makes every state
α ∈�A continuous as a function α : X→ [0, 1].

(ii) Write x ⊥ y to mean that outcomes x and y are distinct and jointly testable, i.e. there exists
a test E ∈ A containing them both. We require that ⊥ be closed as a subset of X × X .

(iii) A is compact in the standard topology it inherits from X (as explained below).

Conditions (i) and (ii) have a certain a priori plausibility and, indeed, are often satisfied in
practice: see [35] for examples of large classes of test spaces satisfying them. Condition (iii)
requires some further justification. Conditions (i) and (ii) make A a topological test space
[35, 38]. With X compact, as in condition (i), A has finite rank ([35], lemma 204). This allows
us to topologize the set A of tests as a quotient of a suitable subspace of X n, where n is the rank
of A. We call this the standard topology on A. One can show ([35], proposition 211) that A can
be enlarged so as to become compact in this topology, without change to its rank or to its space
of continuous states. So condition (iii) is relatively harmless. In fact, if A is uniform, meaning
that all tests have the same number of outcomes, condition (iii) is automatically satisfied, given
(i) and (ii).

It is not difficult to show that HE(α) is continuous as a function of E ∈ A (see [35], lemma
210). Hence, for every state α ∈�, there exists a test E for which HE(α)= H(α). This justifies
the assumption to this effect made in section 3.

We can now characterize those states having zero measurement or mixing entropy.

Lemma 6. Let α be a state of a system A = (A, �) satisfying the standing assumptions just
discussed.

(a) H(α)= 0 iff there exists an outcome x ∈ X with α(x)= 1.

(b) If S(α)= 0, then α is the limit of a sequence of pure states of �.

Proof. (a) ‘If’ follows immediately from the definition, with E any test containing x ; ‘only
if’ from the fact (established just above the statement of the lemma) that H(α)= HE(α) for
some E ∈ A. For (b), note that if Ep = (p1, . . . , pn) is a discrete probability distribution with
H( Ep) < ε, then max{pi}> 2−ε . Now if S(α)= 0, we can find, for any sequence εk decreasing
to 0, a sequence of pure-state ensembles {pi,kαi,k|i = 1, . . . , nk} for α (so that α =

∑nk
i=1 pi,kεi,k

for every k) with H( Epk) < εk . Ordering each ensemble so that p1,k =max{pi,k|i = 1, . . . , nk},
we find, as above, that p1,k > 2−εk . Because α = p1,kα1,k +

∑n
i=2 pi,kεi,k , we have α > p1,kα1,k in

the pointwise order on X =
⋃
A; consequently, ‖α− p1,kα1,k‖ = (α− p1,kα1,k)(u)= 1− p1,k .

Thus, α = limk α1,k . ut

The converse to part (b) would trivially be true if the mixing entropy were continuous on
the convex set �. However, as example 2 of the main text shows, it need not be.

Call a model A = (A, �) unital iff for every outcome x ∈ X :=
⋃
A, there exists at least

one state α with α(x)= 1. If this state is unique—and therefore pure—for every x , we say
that A is sharp. In this case, we write εx for the unique state with εx(x)= 1. In the literature
of quantum axiomatics, sharpness has sometimes been taken as an axiom (sometimes called
Gunson’s axiom) [17]. Lemma 6 has the following corollary.
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Corollary 3. Suppose A is monoentropic, and that the set of pure states in A is closed. Then A
is sharp.

Proof. If α is a pure state, then H(α)= S(α)= 0. By lemma 6, there exists a measurement
outcome x with α(x)= 1. On the other hand, if α(x)= 1, then S(α)= H(α)= 0, whence,
again by lemma 6, α is the limit of a sequence of pure states, say εn→ α. By assumption, the
set of pure states is closed, so α is pure. Because the set of states assigning unit probability to x
is convex, it follows that α is the unique such state. ut

While the condition that the set of pure states be closed is not totally innocent (consider
e.g. example 2 above), neither is it unreasonable. For example, it will be satisfied if there exists
a compact group of symmetries of the state space that acts transitively on the pure states.

