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Nonlinear time series analysis was used to estimate maximal Lyapunov exponents of select ankle
and knee kinematics during three different conditions of treadmill walking: independent, side by
side, and side by side with forced synchronization of stepping. Stride to stride variability was
significantly increased for the condition in which individuals walked side by side and synchronized
unintentionally when compared to the conditions of forced synchronization and independent walk-
ing. In addition, standard deviations of three kinematic variables of lower extremity movement
were significantly increased during the condition in which unintentional synchronization occurred.
No relationship was found between standard deviation and estimates of maximal Lyapunov expo-
nents. An increase in kinematic variability during side by side walking for nonimpaired individuals
who are not at risk of falling suggests that variability in certain aspects of performance might be
indicative of a healthy system. Modeling this variability for an impaired individual to imitate may
have beneficial effects on locomotor function. These results may therefore have implications for the
rehabilitation of gait in humans by suggesting that a different functional outcome might be achieved
by practicing side by side walking as opposed to more commonly used strategies involving inde-
pendent walking. © 2009 American Institute of Physics. �DOI: 10.1063/1.3125762�

Unintentional synchronization of movement has been ob-
served to occur between humans during several activities,
including side by side walking. Tracking the movements
of one’s partner might involve the activity of mirror-
neuron networks thought to contribute to action imita-
tion, an important facet of skill acquisition. This inherent
tendency to synchronize might be useful in the rehabili-
tation of gait following neurological impairment by pro-
viding a means to relearn proper lower-limb movement
patterns. To evaluate the effects of side by side walking in
healthy individuals, nonlinear time series analysis tech-
niques were combined with traditional gait analysis to
evaluate six measures of ankle and knee kinematics of
subjects walking on a motorized treadmill under three
different conditions: independent walking, walking next
to a partner in which unintentional synchronization oc-
curred, and walking next to a partner while intentionally
synchronizing. The results indicated that walking with
unintentional synchronization to one’s partner signifi-
cantly altered the lower-limb stride to stride dynamics in
each individual when compared with either the indepen-
dent walking condition or the intentional synchronization
condition. These results suggest that uninstructed side by
side walking causes an individual to walk in a manner
that is more variable than their normal stepping pattern.

Increased variability in lower-limb joint angles during
walking might be desirable in certain situations by add-
ing adaptability to movement. This adaptability might be
modeled by a healthy system during side by side walking
with an impaired individual. Additional research is
needed to understand the long term effects of this behav-
ior and its potential utility as a therapeutic exercise.

I. INTRODUCTION

Humans demonstrate a tendency to synchronize move-
ment to external, rhythmic cues, often unintentionally.1–4

This behavior has been shown to occur during bipedal gait,
where it can be intentional and voluntary5–7 or unintentional
and involuntary.8–11 In previous work, intentional synchroni-
zation has received greater interest, possibly because it is
easier to reproduce and manipulate in a laboratory or clinic
and may therefore be applied more readily to rehabilitation
of gait following neurological impairment. For example, pre-
vious investigators have successfully used rhythmic auditory
cues to improve the stepping of patients with Parkinson dis-
ease �e.g., Refs. 5 and 12� and poststroke.6 However, forced
entrainment to a constant, repetitive rhythm may not be the
optimal way to exploit this phenomenon for the purpose of
restoring function to gait. Hausdorff et al.7,13 demonstrated
that when healthy individuals were constrained to walk in
rhythm with a metronome, a decrease in the stability of long
range correlations in stride time occurred, similar to that ob-
served in diseased individuals. While increases in stride time
variability have been related to gait pathology in multiple
populations,12–14 normal variations in stride time persist in

a�Telephone: �760� 750-7352. Fax: �760� 750-3190. Electronic mail:
jnessler@csusm.edu.

b�Telephone: �760� 750-8074. Fax: �760� 750-3190. Electronic mail:
cdeleone@csusm.edu.

c�Telephone: �714� 744-7620. Fax: �714� 744-7621. Electronic mail:
gilli104@chapman.edu.

CHAOS 19, 026104 �2009�

1054-1500/2009/19�2�/026104/11/$25.00 © 2009 American Institute of Physics19, 026104-1

http://dx.doi.org/10.1063/1.3125762
http://dx.doi.org/10.1063/1.3125762
http://dx.doi.org/10.1063/1.3125762


healthy individuals that a metronome is unable to reproduce.
In other biological processes, a decrease in the variability of
a system’s output can be indicative of pathology,15–17 sug-
gesting that rigid constraint of a system’s output in some
cases may lead to decreased function.

