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Abstract 

This study examines behavior of subjects in simultaneous and sequential multi-battle 
contests. In simultaneous contests, subjects make positive bids in each battle 80% of the time and 
bids fall within the predicted boundaries. However, 35% of the time subjects make positive bids 
in only two, instead of all three, battles and they significantly overuse moderately high bids. In 
sequential contests, theory predicts sizable bids in the first battle and no bids in the subsequent 
battles. Contrary to this prediction, subjects significantly underbid in the first battle and overbid 
in subsequent battles. Consequently, instead of always ending in the second battle, contest 
proceeds to the third battle 38% of the time. Finally, in both simultaneous and sequential 
settings, subjects make higher aggregate bids than predicted resulting in negative expected 
payoffs. 
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 1. Introduction 

In multi-battle contests, players expend resources in order to win a series of individual 

battles and the player who wins a certain pre-determined number of battles receives the prize for 

victory in the overall contest. These contests can be characterized along a number of different 

dimensions such as asymmetry between contestants, asymmetry in objectives, number of battles, 

interdependency between battles, and the sequence of play. Over the years, significant theoretical 

advancements have been made in examining how these factors impact individual behavior in 

multi-battle contests, resulting in a number of interesting predictions in the fields of patent races 

(Dasgupta, 1986; Konrad and Kovenock, 2009), R&D competitions (Harris and Vickers, 1985, 

1987), multi-unit auctions (Szentes and Rosenthal, 2003), sports championship series 

(Szymanski, 2003), network security (Hausken, 2008; Levitin and Hausken, 2010), elections 

(Snyder, 1989; Klumpp and Polborn, 2006) and redistributive politics (Laslier, 2002; Roberson, 

2008).1 However, the predictive power of most of these models has not been tested because of 

the lack of suitable field data. Laboratory experiments, on the other hand, provide a controlled 

environment more conducive to collect direct empirical evidence. 

This paper reports an experimental investigation of two theoretical models of a multi-

battle contest by Szentes and Rosenthal (2003, hereafter S&R) and Konrad and Kovenock (2009, 

hereafter K&K). Their common framework captures a contest environment wherein players must 

allocate a fixed amount of resources over three battles. The player who wins a majority (two out 

of three battles) wins the contest and gets the prize (minus his bids) while the loser must still pay 

her bids. Both models assume that the player expending the highest bid wins the individual battle 

with certainty. The expected level of expenditure in both models is equal to the value of the 

                                                 
1 For the review of the literature see Kovenock and Roberson (2012). 
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prize, yielding players zero expected payoffs in equilibrium. The models mainly differ in the 

timing of battles: S&R captures simultaneous multi-battle contest while K&K captures 

sequential multi-battle contest. In case of simultaneous contest, players are predicted to make 

positive and symmetric bids in all battles, with bids restricted by certain theoretical boundaries. 

In case of sequential contest, players are predicted to make sizable bids only in the first battle 

and no bids in the subsequent battles. Contrary to these theoretical predictions, we find that 35% 

of the time subjects in simultaneous contests make positive bids in only two, instead of all three, 

battles and they significantly overuse moderately high bids. Similarly, in sequential contests 

subjects significantly underbid in the first battle and overbid in subsequent battles. Consequently, 

instead of always ending in the second battle, 38% of the time the contest proceeds to the third 

battle. Finally, in both simultaneous and sequential settings, subjects make higher aggregate bids 

than predicted resulting in negative expected payoffs. 

The theoretical literature on simultaneous multi-battle contests goes back to the original 

formulation of a Colonel Blotto game by Borel (1921). Colonel Blotto game is an archetype of 

the strategic multi-dimensional resource allocation problem – players must simultaneously 

allocate their resource endowment across n-battles, with the objective of maximizing the 

expected number of battles won. In each battle, the player who allocates the highest level of 

resources wins, and the payoff from the whole contest is contingent on the number of wins 

across all individual battles (Roberson, 2006; Hart, 2008). The original constant-sum formulation 

of the game featured “use it or lose it” in the sense that resources which are not allocated to one 

of the battles are forfeited. Over the years, different variants of the game have been examined to 

address problems in redistributive politics (Laslier, 2002; Roberson, 2008), military and systems 

defense (Kovenok and Roberson, 2009; Deck and Sheremeta, 2012), and political campaigns 
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(Snyder, 1989; Klumpp and Polborn, 2006). In our study we examine a non-constant-sum 

formulation with a majoritarian objective payoff function where player’s payoff increases in the 

second battle and then decreases for the third battle.2 Szentes and Rosenthal (2003) refer to this 

as a simultaneous “pure chopstick” auction, where chopsticks are suggestive of identical objects 

that useless except in pairs. 