The condition that measurement and mixing entropies coincide also places some
constraints on how systems compose.

Lemma 7. Suppose that AB = (C, �AB) is a composite (in the sense of section 2) of systems
A = (A, �A) and B = (B, �B). Suppose that A, B and AB have closed sets of pure states, and
are monoentropic. If �AB contains an entangled pure state, then C must contain a non-product
outcome.

Proof. By the previous lemma, A, B and AB are sharp. If x ∈
⋃
A and y ∈

⋃
B are outcomes

of A and B, respectively, and εx , εy and εxy are the unique pure states making x , y and xy certain,
then εxy = εx ⊗ εy . Now if ρ is a pure entangled state in �AB , then S(ρ)= 0. If H = S, then
H(ρ)= 0, whence ρ = εz for some outcome z ∈

⋃
C. If z is a product outcome, say z = xy,

then ρ = εx ⊗ εy , a contradiction. ut

We now consider whether the condition H = S can be derived from more physically
transparent considerations.

Definition 8. [36] A probabilistic theory has the pure conditioning property iff, for every pair
of systems A = (A, �A) and B = (B, �B), every pure state ω of AB, and all outcomes x of A
and y of B, the conditional states ωB|x and ωA|y are pure.

Lemma 8. If a theory satisfies the pure conditioning property, then for any pure bipartite state
ω on a composite AB, we have S(ωB)6 H(ωA) and S(ωA)6 H(ωB).

Proof. Let ω be a pure bipartite state. Pick an observable E minimizing measurement entropy
for ω1, so that H(ω1) is the Shannon entropy HE(ωA) :=−

∑
x∈E ωA(x) log(ωA(x)). We have

ωB
=
∑

x∈E ωA(x)ωB|x . By PC (and the assumption that ω is pure), the conditional states ωB|x

are pure. By definition, S(ωB) is the minimum Shannon entropy of the mixing coefficients
in any pure-state ensemble for ωB , so S(ωB)6 HE(ωA)= H(ωA). By the same argument,
S(ωA)6 H(ωB). ut

Definition 9. A theory has the steering property iff, for every pair of systems A and B, every
pure bipartite state ω of AB steers its marginals, in the sense that for any convex decomposition
ωB
=
∑

i piβi , with βi pure and distinct from each other, there is a test E = {ai} of A with
βi = ωB|ai , and similarly for ωA.

The term ‘steering’ is due to Schrödinger [30], who showed that quantum theory is steering;
further proofs and extensions are in [19, 21]; a survey is in [22]. Definition 9 is closely related
to the notion of steering introduced in [6].
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Lemma 9. If a theory has the steering property, then for every pure bipartite state ω, H(ωA)6
S(ωB).

Proof. For any ε > 0, choose a convex decomposition ωB
=
∑

i piβi of ωB into pure states
βi , with S(ωB) > H(pi)− ε. Because the state ω is steering, there exists a test E = {xi} with
ωB|x i = βi , whence pi = ωA(xi). It follows that S(ωB) >−

∑
i pi log(pi)− ε = HE(ωA)− ε.

Since ε is arbitrary, S(ωB)> H(ωA). ut

Definition 10. A pure state α in an abstract probabilistic theory is purifiable iff for every state
α on a system A, there exists a pure bipartite state ω—a purification of α—on a composite AB,
with B a copy of A, with ωA

= ωB
= α. An abstract probabilistic theory has the purifiability

property iff every state in the theory is purifiable.

Quantum mechanics has the purifiability property. D’Ariano et al [12] have considered a
condition very similar to purifiability as a potential axiom for quantum theory, and have shown
that many other features of quantum theory follow from it. From the lemmas above, we have
the following proposition.

Proposition 2. A theory that has the pure conditioning, steering and purifiability properties is
monoentropic.

