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ABSTRACT  

Functional connectivity patterns of the motor cortical representational area of single 

muscles have not been extensively mapped in humans, particularly for the axial musculature. 

Functional connectivity may provide a neural substrate for adaptation of muscle activity in axial 

muscles that have both voluntary and postural functions. The purpose of this study was to 

combine brain stimulation and neuroimaging to both map the cortical representation of the 

external oblique (EO) in primary motor cortex (M1) and supplementary motor area (SMA), and 

to establish the resting-state functional connectivity associated with this representation. Motor 

evoked potentials were elicited from the EO muscle in stimulation locations encompassing M1 

and SMA. The coordinates of locations with the largest motor evoked potentials were confirmed 

with task-based fMRI imaging during EO activation. The M1 and SMA components of the EO 

representation demonstrated significantly different resting-state functional connectivity with 

other brain regions: the SMA representation of the EO muscle was significantly more connected 

to the putamen and cerebellum, and the M1 representation of the EO muscle was significantly 

more connected to somatosensory cortex and the superior parietal lobule.  This study confirms 

the representation of a human axial muscle in M1 and SMA, and demonstrates for the first time 

that different parts of the cortical representation of a human axial muscle have resting-state 

functional connectivity with distinct brain regions. Future studies can use the brain regions of 

interest we have identified here to test the association between resting-state functional 

connectivity and control of the axial muscles 

 

KEYWORDS 

Functional connectivity, primary motor cortex, supplementary motor area, transcranial magnetic 

stimulation
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 Muscles have specific mechanical actions that they perform on the body. They are 

activated by a diffuse network of neurons distributed across motor cortical regions including the 

primary motor cortex (M1), cingulate motor area, and supplementary motor area (SMA) 

(Boudrias et al. 2010; Kakei et al. 1999). Mapping the connectivity of the portions of these 

distinct motor cortical regions representing the same muscle may offer important clues about 

how that muscle is controlled, for example, how it is activated appropriately under varying task 

constraints. This may be particularly true of muscles with diverse task-specific roles. For 

example, the human abdominal musculature demonstrates distinct patterns of activation during 

forced expiratory efforts, postural alterations, and voluntary movements (Chiou et al. 2016; 

Kumar 2004; Moseley et al. 2004; Tunstill et al. 2001). Within motor cortex, SMA is often 

associated with preparation of complex movements involving postural adjustments (Viallet et al. 

1981; Tanji 1994) as well as voluntary respiratory effort (McKay et al. 2003), while M1 is 

associated with voluntary motor execution (Stippich et al. 2007; Solodkin et al. 2004). Therefore, 

investigation of the human abdominal musculature representation in M1 and SMA and the 

connectivity associated with this representation may provide unique insight into the neural 

correlates of task-specific activation of an individual muscle.  

The broadly somatotopic organization of muscle and movement representation in M1 is 

well established (Penfield and Boldrey 1937). Intracranial stimulation studies have 

demonstrated some somatotopic organization of SMA in animals and humans (Mitz and Wise 

1987; Fried et al., 1991) but evidence to date has focused on limb representation. In humans, 

non-invasive mapping studies utilizing transcranial magnetic stimulation (TMS) have suggested 

that motor cortical representation of axial musculature including the paraspinals and diaphragm 

extends anteriorly into SMA (O'Connell et al. 2007; Sharshar et al. 2004). However, without 

confirmation from neuroimaging, it is unclear if these findings truly reflect SMA representation of 

trunk musculature or rather are an artifact due to current spread, the distance between the 
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stimulating coil and the motor area, or lack of selectivity of the surface electrodes utilized to 

measure evoked potentials (Thickbroom et al. 1998). It is also unclear whether each region has 

a separate representational area for a given muscle, or whether there is a a single muscle 

representational area that encompasses contiguous regions of both SMA and M1.  