Synchronization of movement may be more effective for
gait rehabilitation if the external cue exhibits a variation that
is consistent with a healthy physiological system. In addi-
tion, increased motor skill is typically associated with less
intentional control over a movement �i.e., passive control�,
suggesting that a situation utilizing subconscious or uninten-
tional synchronization may be preferable.18–20 Side by side
walking might be a means to achieve a healthy biological
signal for synchronization and is a situation in which inter-
personal entrainment is frequently observed to occur natu-
rally and unintentionally.8,9,11,21 This unintentional phenom-
enon likely involves a type of mirror-neuron network,
whereby the simple perception of the movements of one’s
partner via visual �e.g., Ref. 22�, auditory,23 or mechanical
pathways will induce activity in neurons that are also active
when an individual carries out the movement themselves.
Previous research has demonstrated that such networks play
a significant role in action imitation, which may be funda-
mental to learning or relearning a motor skill �for review, see
Ref. 24�. The idea of action imitation can also be found in
the study of social dynamics, where an individual’s move-
ment pattern has been described as the result of an interac-
tion between their preferred movement pattern and that of
surrounding individuals.25,26 In the case where individuals
walk side by side, both systems experience an attraction to
adapt their output to imitate their partner’s movements, lead-
ing to a mutual cadence that is the result of a negotiation
between their preferred pattern and that of their partner. Cou-
pling an impaired individual with a healthy individual might
therefore provide a synchronizing signal that exhibits appro-
priate variations in movement patterns and encourages the
impaired individual to imitate and adopt these patterns in a
subconscious manner. An improved understanding of this
phenomenon may provide additional insight to the control of
bipedal locomotion and may help to inform therapeutic tech-
niques that involve synchronization for the purpose of alter-
ing step kinematics in a rehabilitation setting.

Nonlinear time series analysis is a useful approach for
elucidating subtle differences in the dynamics of locomotion
for normal walking and unintentional and intentional syn-
chronization. Specifically, variability in the movement kine-
matics of gait �i.e., knee or ankle angle, step height, etc.� has
received increasing interest of late, and a nonlinear approach
to the analysis of variability is attractive because it can pro-
vide insight that traditional gait analysis techniques
cannot.27–30 For example, utilizing standard deviation to
evaluate the variability of kinematic time series data ignores
the time dependent attributes of variability by assuming that
each step is independent and unrelated to previous steps and
that stride to stride variations are random. A more detailed
analysis of stride to stride variability during gait can be
achieved over the relatively short term �zero to ten
strides27–29� with the estimation of maximal Lyapunov expo-
nents. In this context, greater values for maximal Lyapunov

exponents indicate that an individual has greater stride to
stride variability and is less periodic over the time interval
studied, and lower values indicate the opposite. This type of
analysis can yield information regarding the nature of neuro-
logical control by quantifying the ability of the system to
respond to and assimilate minor mechanical and physiologi-
cal perturbations to the intended movement pattern.27–29,31,32

While there is currently debate over the chaotic nature of
bipedal locomotion,27,29 studying stride to stride variability
of gait kinematics using maximal Lyapunov exponents has
still provided meaningful information. For example, several
previous investigators have utilized a similar analysis to ap-
ply the idea of kinematic variability to the prediction of fall
risk in the elderly.14,28,29,33

Overall, the relationship between kinematic variability
during gait and the health of the locomotor system is not
entirely clear. For example, there is ample evidence that in-
creased variability in stride time is related to pathology and
an increased risk of fall in both elderly and diseased
populations.7,13,14 In addition, increases in maximal
Lyapunov exponents for lower-limb kinematic variables have
been associated with increased age.28 However, too little
variability may also be problematic, as decreases in stride to
stride variability in joint angle kinematics have also been
associated with gait pathology.34–36 These data suggest that
some variability might be beneficial to walking stability and
indicative of a healthy locomotor system.37,38 Further support
for this idea can be found in passive dynamic walking mod-
els, where increasing the flexibility in a walker’s movement
pattern will allow it to avoid falling under increasing varia-
tions in initial conditions.30,39 A wider basin of attraction for
locomotion in these simplified models corresponds to addi-
tional movement patterns from which to select in response to
a perturbation. In humans, an increased “library” of stable
gait patterns may lead to increases in variability under con-
ditions in which overground stability is challenged. In this
context, an individual with fewer alternatives for movement
patterns that will allow them to maintain balance in response
to perturbation will likely demonstrate decreased movement
variability and an increased risk of falling.