The theoretical literature on sequential multi-battle contests originated with seminal work 

by Fudenberg et al. (1983). In their model, two identical firms simultaneously decide how much 

effort to put in R&D. After observing the result of the first battle, firms move on to the next 

battle. Fudenberg et al. find that firm which leads by two or more battles becomes a monopoly 

and the firm which lags behind drops out of the competition. Subsequent papers have 

investigated the sequence of the decisions, asymmetry between players, impact of discount 

factors and intermediate prizes, cf. Harris and Vickers (1985, 1987), Leininger (1991), Budd et 

al. (1993), Klumpp and Polborn (2006), and Konrad and Kovenock (2009). 

In this study we vary the temporal nature of multi-battle contests (simultaneous vs. 

sequential), but assume that each battle is an all-pay auction with complete information. An all-

pay auction is a simultaneous move game in which each player must pay his bid (as opposed to 

winner-pay auction) and the highest bidder wins the contest with certainty (Hillman and Riley, 

1989; Baye et al., 1996). In the literature, this is a popular method of modeling environments 

where outcome is deterministic and not influenced by random exogenous noise.3 Theoretical 

examination of single-battle all-pay auction dates back to Nalebuff and Stiglitz (1983) and 

Dasgupta (1986), and its applications have been extensively studied for both complete and 

                                                 
2 Other recent extensions of the game include the non-constant-sum formulation with proportional objective 
(Kvasov, 2007; Roberson and Kvasov, 2012) and asymmetric objective (Kovenock et al., 2010; Deck and 
Sheremeta, 2012) payoff functions. 
3 An alternative formulation is the “lottery” or Tullock contest (1980) where outcome is probabilistic, i.e. the 
probability of winning a stage-battle is increasing in player’s own bid and decreasing in the other player’s bid. 
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incomplete information. Our multi-battle contest is modeled as a dynamic game similar to sports 

tournaments and primary elections where each battle is an all-pay auction. 

As detailed above, theoretical work on multi-battle contests extends over several decades 

but experimental investigation in this literature is fairly recent.4 There are several recent studies 

investigating the original simultaneous move constant-sum Colonel Blotto game. Avrahami and 

Kareev (2009) and Chowdhury et al. (2012) find strong support for the predictions of the original 

Colonel Blotto game. Unlike these studies, we examine a non-constant-sum version of the 

simultaneous multi-battle contests and find that individual behavior significantly diverges from 

theoretical predictions, both quantitatively (in terms of the magnitude of overbidding) and 

qualitatively (in terms of the strategies used). 

Experimental studies on sequential multi-battle contests mostly feature elimination 

contests wherein players compete within their own groups by expending efforts, and the winner 

of each group proceeds to the second round (Parco et al., 2005; Amegashie et al., 2007; 

Sheremeta, 2010; Altmann et al., 2012). There are only a few studies that examine the “best of 

n” sequential framework similar to ours. Zizzo (2002) studies a patent race similar to Harris and 

Vickers (1987) and finds that contestants compete more aggressively than predicted. Mago et al. 

(2011) examine the impact of intermediate prizes and luck on bidding behavior, and Irfanoglu et 

al. (2011) focus on behavior in sequential versus simultaneous probabilistic contests. However, 

these studies feature “lottery” contests as opposed to an all-pay auction. Our study is the first to 

                                                 
4 For a comprehensive review of the experimental literature see Sheremeta et al. (2012). The vast majority of 
experimental studies focus on a single battle contests (Davis and Reilly, 1998; Potters et al., 1998; Gneezy and 
Smorodinsky, 2006; Lugovskyy et al., 2010). Despite considerable differences in experimental design among these 
studies, they all find that aggregate expenditure exceeds the equilibrium predictions. Recently, Englmaier et al. 
(2009) conducted a study on first- and second-price winner-pay multi-object auctions that are somewhat related to 
the multi-battle contests. 
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examine bidding behavior in a sequential multi-battle contest with deterministic all-pay contest 

success function. 

The rest of the paper is organized as follows: In Section 2 we briefly describe the 

theoretical framework and the implied predictions for the experiment. Section 3 details the 

experimental design and procedures. Section 4 reports the results of the experiment and Section 

5 concludes. 