Functional connectivity, as quantified with resting-state fMRI, maps both direct and 

indirect connections within functional brain networks (Buckner et al. 2013; Damoiseaux and 

Greicius 2009; Grafton et al. 2016). To our knowledge, existing investigations of the functional 

connectivity between human motor cortex and other cortical and sub-cortical regions have 

exclusively focused on seed regions in the lateral motor cortex, identified from upper limb 

motion (Biswal et al. 1995; Guye et al. 2003). It is already clear that axial musculature has more 

excitable ipsilateral corticospinal output than limb musculature (Strutton et al. 2004), and that 

axial and appendicular motor control is associated with different pathways in the basal ganglia 

(e.g. Visser et al. 2008). Therefore, it should not be assumed that the connectivity of the axial 

musculature of the medial motor cortex with the rest of the brain is identical to that of the limb 

musculature. Resting-state functional connectivity has recently been shown to predict inter-

individual differences in brain activity during task performance during hand muscle use (Tavor et 

al. 2016). If the resting-state functional connectivity patterns associated with axial muscles could 

be mapped, future studies would be ideally positioned to determine if inter-individual differences 

in a much wider variety of movements could be predicted from resting-state functional 

connectivity.  

The purpose of this study was to take the initial steps in this line of research by 

identifying the motor cortical representation of an axial muscle and then mapping the whole-

brain functional connectivity of this representation. First, we aimed to establish coordinates for 

the cortical representational area of the external oblique muscle in MNI stereotactic space 

utilizing single-pulse TMS, and to confirm these coordinates utilizing task-based fMRI. Second, 

we aimed to determine the location of this representation relative to the different anatomical 
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sub-divisions (Brodmann areas) of motor cortex. We hypothesized that the external oblique 

representation would encompass both the primary motor cortex and posterior supplementary 

motor area. Finally, we probed the resting-state functional connectivity of the muscle 

representation and the rest of the brain. 

 

MATERIALS AND METHODS 

TMS acquisition and analysis.  

TMS Participants 

Thirteen healthy young adults (eight women, five men; mean age: 25.8 + 2.1 years) 

participated in the study. Individuals were eligible to take part in the study if they were between 

18 and 30 years old. The upper age limit was utilized to avoid the potential confounding 

influence of age on brain structure and function (Kong et al. 2013Ferreira & Busatto, 2013; 

Seidler et al. 2010). Exclusion criteria were a history of significant musculoskeletal disorders, 

including back or hip pain, as well as neurological disorders and contraindications to receiving 

TMS. A priori power analysis indicated that eleven participants would be sufficient to quantify 

muscle representation coordinates with a power of at least 80%. All participants provided 

informed consent and the study procedures were approved by the Institutional Review Board of 

the University of Southern California.  

 TMS procedures 

 Each participant was fitted with a Lycra cap with 1 cm grid markings, and disposable self-

adhesive electromyography (EMG) electrodes were placed over the contralateral external 

oblique muscle (EO) (inter-electrode distance 22mm; Myotronics-Noromed, Inc, Kent, WA). The 

electrode was placed slightly anterior to the midpoint of the distance between the iliac crest and 

lower lateral border of the rib cage (Vera-Garcia et al. 2010). EMG data were bandpass filtered 

between 10 and 1000Hz and amplified at a gain of x2000 (Motion Lab Systems, Baton Rouge, 
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LA). Single-pulse stimuli were delivered by a 110mm double cone coil (MagStim 2002, the 

MagStim Company Ltd, MagStim, UK). EMG data and digital output from the TMS unit were 

sampled into the computer at 15000Hz. This high sampling frequency was utilized in order to be 

able to visualize a TTL output from the Magstim unit indicating when the TMS pulse was 

delivered during data collection and post-processing. Starting with the coil placed 2 cm lateral 

and anterior to the vertex (Strutton et al. 2004), the optimal site of stimulation or “hotspot” of the 

EO was determined by delivering a series of pulses around this area to find the scalp location 

that induced the largest and most consistent motor-evoked potential (MEP). 