Optimizing stride to stride, lower-limb movement vari-
ability may therefore be a worthwhile goal in the restoration
of locomotor function. It is possible that such a task might be
achieved through uninstructed side by side treadmill walking
by stimulating mirror-neuron networks in a manner that en-
courages synchronization and interferes with an individual’s
preferred walking pattern. In this situation, a healthy and
flexible system would likely utilize additional lower-limb
movement patterns to maintain overground stability while
matching their partner’s movements. Practicing walking side
by side might therefore be a means to increase healthy vari-
ability by challenging an impaired individual to recruit addi-
tional movement patterns in order to avoid falling. For indi-
viduals with excessive kinematic variability, this strategy
may help to improve function by providing a template of a
locomotor system that exhibits a healthy combination of both
stride time consistency and joint kinematic variation, which
might be successfully imitated and learned.
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The purpose of this study was to use the techniques of
nonlinear time series analysis and traditional gait analysis to
examine the variability of multiple kinematic variables of
bipedal locomotion under varying conditions of synchroniza-
tion. This analysis is designed to serve as a first step in the
analysis of differences in the dynamics of normal, uninten-
tional, and intentional synchronization. Because previous
data have indicated that individuals walking side by side will
alter their movement patterns,11,21 it was hypothesized that
differences in variability would arise among the three condi-
tions studied, with the least amount of locomotor variability
found during independent walking. If present, differences
among these three conditions would suggest that an increase
in movement variability during gait can be seen in healthy
individuals not at risk of falling, suggesting that an increase
in flexibility of certain aspects of locomotion might be a
hallmark of a healthy system. These results may also provide
insight to the use of side by side treadmill walking as a
therapeutic exercise in the rehabilitation of gait for impaired
patients by demonstrating whether movement variability dur-
ing gait can be selectively altered in this manner. Since most
commonly used therapeutic techniques for gait rehabilitation
involve independent walking, a difference in stride to stride
variability of gait would suggest the possibility of different
outcomes for exercises involving side by side walking.

II. METHODS

A. Subjects

Fourteen subjects were recruited from the local
student population �age=23.33�5.06 years, height
=174.33�9.94 cm, mass=73.65�19.76 kg�. Nine male
and five female subjects participated in the study, resulting in
four male-male pairings, two female-female pairings, and
one mixed pairing. All subjects demonstrated normal gait,
free of neurological impairment, and musculoskeletal injury.
Some effort was made to combine subjects with similar leg
lengths, as it was previously noted that differences in leg
length contribute to a decrease in the amount of unintentional
synchronization.11,21 However, most pairings exhibited some
difference in leg length, with an overall mean difference of
6.49�5.25 cm. All procedures were approved by the Insti-
tutional Review Board, and all participants gave their in-
formed consent prior to data collection. All subjects were
kept naive as to the purpose of the experiment until data
collection had ended.

B. General procedures

This study was a repeated measures design with each
subject walking under three different conditions. For all tri-
als, subjects walked on a motorized treadmill �Vision Fitness
T9800S� at 2.5 mph �4.02 km/h� and were given a 2 min
warm-up period immediately prior to data collection. Tread-
mills were modified by removing the hand rails and placing
the instrument panel on the floor so that there were no ob-
structions to camera view or the subject’s view of their part-
ner. For the first condition �solo�, subjects walked by them-
selves for a period of 2.5 min. During this time, subjects
were instructed to walk as normally as possible, with no

restriction placed on speech or direction of gaze. For the
second condition �paired�, subjects walked on the same
treadmill, while a partner walked on a similar, adjacent tread-
mill at the same speed for a period of 5 min. Again, subjects
were asked to walk as normally as possible, and no restric-
tion was given to talking or the focus of their vision. For the
third condition �forced�, subjects walked in pairs but were
instructed to purposely synchronize their stepping, such that
each step was coupled in phase, similar to marching in step.
The duration of the third trial was 2.5 min. All trials took
place in this order so as to minimize the possibility that the
forced condition would affect performance of subjects during
the paired condition by prematurely drawing attention to
their partner’s steps.

Previous data indicate that during a typical trial in which
individuals are expected to synchronize unintentionally, sub-
jects will entrain for only a portion of the trial, and this
percentage varies greatly among pairings.11,21 Therefore,
subjects walked for a longer period of time under the paired
condition to provide additional opportunity to synchronize.
This approach allowed for the objective selection of a period
of time in which the greatest amount of frequency locking
occurred, thereby ensuring a larger amount of unintentional
synchronization over the period analyzed without directly
influencing the stepping behavior of the subjects.

For all trials, sagittal plane kinematic data were collected
at 120 Hz using a six camera optical motion capture system
�Vicon MX3+�. Markers were placed over the toe, heel, lat-
eral maleolus, lateral knee, and lateral thigh of the right leg
of both subjects. From these markers, measures of knee
angle, ankle angle, ankle X trajectory �step length�, ankle Y
trajectory �step height�, ankle Z trajectory �frontal plane
movement�, and knee Y trajectory were calculated. Standard
kinematic analysis focused on knee angle, ankle angle, step
height, and step length. For these variables, one stride was
defined from one local minima of ankle X data to the data
point just before the next local minima. Each ankle X local
minima represents the point at which the ankle is furthest
posterior for a particular stride, just before toe off.