 

2. Theoretical Model and Predictions 

2.1. General Model 

Assume that there are two risk-neutral players, ܺ and ܻ, competing in a series of battles 

for a commonly known prize value ݒ. The number of battles is ݊ ൌ 3. Let ݔ௜ and ݕ௜ be the 

amount of resources (bid) spent by players ܺ and ܻ in battle ݅. The contest success function is 

deterministic in the sense that player making the highest bid wins the battle with certainty. To 

win the overall contest and receive the prize, a player has to win a majority of the battles, i.e. at 

least ݇ ൌ ሺ݊ ൅ 1ሻ/2 ൌ 2 battles. The net payoff of ܺ (similarly to ܻ) is equal to the value of the 

prize (if he wins) minus the total bid he has spent during the contest: 

௑ߨ ൌ ൜
ݒ െ ∑ ௜ݔ

௡
௜ୀଵ         if ܺ wins the contest

െ ∑ ௜ݔ
௡
௜ୀଵ            otherwise                 

     (1) 

The battles in the contest proceed either simultaneously or sequentially. In the 

simultaneous multi-battle contest, players simultaneously choose bids ݔ௜ and ݕ௜ for all battles 

݅ ൌ 1, 2, 3. Then, the winner of each battle is determined and the player who wins at least ݇ ൌ 2 

battles wins the overall contest and obtains the prize. In the sequential multi-battle contest, 

players simultaneously choose bids ݔଵ and ݕଵ in battle 1. After determining the winner of battle 
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1, they move on to battle 2 where they choose ݔଶ and ݕଶ. Players compete until one player has 

accumulated the required ݇ ൌ 2 victories. 

 

2.2. Simultaneous Multi-Battle Contest 

The solution to the simultaneous non-constant-sum multi-battle contest exists only for 

three battles and can be found in Szentes and Rosenthal (2003) and Kovenock and Roberson 

(2012). When ݇ ൌ 2 and ݊ ൌ 3, there is a unique, symmetric mixed strategy Nash equilibrium.5 

In the equilibrium, player ܺ makes a draw ሺݔଵ, ,ଶݔ  ଷሻ from a uniform probability measure on theݔ

three-dimensional surface defined by four points ሺ௩

ଶ
, ௩

ଶ
, 0ሻ, ሺ௩

ଶ
, 0, ௩

ଶ
ሻ, ሺ0, ௩

ଶ
, ௩

ଶ
ሻ, and ሺ0,0,0ሻ; and 

then allocates ሺሺݔଵሻଶ, ሺݔଶሻଶ, ሺݔଷሻଶሻ to the three battles according to the joint cumulative 

distribution function ܨሺሺݔଵሻଶ, ሺݔଶሻଶ, ሺݔଷሻଶሻ ൌ ௫భ௫మ

௩
൅ ௫భ௫య

௩
൅ ௫మ௫య

௩
െ

ሺ௫భሻమାሺ௫మሻమାሺ௫యሻమ

ଶ௩
. The 

marginal distribution in each battle is given by ܨሺݔሻ ൌ ටଶ௫

௩
 with ݔ א ቂ0, ௩

ଶ
ቃ. The expected total 

bid expenditure by both players is equal to the value of the prize; and therefore, in equilibrium, 

the expected payoff to each player is ܧሺߨ௑ሻ ൌ ௒ሻߨሺܧ  ൌ 0. 

 

2.3. Sequential Multi-Battle Contest 

The solution to the sequential multi-battle contest can be found in Konrad and Kovenock 

(2009). In contrast to the simultaneous contest, battles proceeds sequentially, and both players 

simultaneously choose their bids in each battle. Players learn the outcome of the preceding battle 

before moving to the next battle. Note that the contest can end in two battles if the winner of 

battle 1 also wins battle 2. In the subgame perfect Nash equilibrium, in battle 1 player ܺ 

                                                 
5 Details and derivation of the equilibrium can be found in Kovenock and Roberson (2012). 
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(similarly ܻ) uniformly randomizes according to the distribution function ܨሺݔሻ ൌ ௫

௩
 with 

ݔ א ሾ0,  ሿ. The winner of battle 1 then proceeds to win the overall contest with probability oneݒ

by incurring minimal bid expenditure in battle 2.6 The expected total bid expenditure by both 

players is equal to the value of the prize; and therefore, in equilibrium, the expected payoff to 

each player is ܧሺߨ௑ሻ ൌ ௒ሻߨሺܧ  ൌ 0. Note that sequential multi-battle contest of K&K is 

behaviorally similar to a single battle all-pay auction. 