Following the identification of the EO “hotspot”, the active motor threshold (AMT) was 

quantified by determining the minimum stimulation intensity to evoke five consecutive MEPs that 

were distinguishable from the background EMG activity during a sub-maximal active 

contraction. For later consistency of coil placement during data collection, an infra-red marker 

tracking system (Brainsight®, Rogue Research Inc., Montreal, Canada) was used to co-register 

the subject’s scalp anatomical landmarks to a 3D representation of a standard brain magnetic 

resonance image scan. This also allowed us to estimate stimulation locations in standard MNI 

coordinates. Prior to data collection, maximum voluntary isometric contraction (MVIC) of EO 

was determined by applying manual resistance to the shoulders as the individual performed 

maximal trunk flexion/rotation in the supine position. For data collection, five TMS pulses were 

delivered at 120% AMT at each point on a 6 x 4 cm grid that included the hotspot (120 total 

pulses) while the subject contracted the EO to 20% MVIC (O'Connell et al. 2007; Tsao et al. 

2011;Schabrun et al. 2017). To ensure a consistent level of muscle activation, the subjects 

utilized real-time visual biofeedback to achieve 20% (+/- 5%) MVIC. Subjects rested in a supine 

position for 5-10 seconds between each TMS stimulus. Neuronavigation confirmed that the 6 x 

4 cm grid used during data collection encompassed the pre-central gyrus including both 

supplementary motor area (SMA) and primary motor area (M1).  

TMS data processing and analysis 
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MEP data were acquired and processed with Signal software (Cambridge Electronic 

Design Limited, Cambridge, UK) and then exported to MATLAB® for further analysis 

(MathWorks, Natick, USA). Background EMG activation in a 100 ms window prior to the TMS 

pulse onset was calculated with a root mean square average. MEP amplitude was calculated as 

the peak-to-peak amplitude of each MEP with the mean background activation subtracted. The 

average MEP amplitude for the five stimuli at each grid point was then calculated. These 

average MEP magnitudes for each grid point were normalized with respect to each subject’s 

maximum MEP magnitude. There are multiple ways to quantify the location of the cortical 

representation of a muscle from MEP magnitude. These include calculation of the amplitude-

weighted “center of gravity” for the representation, or determination of the single location that 

provided the largest MEPs.  As we wished to explore the extent of the representation across M1 

and SMA, rather than determining a single point, we adopted a two-part approach. Firstly, the 

existence of separate peaks or foci of representation within the motor map for each individual 

was explored by determining grid locations where MEP amplitude at a grid location was greater 

than the amplitude of all of the surrounding grid sites. Secondly, a one-way ANOVA (factor; grid 

location, with 24 levels) with two-tailed Tukey HSD correction for multiple comparisons was then 

used to identify grid locations with MEP amplitudes that were significantly greater than other 

locations.  

 

Task-based fMRI acquisition and analysis.  

The TMS study provided mediolateral (x) and rostrocaudal (y) coordinates for grid 

locations with the largest MEPs in standard MNI space, projected onto the cortex surface. The 

task-based fMRI study was then conducted to confirm these coordinates and establish the 

dorsoventral coordinates of EO by determining the location of voxels in the motor cortex that 

became significantly active during EO muscle contraction.  

Participants 
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A second group of 7 healthy adults (4 female) with a mean age 27.4 ± 3.5 years 

participated in the task-based fMRI study. Procedures were performed at the University of 

Southern California and approved by the University of Southern California Institutional Review 

Board. All participants provided informed consent. 

fMRI procedures 

 Before the experimental session, participants were trained to perform an abdominal 

bracing maneuver at approximately 20% of MVIC in a mock MRI scanner. During the training, 

muscle activation in the EO was monitored in real-time with surface EMG and participants were 

provided with visual and auditory cuing to maintain the correct level of activity until they were 

able to contract at the correct level without feedback. Participants were also trained to perform 

the contraction while keeping the head still.  