C. Data analysis

Data analysis involved the use of custom MATLAB rou-
tines, combined with the free TISEAN software package �Ver-
sion 3.0.1 �Ref. 40�� and additional free software developed
by Perc.41 In MATLAB, raw marker data were filtered �fourth
order Butterworth, cutoff=100 Hz�, and truncated into 2
min trials. In addition, all data were normalized in time with
respect to the overall mean cadence of the sample �n=14�
during solo walking. For the solo and forced conditions, the
first 30 s of data �approximately 26 steps� were excluded
from the analysis to generate the 2 min trial. For the paired
condition �condition 2�, a continuous 2 min window was
found in which the greatest amount of step frequency match-
ing occurred between subjects within the original 5 min trial.
Average step frequency for each subject was calculated using
a moving 5 s window across the entire trial. Frequency lock-
ing was defined for a particular data point if the difference in
step frequency was less than 0.02 Hz between subjects. This
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procedure is a modified version of the one described in Ref.
9. Of the 2 min windows selected for each trial of uninten-
tional entrainment, the average amount of time in which sub-
jects were synchronized was 73.2�26.8 s. During the
forced condition, subjects were entrained for 99.27�0.01%
of the trial, similar to that observed in previous
experiments.11 Each data set was then 2 min in length
�14 400 data points� and encompassed an average of
103�6.38 strides.

Nonlinear time series analysis was used to determine
stride to stride variability of six kinematic variables of gait
for each trial �ankle angle, ankle X, ankle Y, ankle Z, knee
angle, knee Y�. This analysis began with the reconstruction
of the state space to allow for a concise definition of the
system at each point. Each state space was represented by

X�t� = �x�t�,x�t + ��, . . . ,x�1 + �dE − 1���� , �1�

where X�t� represents the new state vector of dimension dE,
which retains all of the properties of the original time series,
x�t�, and has as its time delay �, and dE as its embedding
dimension. Beginning with the original time series, the em-
bedding delay was determined by finding the first minima of
the average mutual information algorithm described by
Refs. 41–43. This approach seeks to minimize the amount of
redundant information among data sets that span multiple
time delays. Next, the optimal embedding dimension was
calculated using the false nearest neighbor algorithm.44 Al-
though previous investigators have utilized an embedding
dimension of 5 when analyzing sagittal plane gait
kinematics,27,28,41 we found that on average, the percent of
false nearest neighbors did not completely converge to zero
until a dimension of 6 was used �Fig. 1�. This result was
consistent across all subjects and all variables. Both the av-
erage mutual information and false nearest neighbor calcula-
tions were performed using software designed by Perc.41

Stationarity and determinism were evaluated for each
data set first by generating and inspecting recurrence plots.45

Recurrence plots are graphical representations of the Euclid-
ean difference between all points within a specified radius in
a state space. The plot is created when the differences be-
tween points X�i� and X�j� are plotted in the �i , j� plane.
Large inconsistencies in the texture of the recurrence plot
indicate regions of nonstationarity. The presence of continu-
ous lines can be interpreted as regions of periodic behavior,
thus providing a gross method of evaluating determinism.
Determinism was also evaluated using the method first de-
scribed by Kaplan and Glass,46 implemented in software by
Perc.41

Following reconstruction of the state space, divergence
curves and maximal Lyapunov exponents ��� were calcu-
lated for each data set. The maximal Lyapunov exponent for
a particular time series can be obtained from the equation

d�t� = d0e�t, �2�

where d�t� is the Euclidean distance or amount of divergence
at time t and d0 is the initial distance between the neighbor-
ing trajectories. In Eq. �2�, finding � over an interval of time
provides a measure of the rate of divergence of trajectories
with small initial Euclidean differences that then increase as
time is incremented forward. Maximal Lyapunov exponents
therefore provide a measure of the sensitivity of a system to
minute perturbations, such as the small stride to stride fluc-
tuations in movement dynamics that occur naturally during
normal walking. It should be noted that Eq. �2� defines true
Lyapunov exponents, which arise from the limits as t→�
and as d0→0. Estimates of finite-time Lyapunov exponents
���� are typically used in the analysis of discrete time series
data, and multiple approaches have been described
previously.47,48 In particular, the method described by Rosen-
stein et al.48 is defined as

ln�dj�i�� � ln Cj + ���i · �t� , �3�

where for the jth pair of nearest neighbors, dj�i� refers to the
Euclidean distance following i discrete time steps, and Cj

refers to the initial Euclidean distance. In order to estimate
�� over all pairs of nearest neighbors in a time series, a mean
divergence curve y can be calculated from the equation

y�i� = �1/�t��ln�dj�i��� , �4�

where � ...� denotes the average over all j pairs of nearest
neighbors. Using the free TISEAN software package,40 mean
divergence curves were calculated for the present data for
each time series based on this approach. To minimize any
potential effects arising from temporal correlations among
successive elements in a time series, a time interval was
defined about each discrete data point where nearest neigh-
bors were ignored, known as Theiler window �w�.49,50 For
the present analysis, w was set to approximately six strides
�800 data points�.