 

3. Experimental Design and Procedures 

Within the multi-battle contest framework, we employ two treatments: sequential and 

simultaneous. In the simultaneous treatment, two players simultaneously decide on their bidding 

strategy across three battles, and the player who wins two battles wins the contest. In the 

sequential treatment, two players compete in a sequence of battles, and the first player to win two 

battles wins the contest. For our chosen parameters, the theoretical prediction for both treatments 

is shown in Table 1. 

We ran a total of six experimental sessions (three for each treatment). Each session had 

12 subjects, all of whom were volunteers recruited from undergraduate student population at 

Chapman University. No subject participated in more than one session, although some had 

participated in other economics experiments that were unrelated to this research. The 

computerized experimental sessions were programmed using z-Tree (Fischbacher, 2007). 

                                                 
6 The reason for minimal expenditure in battle 2 is as follows: In battle 1, players are symmetric in terms of the 
continuation values for the next battle, but in battle 2, the winner of battle 1 still has a strictly positive continuation 
value and the loser’s continuation value goes down to zero. Since the loser has no incentive to compete in battle 2, 
he makes a bid of zero. K&K assume in case of a tie in bid expenditures, winner is the player with a higher 
continuation value. This implies that the winner of battle 1 wins battle 2 and is the overall contest winner without 
incurring any additional bid expenditure. In our experiment, however, we assume that ties in all battles are 
determined by random coin flip. This implies that in battle 2, the winner of battle 1 should outbid the loser by “an 
epsilon” (see footnote 17 in K&K). 



9 
 

Throughout the session no communication between subjects was permitted and all choices and 

information were transmitted via computer terminals. All decisions were anonymous. Subjects 

were given the instructions, available in the Appendix, and the experimenter read the instructions 

aloud as subjects followed along on paper.7 Before the actual experiment, subjects completed an 

online questionnaire that tested their comprehension of the instructions. The experiment started 

only after all subjects had answered the quiz questions, and explanations were provided for any 

incorrect answers. 

Each experimental session corresponded to 20 periods of play in one of the two 

treatments. In every period, subjects were randomly and anonymously placed into 6 groups with 

2 players in each group. It was common knowledge that the valuation of prize was identical 

across all bidders and equal to 100 francs. Subjects were not allowed to bid more than 100 francs 

in any battle and were informed that regardless of who wins the contest, all subjects would have 

to pay their bids. Subjects were also instructed that in each battle the bidder with the higher bid 

wins, and in case of a tie, winner is determined by a random coin flip. In the simultaneous 

treatment subjects were asked to make bids in each of the 3 battles simultaneously.8 After 

subjects submitted their bids, the computer displayed own bid, the opponent’s bid, the winner of 

each battle, the overall contest winner and the individual earnings that period. In the sequential 

treatment subjects participated either in two or three battles. At the end of each battle, the 

computer displayed own bid, the opponent’s bid, the winner of that battle. The period ended 

when one of the subjects in the group won two battles. At the end of each period subjects were 

                                                 
7 Before the start of the experiment we also elicited subjects’ risk preferences by utilizing a series of 15 lottery 
choices, similar to Holt and Laury (2002). 
8 To keep the terminology neutral, in the instructions we describe the task as allocating tokens to three different 
boxes. 
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randomly re-grouped to form a new 2-player group. The instructions explained the structure of 

the game in detail using a number of illustrative examples. 

At the end of the experiment, 2 out of 20 periods were randomly selected for payment. 

The sum of the earnings for these 2 periods was exchanged at rate of 25 francs = $1. 

Additionally, all subjects received an initial endowment of $20 to cover potential losses. On 

average, subjects earned $21 each, which was paid anonymously and in cash, and earnings 

varied between $14 and $29. The experimental sessions lasted for about 60 minutes. 

 

4. Results 

4.1. Aggregate Results 

Table 1 summarizes the equilibrium predictions and the aggregate results of the 

experiment. First notable feature of the data is that there is strong aggregate overbidding in both 

treatments. The average total bid in the simultaneous treatment (69.2) and in the sequential 

treatment (59.6) is significantly higher than the theoretical prediction (50.0).9 Such significant 

overbidding is not uncommon in experimental literature on contests and all-pay auctions (Davis 

and Reilly, 1998; Potters et al., 1998; Gneezy and Smorodinsky, 2006; Sheremeta, 2010, 2011). 