Appendix C. Linearized test space models, ordered linear space models and entropy

The apparatus of states on test spaces can be linearized, as follows. If A = (A, �), with total
outcome space X =

⋃
A, let V (A) denote the span of � in RX , regarded as an ordered real

vector space with positive cone V+(A)= {α ∈ V (A)|α(x)> 0∀x ∈ X}. Every outcome x ∈ X
defines a positive linear evaluation functional fx ∈ V ∗(�) by fx(µ)= µ(x) for all µ ∈ V (A).
Moreover, one has

∑
x∈E fx = u, where u is the unique functional taking the constant value

1 on �. Abstracting, one defines an effect to be a positive linear functional f ∈ V ∗(A) with
06 f (α)6 1 for all α ∈� (equivalently, 06 f 6 u); an observable on A is a sequence
f1, . . . , fn of effects with

∑
i fi = u.

From this point of view, the structure of the test space is essentially a privileged set of
observables—an additional structure that (like a preferred basis for a vector space) may or
may not carry some useful information, or may simply be a computational convenience. For
example, if A(H)= (F(H), �(H)) is a quantum system, V (A) is the space of quadratic forms
associated with—but one might as well say, the space of —Hermitian operators on H, and V ∗ is
essentially the same space, under the duality a(ρ)= Tr(ρa). In particular, an effect is a positive
operator between 0 and 1, and an observable is essentially a discrete POVM. The convex sets,
or ordered linear spaces, formalism takes this kind of combination of a convex state space and a
set of effects in the dual cone to the state space, as primary. Roughly, a convex model is defined
by taking a convex compact set of states as a base for a cone V (�)+ of unnormalized states,
and a cone of ‘unnormalized allowed effects’ that is a closed subcone V ]

+ , containing u in its
interior, of the dual cone V ∗(�)+ of all effects. u is defined by the condition u(�)= 1, and
the interval [0, u] according to the ordering defined by V ] is the set of effects allowed in the
theory. When V ]

= V (�)+, the model is called maximal (or sometimes saturated [10]). If the
model is constructed from a test space, one will usually want to choose V ] to contain the effects
associated with all outcomes in the test space.
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Two natural distinguished classes of effects are the ray-extremal ones, i.e. effects that lie
on extremal rays of the cone generated by effects, and atomic effects, i.e. maximal effects in
extremal rays (equivalently, ray-extremal effects that are also extremal in the convex set [0, u]
of effects). We may define the measurement entropy as the infimum of entropies obtainable
by measuring observables consisting of ray-extremal elements, or alternatively as the infimum
of entropies obtainable by measuring observables consisting of atomic effects. Intuitively,
the observables consisting of ray-extremal effects are maximally fine grained. Ray-extremal
effects cannot be further refined by decomposing them as sums of other effects. Although
they can be decomposed as sums of shrunken versions of themselves, intuitively this cannot
provide any additional information about the system being measured. Certainly in the case
of atomic effects, and probably with some care and relabeling in the case of ray-extremal
effects (which unlike atomic effects may appear more than once in a given observable), the
measurements with such outcomes can be organized into distinguished test spaces associated
with a given convex sets model, so the test space framework we use in the main text will
probably cover this natural possibility, although the additional assumptions we make to obtain
particular results will need to be checked for these cases. In the case of ray-extremal effects,
the infimum in the definition of measurement entropy will likely not be changed if we omit
measurements in which an effect appears more than once; the measurements without repetitions
should be easier to organize into a test space. Linearization and the application of one of
these definitions may well remove pathologies in measurement entropy that are associated with
some test space/state space models. The spirit of the definition of measurement entropy via an
infimum suggests excluding tests that are not maximally fine grained when viewed from the
convex-states perspective, as the above definitions do. The definition using ray-extremal effects
potentially includes more fine-grained measurements than the one that just involves atomic
effects, and should probably be preferred, as allowing the largest class of observables that can
reasonably be considered to be maximally fine grained. Passing to one of these definitions may
also remove pathologies that might arise when the set of distinguished observables associated
with tests has an irregular relationship to a state space whose underlying geometry is quite
regular.
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