Maximal Lyaponov exponents were calculated for two
different regions of the divergence curves to yield an esti-
mate of variability over 0–1 stride �“short term,” �short� and
4–10 strides �“long term,” �long� �Fig. 2�. The practice of
examining variability over these intervals has been utilized
in previous analyses of gait data.29,31,51 This procedure was
selected for the present analysis because previous investiga-
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FIG. 1. False nearest neighbor results for knee angle data over three differ-
ent walking conditions �n=14 for each condition�. These results were typical
for all of the variables examined. Based on this analysis, an embedding
dimension of 6 was selected, although previous investigators have typically
selected an embedding dimension of 5.
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tors have reported different values in their estimation of
maximal Lyapunov exponents for various aspects of gait
analysis, presumably due to differences in the interval over
which the slope of the divergence curve was taken. Here, a
relatively well established approach was undertaken by esti-
mating slopes of the divergence curves by fitting a line to
both of these regions using least-squares regression.

Positive maximal Lyapunov exponents, together with
evidence of determinism, are characteristics of a chaotic
system.43,52 However, random data can also yield positive
Lyapunov exponents, and analysis of surrogate data is useful
to distinguish a deterministic system from one with stochas-
tic noise. Here, surrogate data were generated with the
TISEAN software, implementing a phase randomization tech-
nique for each solo walking data set. Estimates of “short”
and “long” term maximal Lyapunov exponents were then
obtained for the surrogate data in the manner described
above and compared with those obtained from the original
time series data.

Finally, multivariate repeated measure analysis of vari-
ance was used to determine if estimates of maximal
Lyapunov exponents and standard kinematic measures were

significantly different among the three gait conditions and
variables analyzed. A significant result was followed up with
repeated measures ANOVA for each variable, followed by
individual paired t-tests to determine differences among gait
conditions. A familywise alpha=0.05 �Bonferroni posthoc
adjustment� was used for multiple comparisons within each
repeated measures ANOVA.

III. RESULTS

The statistical omnibus test �multivariate repeated mea-
sures ANOVA� indicated the presence of a significant differ-
ence across the three walking conditions for all variables
tested �p�0.001�. The mean and standard deviations for four
conventional measures of gait are presented in Table I. Dur-
ing analysis, it was noted that since subjects negotiated a
mutual cadence during synchronization, it was typical for
one partner to increase a particular variable, such as step
length, and the other partner to decrease the same variable.
As a result, it is unlikely that changes in kinematic param-
eters would be reflected in the overall mean value for each
parameter studied. This observation was demonstrated in the
present results, as mean values changed very little across
conditions for any of the variables examined. However, vari-
ability of gait �i.e., standard deviation� increased signifi-
cantly during the paired condition when compared to the solo
condition for knee angle �p�0.001� and step length �p
�0.001�. In addition, ankle angle standard deviation was not
significantly different across conditions when all subjects
were analyzed, but subsequent analysis following the re-
moval of outlier data for one subject did yield a significant
difference between the solo and paired conditions for this
variable �p=0.009�. Standard deviation also increased sig-
nificantly during the forced condition when compared with
the solo condition for step length �p=0.006�.

Nonlinear time series analysis was initially planned to
include ankle movements in the X �step length� and Z �sway
in the frontal plane� directions, in addition to the variables
presented in Table II. However, upon inspection of the recur-
rence plots for both of these variables, substantial nonstation-
arities were determined to be present �Fig. 3�, and these data
were removed from further time series analyses. Inspection
of recurrence plots for the remaining four variables �ankle
angle, ankle Y, knee angle, knee Y� provided evidence that

FIG. 2. Graphical description of the procedure for estimating short term and
long term maximal Lyapunov exponents. �short and �long were determined by
fitting a least-squares linear regression to the divergence curve over 0–1 and
4–10 strides, respectively, and then calculating the slope of each line.

TABLE I. Results of standard gait kinematic analysis for three walking conditions.

Solo condition Paired condition Forced condition

Mean SD Mean SD % change Mean SD % change

Step height �mm� 166.86
�14.01�

16.16
�2.94�

168.05
�14.43�

17.70
�2.82�

4.48
�8.86�

167.69
�13.52�

17.25
�1.57�

5.11
�7.64�

Step length �mm� 653.95
�32.77�

61.36
�7.33�

657.66
�67.57�

67.57a

�6.02�
1.67

�1.15�
640.27
�35.91�

65.49a

�5.86�
3.80

�3.35�

Ankle angle �deg� 35.60
�4.75�

4.20
�0.82�

36.53
�5.49�

4.64a

�0.91�
3.45

�2.96�
35.91
�5.84�

4.39
�0.91�

5.52
�0.04�

Knee angle �deg� 56.71
�4.53�

5.43
�0.54�

57.06
�4.55�

5.97a

�0.48�
2.23

�1.82�
56.83
�4.71�

5.86
�0.40�

3.41
�2.98�

aSignificantly different from solo condition at p�0.05, % change: Normalized absolute value of
difference from solo condition. Data are reported as mean �standard deviation�.
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each time series was relatively stationary and deterministic
�Fig. 3�. Results of an additional test for determinism46 were
relatively consistent among the four remaining variables,
ranging from an average of 0.951�0.021 for ankle angle to
0.996�0.001 for ankle Y, where a value of 0 indicates a
completely random system and a value of 1 denotes a purely
deterministic system.