Moreover, we find that aggregate overbidding does not decrease over time. Figures 1 and 2 

indicate that there is no declining trend over 20 periods of experiment.10 

Finding 1: Average total bid in the simultaneous and sequential contests is significantly 

higher than predicted. 

                                                 
9 A standard Wald test, conducted on estimates of panel regression models, rejects the hypothesis that the average 
total bids in the simultaneous and sequential treatments are equal to the predicted theoretical value of 50 (both p-
values < 0.01). The panel regression models included a subject level random effects error structure to account for the 
multiple efforts made by individual subjects. The standard errors were also clustered at the session level to account 
for session effects.  
10 The coefficient on the time trend variable indicates that bids increase in the sequential treatment (p-value = 0.02) 
and do not decrease in simultaneous treatment (p-value = 0.3).  
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As a result of this persistent overbidding, subjects on average earn negative payoffs (i.e., 

-19.5 in simultaneous and -9.6 in sequential treatment). One explanation for this payoff result is 

based on the ‘exposure problem’ that confronts players in a multi-battle contest. Informally, the 

problem occurs when a player aims to win a set of objects that have synergies and bids more than 

the stand-alone valuation of a single object in the hope of obtaining extra value through synergy 

gained from winning the entire set. In our experiment, synergies across multiple battles emerge 

from the majority rule (wining 2 out of 3 battles). Exposure problem has been widely studied in 

multi-unit sequential and simultaneous FCC spectrum auctions (Englmaier et al., 2009; Van 

Damme, 2002; Cramton, 1997). Furthermore, although the problem exists irrespective of the 

temporal design detail (simultaneous or sequential), one can conjecture that sequential contests 

soften the exposure problem by allowing players to assess the likelihood of successfully 

acquiring the entire set of objects at each stage (Ausubel and Cramton, 2006). Accordingly, we 

also find that the level of overdissipation is higher in simultaneous contests as opposed to 

sequential contests (69.2 vs. 59.6, p-value < 0.01). 

Finding 2: The level of aggregate dissipation is higher in simultaneous contests. 

To further elaborate on the overbidding behavior, following Baye et al. (1999), we 

employ two concepts of overdissipation. Baye et al. define aggregate overdissipation as the sum 

of bids by both players being greater than the value of the prize, and individual overdissipation 

as sum of bids by a single player being greater than the value of the prize. In both treatments, 

mixed strategy Nash equilibrium precludes the possibility of overdissipation in expectation: 

equilibrium aggregate dissipation is equal to the value of the prize (100), and there is no 

individual overdissipation since any bid greater than 100 would guarantee a negative payoff. 

However, since equilibrium involves nondegenerate mixed strategies, for particular realizations 
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of the players’ mixed strategies, aggregate bids may exceed the value of the prize. That is, the 

game exhibits probabilistic aggregate overdissipation. Baye et al. (1999) show that for a single-

battle all-pay auction, the probability of aggregate overdissipation ranges from 0.5 to 0.44 as the 

number of players increases from two to infinity. In conflict with these equilibrium forecasts, 

Gneezy and Smorodinsky (2005) and Lugovskyy et al. (2010) find aggregate overdissipation at 

0.84 and 0.88 respectively. In our experiment, the incidence of aggregate overdissipation is 

similar to these findings – 0.83 in simultaneous treatment and 0.62 in sequential treatment. The 

level of average aggregate overdissipation is 38.3% in the simultaneous treatment and 19.2% in 

the sequential treatment (can also be roughly inferred from Figures 1 and 2). Finally note that 

probabilistic individual overdissipation is a dominated strategy since a player can guarantee a 

payoff of at least zero by bidding zero. Accordingly, in both treatments we find few sporadic 

incidences where individual players bid more than the prize value of 100 (0.02 in simultaneous 

treatment and 0.07 in sequential treatment).11 

 

4.2. Simultaneous Contest 

Theoretical prediction for simultaneous contest is that in each battle players should 

randomize between 0 and 50 according to the cumulative distribution function ܨሺݔሻ ൌ ට
௫

ହ଴
, with 

an average bid of 16.7 in each battle. Figure 3 shows that aggregate behavior largely conforms to 

the equilibrium predictions. In all three battles, the interval over which subjects randomize is 

                                                 
11 Most of these incidences are subject specific. For example, in the simultaneous treatment, one subject is 
responsible for a third of the documented individual overdissipation. Our results are comparable to Gneezy and 
Smorodinsky (2006) who report incidence of individual overdissipation at 0.1. Possible explanations for such 
seemingly “irrational” behavior include mistakes and non-monetary utility of winning (Sheremeta, 2010, 2011; Price 
and Sheremeta, 2011). 
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between 0 and 50 with less than 5% of bids above 50. The overall distribution of bids is also 

remarkably similar in the three battles.  