The study utilized a 3 Tesla scanner (GE Signa Excite) with an eight-channel head coil. 

Subjects were positioned in supine (with a bolster under the knees) while viewing a fixation 

crosshair, with foam pads within the head coil used to limit head motion. In the scanner, 

subjects were asked to contract their abdominal muscles to approximately 20% effort in the 

same way as during the training session. As in our previous fMRI studies of various muscle 

tasks (Asavasopon et al. 2014; Kutch et al. 2015; Rana et al. 2015) T2-weighted echo planar 

image volumes with blood oxygen level-dependent (BOLD) contrast (echo time, 34.5 ms; flip 

angle, 90°; field of view, 220 mm; pixel size, 3.43 mm) were collected continually every 2.5 s 

during the abdominal run (six 30 second blocks of 15 repeated contractions, each contraction 

lasting two seconds, interspersed with 30 second blocks of rest). Each volume consisted of 37 

axial slices (3 mm slice thickness, 0.5 mm interslice gaps) that covered the brain from vertex to 

cerebellum. Additionally, a T1-weighted high-resolution anatomical image was acquired from 

each subject.  

fMRI data processing and analysis 
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 Each participant’s fMRI data were pre-processed using the FMRIB Expert Analysis Tool 

(FEAT - http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), which included skull extraction using the brain 

extraction tool in FSL, slice timing correction, motion correction, spatial smoothing using a 

Gaussian kernel with full width half maximum (FWHM) of 5 mm, and nonlinear high-pass 

temporal filtering (100 s). A general linear model (GLM) was used to examine the changes in 

BOLD signal associated with EO muscle activation. Participant-level whole-brain GLM analyses 

for each participant were used to determine the change in BOLD signal during the contraction 

blocks compared with the rest blocks. A group-level mixed-effect (FLAME 1 in FSL) analysis 

was then performed to identify voxels in standard MNI coordinates with significant increases in 

BOLD signal associated with EO contraction compared to rest. Group-level images were 

performed with cluster-based correction for multiple comparisons with Z > 2.3 and p < 0.05.  

Task-based fMRI and TMS to create motor cortical regions-of-interest (ROI).  

The thresholded statistical map provided by the task-based fMRI experiment of EO muscle 

contraction, along with the TMS stimulation grid locations that elicited significant MEPs in the 

EO muscle, were used to identify voxels that were 1) activated during EO contractions and 2) 

closer to locations on the TMS stimulation grid that produced significant MEPs than to locations 

that did not. Inferences about specific Brodmann areas were made using the Jülich Histological 

Atlas within FSL (Eickhoff et al. 2005). The motor cortical ROI for rs-fMRI functional connectivity 

analysis were the following: the BA4 ROI (M1) was defined to be all voxels meeting the above 

criteria (1 & 2) that were most likely BA4. The BA6 ROI (SMA) was defined to be all voxels 

meeting the above criteria (1 & 2) that were most likely BA6.  

rs-fMRI functional connectivity analysis of motor cortical ROI.  

Participants 

Functional connectivity analyses were performed on a set of resting-state rs-fMRI 

images from 200 participants from the 1000 Functional Connectome Project 

(http://www.nitrc.org/ir/). From this repository, two large datasets with 100 participants in each 

http://www.nitrc.org/ir/
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were constructed - the first dataset was used for discovery and the second was used for 

validation. Participants were selected according to the following criteria. 1) Participant had 3T 

rs-fMRI scans with TR=2000 ms, 2) Participant age and sex were available in the repository 

metadata, 3) Participant was in the age range of the TMS and task-based fMRI studies. Head 

motion limits were adjusted until 200 participants meeting the criteria with the smallest amount 

of head motion were selected (selected participants had no more than 0.6 mm of head 

translation and no more than 1.2° of head rotation). These 200 participants were randomly 

assigned to the two groups so that each group would have equal numbers of men and women 

and the groups would be as age-matched as possible. The final group of participants had 122 

women and 78 men, with an age of 22.1 ± 2.5 years. 