Figure 4 depicts a sample three-dimensional state space
for knee angle under the three walking conditions studied.
All estimates of maximal Lyapunov exponents for the recon-
structed state spaces were positive, which is generally con-
sidered to be a characteristic of time series data that are
generated by a chaotic system. Estimates of short term maxi-
mal Lyapunov exponents ��short� differed significantly be-
tween the solo condition and the paired condition, and be-
tween the solo condition and the forced condition for ankle
angle �p�0.001 for both, Table II�. Estimates of long term
maximal Lyapunov exponents ��long� differed significantly
between the solo condition and the paired condition in all
variables analyzed �Table II�. No differences in �long were
detected between the solo condition and the forced condition.
In addition, no statistical relationship was found between
�short and �long and normalized changes in mean step length,
step height, knee angle, or ankle angle. Further, no statistical

relationship was found between changes in standard devia-
tion and �short and �long. Estimates of surrogate data �short and
�long were significantly lower than those found for actual
time series data �p�0.01 for all variables�, demonstrating
that estimates of maximal Lyapunov exponents can be effec-
tively used to distinguish phase randomized data from the
original time series data. This result is consistent with previ-
ous work of a similar nature.27,28

Mean divergence curves are presented in Fig. 5. The
average magnitude of divergence can be estimated by the
value at which the curve settles. Although the slopes were
consistently less for the surrogate data in each case �i.e.,
�short and �long�, the magnitude of divergence for the surro-
gate data was consistently equal or greater for each variable.
In addition, the solo condition resulted in a magnitude of
divergence that was consistently less than that of either the
paired or forced condition for all variables. Further, the
paired walking condition consistently resulted in divergence
curves that saturated at a decreased rate when compared to
the other walking conditions. Overall, these curves support
the idea that walking is not entirely chaotic, as divergence
rates were estimated from areas of the curve that were rela-
tively nonlinear. Previous research has indicated that normal
bipedal walking in humans, at times, demonstrates signatures

TABLE II. Mean estimates of maximal Lyapunov exponents for knee and ankle sagittal plane kinematics.

Variable

Solo condition Paired condition Forced condition Surrogate data

�Short �Long �Short �Long �Short �Long �Short �Long

Ankle
angle

0.655
�0.058�

0.070
�0.015�

0.658a

�0.067�
0.078a,b

�0.013�
0.667a

�0.057�
0.068

�0.011�
0.237a

�0.053�
0.033a

�0.009�

Ankle Y
0.974

�0.076�
0.090

�0.016�
1.025

�0.060�
0.103a

�0.015�
1.029

�0.068�
0.088

�0.020�
0.559a

�0.096�
0.077a

�0.013�
Knee
angle

0.860
�0.099�

0.087
�0.014�

0.882
�0.066�

0.098a

�0.014�
0.886

�0.079�
0.085

�0.022�
0.546a

�0.120�
0.078a

�0.016�

Knee Y
0.932

�0.102�
0.068

�0.014�
0.955

�0.071�
0.074a,b

�0.013�
0.971

�0.067�
0.067

�0.021�
0.518a

�0.094�
0.046a

�0.023�

aSignificantly different from solo condition at p�0.05.
bSignificantly different from forced condition at p�0.05. Data are reported as mean �standard
deviation�.

FIG. 3. Sample recurrence plots for ankle Y �left� and ankle X �right�. The presence of gross inconsistencies in texture for ankle X indicate nonstationarity.
Ankles X and Z data were left out of the nonlinear time series analysis.
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of chaotic behavior, but more often than not does not fit the
definition of a chaotic system.27,29 However, distinctly linear
regions were observed to occur intermittently for four sub-
jects in the present data, an example of which is illustrated
in Fig. 6.

IV. DISCUSSION

The primary results of this study were twofold. First, the
paired walking condition induced involuntary synchroniza-
tion of stepping that resulted in estimates of stride to stride
variability �maximal finite-time Lyapunov exponents� that
were significantly increased when compared to the solo and
forced walking conditions �Table II�. Second, the paired con-
dition also resulted in a significant increase in the standard
deviation of knee and ankle sagittal plane kinematics for
each individual when compared to either the solo or forced
condition �Table I�. Estimates of maximal Lyapunov expo-
nents were also significantly lower for phase randomized sur-
rogate data when compared to original time series data and
demonstrated a greater magnitude of nearest neighbor diver-
gence �Fig. 5�. No correlations were found between standard
deviation and estimates of maximal Lyapunov exponents in
all cases for any of the variables studied �0.001�r2

�0.006�.