Finding 3: In the simultaneous contest, bids fall within the predicted boundaries. 

Although the main qualitative predictions of S&R model are supported, there are several 

interesting behavioral deviations from the theory. One, as mentioned above, there is significant 

overbidding, with bid in each battle averaging at 23.1 (compared to the predicted level of 16.7). 

Subjects overuse moderately high bids. Figure 3 notes that instead of a concave distribution, bids 

are distributed according to a convex/linear cumulative distribution function. Second, contrary to 

the theory, players do not employ ‘stochastic complete coverage.’ Figure 3 indicates that there is 

a mass point at 0 in each of the 3 battles, suggesting that subjects do not make any bids in a given 

battle around 20% of the time. A closer look at the individual data shows that subjects make 

positive bids in all three battles only 62% of the time (instead of 100%), and they make positive 

bids in two out of three battles 35% of the time (instead of 0%). 

Finding 4: In the simultaneous contest, 35% of the time subjects make positive bids in 

only two out of three battles (instead of all three) and they significantly overuse moderately high 

bids. 

It is important to emphasize, that such non-optimal behavior is very costly. Given that 

others bid 0 in some battles, one can substantially increase the chance of winning by simply 

making a very cheap bid of 0.1 franc. Therefore, error-based behavioral models, such as quantal 

response equilibrium (McKelvey and Palfrey, 1995), would not be a good explanation for 

Finding 4. However, while it is clear that subjects do not behave in strict accordance with the 

theoretical predictions, the type of behavior described in Finding 4 can be explained by a 

‘guerilla warfare’ strategy found in experiments on Blotto-type games (Kovenock et al., 2010; 



14 
 

Chowdhury et al., 2012; Deck and Sheremeta, 2012). Kovenock et al. (2010), for example, report 

behavior consistent with guerilla strategies in the simultaneous weakest-link contest. They find 

that when the objective for one of the players (attacker) is to win only one battle, then such a 

player utilizes a stochastic ‘guerilla warfare’ strategy, by attacking single battle 80% of the time 

(even when such behavior is not predicted by the theory). In a multi-battle contest, to win the 

overall contest, each player needs to win only two out of three battles. This entails that players 

may randomly select and focus their bid expenditure on just two battles. This also helps mitigate 

the ‘exposure problem’ described in the previous section. Overall, the choice of the number of 

battles is very individual specific. We find that 61% of the subjects can be defined as 

“equilibrium bidders” and 28% as “guerilla bidders.”12 

We find that the probability of winning when subjects make positive bids in only 2 

battles is 0.58 and when they make positive bids in all 3 battles is 0.48. This difference in the 

likelihood of winning is statistically significant (p-value < 0.01). Despite this, however, 

aggregate dissipation rate is remarkably similar whether subjects bid in all 3 or in the chosen 2 

battles (p-value = 0.37). Average total bid across 3 battles is 69.2 and across 2 battles is 75.2. 

This incongruity is explained by the fact that even when subjects make positive bids in all 3 

battles, minimum bid is less than or equal to 1 about 40% of the time. Interestingly enough, 59% 

of the time when subjects employ ‘guerilla warfare’ strategy they choose the same bid across the 

two battles. 

 

 

 

                                                 
12 We define “equilibrium bidders” as subjects who allocate their resources across all three battles more than 60% of 
the time (12 or more periods out of 20) and “guerilla bidders” as subjects who more likely to focus their attention on 
2 battles. 
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4.3. Sequential Contest 

Next we analyze individual behavior in the sequential contest. The theoretical prediction 

of K&K model is clearly rejected by the data, for all three battles. In battle 1, theory predicts that 

each player should uniformly randomize between 0 and 100, with an expected average bid of 50. 

Instead, subjects on average bid 16.7 in battle 1 (Table 1). Moreover, from Figure 4, it is clear 

that instead of a uniform distribution between 0 and 100, there are virtually no bids above 50 

(less than 1% of bids are above 50). In battle 2, theory predicts that the loser of battle 1 should 

bid 0 and the winner should bid 0.1 (an “epsilon”). This theoretical prediction is also rejected by 

the data. Instead of bidding zero, loser of battle 1 bids 24.7, while winner of battle 1 bids 34.0.13 

Finally, the subgame perfect equilibrium for battle 3 is equivalent to a simple all-pay auction 

with two symmetric players (since both players have won one battle each). Therefore, the 

equilibrium strategy in battle 3 is to randomize uniformly between 0 and 100, with the expected 

average bid of 50. Figure 4 shows that, instead, subjects randomize between 0 and 70, with the 

average bid of 35.7. Overall, contrary to prediction, bids in battles 2 and 3 are significantly 

higher than the bid in battle 1 (p-value < 0.01).14 

Finding 5: In the sequential contest, subjects significantly underbid in the first battle and 

make significantly higher bids in the subsequent battles. 