Resting-state fMRI data processing and analysis 

 Resting-state (rs-) fMRI functional connectivity analyses were performed as GLM 

analyses in FSL as in previous studies (Rana et al. 2015). Pre-processing of each participant’s 

rs-fMRI time series was performed using FEAT and included skull extraction using the brain 

extraction tool (BET) from FSL, motion correction, spatial smoothing using a Gaussian kernel of 

full-width half-maximum of 5 mm and nonlinear high-pass temporal filtering (150 s). The first 

four volumes were removed to allow for signal stabilization. In each participant, average signals 

from the BA4 and BA6 ROIs (seed signals) were constructed. The functional connectivity of 

each of these signals with each voxel in the brain was quantified by a GLM, modeling each 

voxel’s BOLD signal as a combination of either the BA4 signal or the BA6 signal and several 

sources of noise of no-interest (six parameters obtained by rigid body correction of head motion, 

the whole-brain signal averaged over all voxels of the brain, a signal from a ventricular ROI, and 

a signal from a white matter ROI). Functional connectivity for each region was represented as 

the regression coefficient for the seed signals in the GLM. Individual participant maps of BA4 

functional connectivity and BA6 functional connectivity were then registered to standard MNI 

space for cross-participant statistical analysis. 
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 Validation of the results was performed as follows. In the discovery group, maps of the 

effect size of BA6 functional connectivity > BA4 functional connectivity across participants were 

made and examined. Based on inspection of the spatial distribution of effect size in the 

discovery group, we chose to validate functional connectivity differences in 4 areas: basal 

ganglia, cerebellum, primary somatosensory cortex, and the superior parietal lobule. Voxels in 

each of these regions that had effect size magnitudes of at least 0.3 (small but meaningful effect 

size, Cohen 1998) were identified. Then, and without any further modification, a functional 

connectivity difference value (functional connectivity with BA6 minus functional connectivity with 

BA4) was extracted for the identified voxels in the 4 areas (averaging across voxels within each 

area for each participant) in the separate validation group. A t-test within the validation group 

was used to confirm that functional connectivity difference values were significantly different 

from 0 and matched the direction of change observed in the discovery group. As an additional 

analysis that did not depend on an effect size threshold, within each participant we averaged the 

functional connectivity difference (BA6-BA4) for all voxels within a small 3mm radius sphere 

centered at the location of peak effect size in the discovery group for each of the 4 areas 

described above. We report the coordinates and effect size for the functional connectivity 

difference in Table 1. The coordinates, without further modification, were used to extract the 

average functional connectivity differences from all participants in the validation group. These 

functional connectivity differences were compared to 0 (no difference in functional connectivity 

between BA6 and BA4) using a t-test, and these validation results are also reported in Table 1.  

 

RESULTS 

In all individuals, the grid location with the largest average MEP amplitude was within 

M1. Eleven out of the thirteen the participants demonstrated MEP amplitudes of at least 60% of 

their maximum amplitude in grid locations corresponding to SMA. Of these, five had separate 

peaks in MEP amplitude in SMA and M1. Across the group, eight grid locations produced MEPs 
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with amplitudes that were significantly greater than at least one other grid location (F(23, 288) = 

6.58, p < 0.0001; circled grid locations in Figure 1a). MEPs from three exemplar points are 

highlighted in Figure 1a). The coordinates of the eight significant locations were retained for 

further analysis. 

  Significantly active voxels associated with the EO contraction in the three exemplar 

points are shown in Figure 1b. Regions closest to the eight significant TMS locations were 

composed of voxels associated with BA6 anteriorly and BA4 posteriorly (Figure 1c). These 

regions became the ROI for seed-based resting state functional connectivity analysis. The BA6 

ROI was centered at MNI coordinates (x,y,z) of -8, -18, 70 and had a volume of 1.7 cc (cubic 

centimeter); the BA4 ROI was centered at -10, -32, 72 and had a volume of 1.1 cc (Table 1). 