A. Unintentional versus forced synchronization
of movement

Synchronization of movement occurred involuntarily
during the paired walking condition, a phenomenon that has
been shown to occur previously.8,9,11 This simple idea sug-
gests that sensory information regarding the movement of
one’s partner results in a subconscious, self-organization of
entrained movement patterns, and likely involves the activity
of mirror-neuron networks that play a role in movement imi-
tation. This condition is fundamentally different from the
forced condition where the intention to synchronize involves
additional volitional control which can affect motor output.
Previous investigators have demonstrated that an increase in
intentional control of a movement typically results in greater
variability and is most often utilized during the early stages
of skill acquisition. Conversely, a reduction in intentional
control and a greater reliance on the natural dynamics of the
movement lead to decreased variability and are the hallmark
of expertise �e.g., Refs. 18–20�. The subjects involved in this
study likely had little experience synchronizing their step-
ping with a partner while walking on side by side treadmills,
hence it was expected that variability would increase for the
forced condition. In most cases, however, there was little
difference in variability in performance when the forced con-
dition was compared to either the solo or paired condition,
suggesting that this trend may not hold true when a healthy
individual performs a relatively unpracticed variation of an
over-learned motor skill.

B. Increased kinematic variability during passive side
by side walking

The relationship between maximal Lyapunov exponents,
locomotor performance, and the overall health of a system
remains relatively unclear. Determining this relationship is
further complicated by the presence of stochastic noise, mul-
tiple attractors, and time delays in the dynamical system.
Typically, estimates of maximal Lyapunov exponents have
been interpreted as measures of how the locomotor system
responds to minute perturbations over a period of multiple
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FIG. 4. Three-dimensional state space plots for one subject’s knee angle
during the solo walking condition �top�, paired condition �middle�, and
forced condition �bottom�. An embedding delay of 20 was used.
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strides.27–29,31,53 This idea holds that the natural stride to
stride fluctuations in the output of the locomotor system,
such as small changes in step length or height, can be viewed
as a type of local perturbation that contributes to the aperi-
odic nature of bipedal walking. This type of analysis there-
fore provides insight to how individual variations in locomo-

tor dynamics are interrelated among multiple, consecutive
strides. However, previous investigators have also used esti-
mates of maximal Lyapunov exponents to infer changes in
the local stability of a kinematic variable,27–29,31 a relation-
ship that is not well defined. While the response of a system
to local perturbations can provide insight to the nature of the
motor output, it is unclear how changes in kinematic vari-
ability reflect changes in the stability of walking. Instead,
changes in maximal Lyapunov exponents might be inter-
preted more appropriately as alterations to the locomotor at-
tractor itself. For example, using the illustration of a marble
rolling over a manifold, increased variability of the perfor-
mance of a motor skill might indicate a change to the depth
of the well or fixed-point attractor, or as a change in the
“steepness” of its walls.18 Figure 5 demonstrates a decreased
rate of saturation for the paired condition when compared
with the forced and solo conditions. This could imply a re-
duction in the steepness of the walls of the locomotor attrac-
tor, as local perturbations affected the locomotor system for
longer periods of time �i.e., over more strides� when subjects
were synchronized involuntarily.

A second but similar interpretation of these results can
be described as a basin of neighboring fixed-point attractors
that experiences an increase in interattractor maneuverability.
During the paired walking condition, most couples were not

FIG. 5. Mean divergence curves for the solo walking condition, paired condition, forced condition, and surrogate data for ankle angle �a�, ankle Y �b�, knee
angle �c�, and knee Y �d�. Bars represent standard deviation �n=14 for each condition�.

FIG. 6. Sample data for an individual who demonstrated signatures of cha-
otic behavior during treadmill walking for ankle Y data. The presence of a
nearly linear region is uncommon in gait data and has led previous authors
to suggest that bipedal walking is not inherently chaotic.
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synchronized over the entire 2 min period analyzed �al-
though all were synchronized for at least 1 min�. Therefore,
the current results might also be explained as an “engage-
ment” and “disengagement” from the mutual stepping pat-
tern that was negotiated between each subject pair. An in-
crease in stride to stride variability might therefore arise as
the result of a subject moving between two different attrac-
tors, one based on their preferred walking pattern and a sec-
ond based on the synchronized stepping pattern. In this con-
text, variability might also be increased by the uncertain and
evolving nature of the second attractor, which is based on the
negotiated stepping pattern. This negotiation is likely a con-
tinual process, whereby each partner repeatedly attempts to
pull the negotiated pattern closer to their preferred pattern
and might therefore alter the attributes of the synchronized
attractor with each step.