Note that in equilibrium, the sequential contest should never proceed to battle 3. This is 

because the loser of battle 1 should give up in battle 2, and thus the winner of battle 1 should win 

                                                 
13 The observation that the bid by battle 1 winner is significantly higher than that of the loser (p-value < 0.01) may 
be rationalized by “strategic momentum,” as in Mago et al. (2011). 
14 We estimated two panel regression models, where the dependent variable is the bid and the independent variables 
are a period trend and a dummy-variable for battle 2 (or 3). The panel regressions included a random effects error 
structure, with the individual subject as the random effect, to account for the multiple efforts made by individual 
subjects. The standard errors were clustered at the session level to account for session effects. The estimation results 
show that the dummy-variable is positive and significant for both battles 2 and 3 (p-value < 0.01). When comparing 
bids in battle 1 and battle 2, we used all observations. However, when comparing bids in battle 1 and battle 3, we 
used only those observations where contest ended in three battles.   
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battle 2 with probability one. However, Finding 5 indicates that the major competition happens 

not in battle 1, but in the subsequent battles. As a result, the contest proceeds to the third battle 

38% of the time, instead of predicted 0%. Figure 2 displays the average bid in each battle over 20 

periods of the experiment. It appears that the aggregate pattern of behavior does not change with 

experience. Moreover, in all periods, the bidding expenditure profile features a “hold-up”: 

successful participation in later battles requires substantial bids, and this makes it less attractive 

to allocate higher bids in the preliminary battles. 

Finding 6: In the sequential contest, instead of ending the contest in the second battle, 

contest proceeds to the third battle 38% of the time. 

Theory also predicts that the winner of battle 1 wins the overall contest with absolute 

certainty. We find that the probability of battle 1 winner winning the overall contest is 0.8, which 

is significantly lower than the theoretical prediction of 1 (p-value < 0.01). This can be explained 

by the fact that the distribution of bids in battle 2  for the winner and the loser of battle 1 are 

quite similar (Figure 4). More importantly, we observe that loss in battle 1 does not discourage 

the loser and he continues to bid positive amount in battle 2. Consequently, battle 1 winner 

continues his winning streak in battle 2 only 62% of time. In battle 3, theory predicts that both 

players are equally likely to win, and indeed, we find that winner of battle 1 wins the third battle 

48% of the time.  

Finding 7: In the sequential contest, the likelihood of the winner of the first battle 

winning the overall contest is significantly less than predicted. 

Findings 5-7 indicate that the behavior of subjects in the sequential contest poses a 

challenge to the theoretical predictions of K&K model. One conjecture is that although subjects 

do not behave according to the subgame perfect equilibrium, they may still act optimally in each 
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stage-battle. Employing backward induction, consider that average bid in battle 3 is 35.7. This 

implies that subject’s expected payoff from the third battle is positive (0.5*100-35.7=14.3) and 

therefore, positive bid in the second battle are not entirely irrational. The extent of actual 

overbidding, however, is quite substantial. In the data, we find that 87% of the sum of bids in 

battles 1 and 2 are more than 14.3. Even focusing solely on battle 2, 74% of the bids exceed the 

rationalizable threshold of 14.3. Similiarly, if we assume that subjects have correct expectation 

about the competition in battles 2 and 3, then they should not bid as much as predicted by the 

theory in battle 1. Since the average sum of bids in battles 2 and 3 is 42.9, it follows that subjects 

in battle 1 should behave as if the expected payoff was 7.1 (100×0.5-42.9=7.1). Again, we find 

that bids in battle 1 exceeding the rationalizable threshold of 7.1 account for 69.2% of the 

observations. 