In the discovery group, the BA6 representation of the EO muscle was significantly more 

functionally connected to the basal ganglia (putamen) and cerebellum compared to the BA4 

representation of this muscle. The BA4 representation of the EO muscle was significantly more 

functionally connected to somatosensory cortex and the superior parietal lobule compared to 

the BA6 representation of this muscle (Figure 2a & b). These findings were confirmed in the 

validation group. 

 

DISCUSSION 

This study utilized multiple imaging modalities to establish and validate the 

representation of the human abdominal musculature in M1 and SMA, and to probe the 

functional connectivity of the sub-regions within this representation. Our study extends previous 

findings in animal and human studies, and adds to the very limited existing research 

investigating the functional interaction of a muscle representation with the rest of the brain.  

Our work confirms previous findings that suggested that the trunk muscle encompasses 

SMA as well as in M1 (O'Connell et al. 2007). Although previous TMS studies have mapped the 

trunk musculature, their use of skull–based landmarks rather than MNI coordinates to report 
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map locations limited the precise determination of where in the motor cortex trunk muscle 

representation is located (Schabrun et al. 2015; Tsao et al. 2011; Tsao et al. 2010). Importantly, 

the combination of our TMS and task-based fMRI results demonstrates for the first time that the 

size and location of this representational area is not an artifact of TMS methodology.  

 With a large, age-matched group for the rs-fMRI analyses, we were able to determine 

that the functional brain connectivity deriving from the motor representation of external oblique 

varies significantly across sub-regions of the motor cortex. This divergent connectivity closely 

parallels the distinct functions of this muscle. In addition to its involvement in forced expiratory 

maneuvers (Ito et al. 2016), the external oblique has a postural function during any activity 

requiring upright alignment, such as walking (White and McNair 2002), and is a component of 

anticipatory postural adjustments in association with destabilizing limb motion (Hodges et al. 

2003). Its role in goal-directed voluntary motion is evident during gross motions such as trunk 

rotation, and during the more complex movements required by skilled motor activities such as 

gymnastics or dance (Kumar 2004; Tunstill et al. 2001).  

 We demonstrate that the sub-region of the EO representation in SMA has greater resting 

state connectivity with the putamen and cerebellum than the representation in M1. These 

findings are consistent with the postural and respiratory functions of external oblique. SMA is 

activated during preparation and initiation of voluntary movements (Lee et al. 1999; Tanji 1994). 

In addition to the planning of the voluntary motor actions, neuroimaging and lesion studies have 

demonstrated that SMA is involved with the timing and amplitude of the anticipatory postural 

muscle activity that occurs prior to voluntary motor actions (Bolzoni et al. 2015; Ng et al. 2011; 

Viallet et al. 1992). Activity in the putamen during anticipatory postural adjustments has been 

demonstrated in healthy adults (Ng et al. 2011) while impairments in anticipatory postural 

adjustments are evident in individuals with Parkinson’s disease (Bazalgett et al. 1987) with 

known dysfunction of the putamen. An existing study of resting-state functional connectivity of 

SMA also indicated connectivity between SMA and putamen but utilized an ROI in the pre-SMA 
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area obtained during task-based fMRI of finger tapping. This area may have greater association 

with motor preparation and initiation than postural control (Wu et al. 2011; Tanji et al.1994). The 

resting state functional connectivity that we observed between SMA and the cerebellum is also 

consistent with a role in postural activity of the external oblique. The area identified in the 

present study, Lobule VI, forms part of the anterior, motor region of the cerebellum (Stoodley 

and Schmahmann 2010). It is proposed that the anterior cerebellum contributes to the scaling, 

temporal organization and adaptability of anticipatory and compensatory postural muscle activity 

(Diener et al. 1989; Jacobs and Horak 2007; Schmitz et al. 2005).  