A third interpretation might also be considered when
these results are compared with those of previous research
that has observed alterations in kinematic variability during
gait in aged and diseased individuals.14,27–29,32 The size of the
locomotor basin of attraction may be related to the number
of movement patterns, or fixed-point attractors, available to
an individual.30,39 In this context, the amount of stride to
stride variability measured for a particular joint would reflect
the number of stable locomotor movement patterns that are
used by an individual in a given situation. A locomotor sys-
tem might therefore be characterized by the size of its “li-
brary” or the number of stable movement patterns available
and how those movement patterns are accessed and utilized
during terrestrial locomotion. A healthy individual would
likely posses a large number of possible movement patterns
but would be expected to utilize relatively few while walking
under normal conditions. When walking stability is chal-
lenged, the healthy individual can then select from many
potential movement options in order to avoid falling. Re-
search in passive dynamic walking models suggests that this
basin of attraction can be further widened by including cha-
otic walking patterns that provide stability over a limited
number of steps to serve as a transitional state for an indi-
vidual to return to a more deterministic walking pattern.30,39

Based on the present results, side by side walking would be
an example of a condition in which additional, stable loco-
motor patterns are accessed and utilized by a healthy indi-
vidual. Individuals with increased age illustrate a different
aspect of this idea by demonstrating increased variability in
lower-limb movement kinematics under normal
circumstances.28,29 This result may suggest that physiological
changes as a result of normal aging require that an individual
utilize an increased number of possible movement patterns
when the system is relatively unchallenged. Such increased
flexibility or maneuverability within the basin of attraction
might be detrimental for a couple of reasons. First, it may
lead to an individual spending increased time utilizing move-
ment patterns that are near the boundary of the basin, where
a relatively small perturbation might more easily push them
into instability. Second, an individual that uses a larger pro-
portion of their stable gait patterns may also have fewer op-
tions remaining when perturbed, leading to an increase in fall
risk. In the case of an injured or neurologically impaired

individual, variability may actually be decreased in certain
cases34,36 due in part to a decrease in the size of their library
or overall number of stable movement patterns �i.e., fixed-
point attractors� available.

C. Side by side walking as a therapeutic technique

Paired walking in which an unhealthy individual walks
side by side with a healthy individual may be an effective
practice for the restoration of locomotor function. Previous
experiments have successfully utilized external cues as an
artificial pacemaker for the purpose of improving locomotor
function in neurologically impaired individuals.5,6 Hausdorff
et al.,7,13 however, presented evidence that forced walking to
the auditory output of a metronome resulted in a decrease in
the stability of long range correlations in stride time that are
normally seen in healthy individuals. Taken together, these
results suggest that some type of synchronization with an
external cue can be beneficial for rehabilitation, but an audi-
tory cue that is presented at a constant frequency may not be
the optimal use of this technique. Side by side walking might
be a more effective approach for several reasons. First, a
healthy locomotor system can be used to generate a synchro-
nizing signal that involves both a biologically varying ca-
dence and optimal variability in joint kinematics. Second,
synchronization can be achieved unintentionally, which is
more analogous to normal walking conditions, and limits the
use of intentional, corrective movements that are often re-
lated to early stages of skill acquisition.18–20 Third, visual
and auditory information regarding a partner’s movements
stimulates an inherent tendency to synchronize, possibly us-
ing neuronal networks that are predisposed to imitating hu-
man motion as a part of the motor learning process.22–24

Fourth, the present results demonstrate that side by side
walking results in an increase in stride to stride variability,
which suggests that this approach can be used to effectively
manipulate the stride to stride dynamics of gait. Finally, there
is evidence to suggest that a form of social memory may
persist for this type of interaction.3 In other words, following
interpersonal synchronization of movement, one’s preferred
movement pattern remains altered for a time, suggesting that
more permanent alterations in an abnormal basin of attrac-
tion for locomotion might be achieved by unintentionally
synchronized walking.

Further research is necessary to determine if the use of
side by side walking is an effective method to achieve gains
in locomotor function for impaired individuals. Specifically,
it remains to be seen if side by side walking, where the
external signal is adaptable and time variant, will produce
results different from those reported by Hausdorff et al.,7 and
whether this type of practice will yield clinical results.5,6 The
current results are an initial step in that direction by provid-
ing evidence to suggest that walking side by side will result
in a different outcome when compared with therapeutic tech-
niques that require a patient to walk independently. In addi-
tion to side by side walking, this effect might also be repro-
duced in a clinic using virtual reality, video, mechanical
input, or an auditory recording of an unimpaired person step-
ping.
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Finally, several investigators have previously demon-
strated differences in lower-limb kinematics when treadmill
walking was compared to walking over ground.54–56 In par-
ticular, Dingwell and Cusumano27,31 reported significant re-
ductions in estimates of maximal Lyapunov exponents for
treadmill walking when compared to overground walking for
several kinematic variables. Overall, there appears to be a
general consensus that treadmill walking artificially de-
creases variability of movement kinematics. While the use of
motorized treadmills in the present study was a factor in the
behavior of the variables analyzed, it should be noted that
this factor was applied to all subjects equally and would
likely only serve to reduce the observed effect of increased
stride to stride variability during the paired condition. In the
future, it would be useful to perform a similar analysis dur-
ing overground walking, where differences in variability may
possibly be more dramatic.
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