 Primary motor cortex (M1) is believed to encode the intrinsic and extrinsic parameters of 

goal-directed motion, as well as playing a role in higher cognitive functions (Kakei et al. 1999). 

Our findings indicate that the sub-region of the external oblique representation in M1 has 

greater resting-state connectivity with the superior parietal lobule than the sub-region in SMA. 

The posterior parietal cortex is increasingly recognized as forming part of the motor system, 

particularly as the locus of the transformation of sensory input into action-specific information 

(Fogassi and Luppino 2005). The superior parietal lobule in particular may be associated with 

visuomotor transformations and localization of the body in space during visually-directed 

voluntary movements (Fogassi and Luppino 2005).  The functional connectivity that we 

demonstrate between M1 and the primary somatosensory cortex may also be associated with 

activation of external oblique during goal-directed movement. Previous research has 

established that direct input from S1 to M1 is important both for executing voluntary motor 

actions and for learning new motor tasks (Borich et al. 2015). Our findings of functional 

connectivity between M1 and sensorimotor cortex and posterior parietal cortex support earlier 

work utilizing a non-specific motor cortex ROI to probe functional connectivity in healthy adults 

(Park et al., 2011). 

All neuroimaging modalities have inherent limitations. TMS provides a direct 

measurement of corticomotor excitability for the muscle of interest, but the properties of the 
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motor map are influenced by coil orientation (Laakso et al. 2014), stimulus intensity (Thordstein 

et al. 2013 ) current spread, and by the depth of the stimulated neurons within the complex 

topography of the motor cortex (Thickbroom et al. 1998). Mapping muscle representation with 

TMS provides a two-dimensional map at the scalp surface that must then be projected onto the 

cortex if TMS data are to be combined with MRI data. Task-based fMRI is an indirect measure 

of neuronal activation. Mapping muscle representation with fMRI provides moderate three-

dimensional spatial resolution, but also results in diffuse activation in areas such as the sensory 

cortex that may skew mapping results if ROIs are not carefully determined. Existing research 

investigating mapping of the hand and foot musculature indicates that motor maps determined 

utilizing neuro-navigated TMS, and task-based fMRI demonstrate spatial congruence but also 

highlights that they may in part be quantifying the activation characteristics of different 

populations of neurons (Herwig et al.2002; Lotze et al. 2003). Therefore, combining these two 

complementary modalities may overcome the limitations of each individual approach and yield 

more valid results. Resting-state functional connectivity analyses provide an indirect measure of 

spontaneous coherent activity in regions with similar functional properties (Fox et al. 2012). 

While resting-state functional connectivity between two brain regions is in part a function of their 

structural connectivity, it is also sensitive to indirect connections via other brain areas 

(Damoiseaux & Greicius, 2009). Resting-state analyses have been demonstrated to predict 

relevant task-based activation and connectivity (Deluca et al., 2006; Tavor et al., 2016) while 

avoiding the potential confounds associated with task-based BOLD signal analyses (Fox et al. 

2012).  However, rs-fMRI analyses are also sensitive to the resting-state conditions under which 

the data were collected (Buckner et al. 2013), and possibly a selection bias to participants able 

to best undergo MRI procedures.  Additional work is needed to clarify how patterns of functional 

connectivity during voluntary activation of the trunk musculature may differ from that of the 

resting-state.  



16 
 

In the present study, TMS and task-based fMRI data were only collected during a 

voluntary abdominal contraction. Ongoing work in developing MRI-compatible postural 

challenges for the trunk musculature (Lomond et al. 2013) will allow us to establish how sub-

regions within the motor cortical representation of trunk muscles are differentially activated 

during postural and voluntary motor tasks, and if there are adaptations in functional connectivity 

during voluntary compared to postural activation. Although we selected to quantify 

representation of external oblique in this study, we do not anticipate that the results would be 

significantly different for other muscles of the trunk that have similar cortical representations and 

function (O’Connell et al. 2007; Tsao et al. 2011). However, additional research is needed to 

determine how the representation in SMA and M1, and associated functional connectivity, may 

differ in appendicular musculature that does not have a significant postural role.  

The ROI identified in this paper could be used to test the association between resting-

state functional connectivity and active muscle control in future studies in healthy individuals 

and individuals with musculoskeletal or neurological dysfunction. Resting-state functional 

connectivity could be measured in individual participants between our motor cortical ROI and 

discovered ROI in basal ganglia, cerebellum, sensory and parietal cortex. We would predict 

inter-individual differences in these resting-state functional connectivity measurements would be 

associated with inter-individual differences in task performance. For example, we would predict 

that participants with stronger SMA-basal ganglia functional connectivity may have enhanced 

performance on tasks involving anticipatory postural adjustments (Ng et al. 2011). Individuals 

with chronic low back pain have altered postural activation of the trunk musculature, including 

external oblique (Silfies et al. 2009), and altered resting-state functional connectivity in regions 

associated with pain perception, in the default mode network and in sensorimotor regions 

including SMA, M1 and lobules IV and V of the cerebellum (Baliki et al.2013; Baliki et al. 2008; 

Pijnenburg et al. 2015). Therefore, future work may also probe if chronic low back pain is 
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associated with altered resting-state SMA-basal ganglia/cerebellar functional connectivity and if 

this correlates with impaired anticipatory postural adjustments in these individuals.  

Our current study represents an important first step towards determining how activity of 

different regions of motor cortex may coordinate with distributed brain areas to produce 

functionally adapted activity in a muscle under varying task contexts.   
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CAPTIONS TO FIGURES 

Fig 1 Motor cortical representation and construction of regions-of-interest (ROI). (a) Heat map 

shows averaged MEP magnitude across all participants, with eight circled locations showing 

where MEP magnitude was significantly greater than other locations. We show example MEP 

traces from an individual participant at three of these stimulation points (red, green, and blue) 

along an anterior-posterior axis. (b) Stimulation locations overlaid on an fMRI activation map 

from voluntary contraction of EO. Regions nearest to the exemplar red, green, and blue 

stimulation points differed in the composition of Brodmann areas (BA) at the voxel level; the red 

stimulation point was closest to voxels associated with BA 6, the green stimulation point was 

closest to voxels associated with a mixture of BA 4 and 6, and the blue stimulation point was 

associated with primarily BA 4 voxels. None of the red, green, or blue stimulation points had a 

contribution from voxels primarily associated with sensory cortex (BA 1-3). (c) We constructed 

ROI for resting-state functional connectivity analysis by finding all voxels closest to the eight 

stimulation points with significant MEP, that activated during voluntary EO contraction, and were 

more associated with BA 6 (red ROI) and BA 4 (blue ROI) 

Fig 2 Distinct functional connectivity of regions-of-interest (ROI) in the motor cortical 

representation of the external oblique (EO) muscle. (a) We found regions in the discovery group 

for which functional connectivity with the EO representation in BA 6 was greater than the 

functional connectivity with the EO representation in BA 4. For these regions, we highlight the 

basal ganglia (putamen) and cerebellum for further analysis. We also found regions in the 

discovery group (100 participants) for which functional connectivity with the EO representation 

in BA 4 was greater than the functional connectivity with the EO representation in BA 6. For 

these regions, we highlight somatosensory cortex and parietal cortex for further analysis. Heat 
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maps show effect size (Cohen’s d) for BA6>BA4 and BA4>BA6. z value is the mm coordinate of 

the axial slice in standard MNI coordinates. (b) Validation of the functional connectivity findings 

on the discovery group on an independent sample of 100 participants (validation group). We 

extracted an average functional connectivity value in the clusters defined in (a) (putamen, 

cerebellum, somatosensory, and parietal), we show the distribution in the discovery group for 

reference, and then show the distribution in the validation group to confirm the reproducibility of 

the results (p<0.0001 ****). Box plot whiskers show 99th percentile, and (+) show outliers  
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