Another explanation for overdissipation is that subjects derive a non-monetary utility of 

winning (Sheremeta, 2010; Price and Sheremeta, 2011). Based on the assumption that subjects 

care only about their monetary prize, standard equilibrium theory predicts that battle 1 loser will 

suffer from a dramatic decrease in his continuation value for the next battle, and accordingly will 

not bid in battle 2. However, if we incorporate winning as a component in the subject’s utility 

function, the decline in continuation value for battle 2 is not so dramatic. Loser of battle 1 not 

only has a non-monetary utility of winning battle 2, but may also expect to receive an additional 

utility from a possible win in battle 3. Such a contest, therefore, inherently transforms into a 

multi-battle sequential contest with intermediate prizes; and one of the fundamental theoretical 

results in the sequential contest with intermediate prizes is that “the player who is lagging behind 

may catch up, and does catch up with a considerable probability in the equilibrium” (Konrad and 
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Kovenock, 2009, page 267).15 This explanation is consistent with our finding that the loser of 

battle 1 makes positive bid in battle 2, and in fact wins the overall contest 20% of the time. 

Finally, sunk cost fallacy may also explain part of the overdissipation in sequential 

contests. The payoff maximization exercise underlying the equilibrium in multi-battle sequential 

contest regards expenditure in previous battles as sunk cost, and therefore ignores them. 

Evidence from various behavioral studies, however, suggests otherwise (Arkes and Blumer, 

1985; Friedman et al. 2010). In our experiment, we do not find any evidence of overbidding in 

battle 3 but it would be wrong to view this isolation from the previous bidding behavior. Subjects 

who get to battle 3 have already made positive bids in the previous two battles. We can therefore 

compute the “empirical rationalizable bid” in battle 3 using individual subject data for the 

previous two battles. Specifically, this rationalizable bid, r, is the difference between the 

expected prize of 50 and the bids already incurred in battles 1 and 2. Under the null hypothesis 

(using the premise of no individual overdissipation), subjects should not bid greater than r in 

battle 3. However, under the alternate “sunk cost” hypothesis, subjects who make larger bids in 

battles 1 and 2 are also more likely to bid amounts greater than r in the final decisive battle. In 

our data, the value of r ranges from -46 to 50, with a mean of 4.4 and standard deviation of 21.5. 

We find that 87.6% of the time subjects’ bids in battle 3 are greater than the rationalizable bid r. 

A simple random effect regression shows that there is a positive and marginally significant 

relationship between actual bid and rationalizable bid in battle 3 (p-value = 0.08). Therefore, 

sunk cost may also partially account for overdissipation in the later stages of the sequential 

multi-battle contest. 

 

                                                 
15 In an experimental test of multi-battle contests with lottery success function, Mago et al. (2011) also find that 
intermediate prizes not only lead to significantly higher dissipation by both players, but also reduce the probability 
of the contest ending in 2 rounds. 
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5. Conclusion 

This paper examines behavior of subjects in simultaneous and sequential multi-battle 

contests where each component battle is an all-pay auction with complete information. Our 

experiment provides some support to the qualitative predictions of Szentes and Rosenthal (2003) 

model of simultaneous contest, i.e. bids fall within the predicted boundaries. However, instead of 

the ‘complete stochastic coverage’ strategy, subjects employ the ‘guerilla warfare’ strategy by 

having a significant mass point at zero in each battle. Specifically, 35% of the time subjects 

make positive bids in only two out of three battles (instead of all three) and also significantly 

overuse moderately high bids. In case of sequential contest, data are clearly inconsistent with the 

prediction of Konrad and Kovenock (2009) model. Theory predicts sizable bids in the first battle 

and no bids in the subsequent battles. Contrary to this prediction, subjects significantly underbid 

in the first battle and make substantially higher bids in the subsequent battles. As the result, 

instead of always ending in the second battle, contest proceeds to the third battle 38% of the 

time. Finally, in both simultaneous and sequential settings, subjects make higher aggregate bids 

than predicted resulting in negative expected payoffs. 

Multi-battle contests are prevalent in many real life situations and are readily applicable 

to a number of important strategic environments (e.g., multi-unit auctions, R&D and patent 

races, network security, conflicts, sports championship series, elections, redistributive politics). 

Therefore, it is hardly surprising that there has been an increased interest in the literature on 

multi-battle contests and many significant theoretical advancements have been made over the 

past decade by prominent scholars across a range of disciplines.16 The predictive power of most 

of these models, however, has not been tested because of paucity of suitable field data. Our 
                                                 
16 To name a few contributions over the past decade: Szentes and Rosenthal (2003), Klumpp and Polborn (2006), 
Roberson (2006, 2008), Kvasov (2007), Hart (2008), Hausken, (2008), Konrad and Kovenock (2009), Levitin and 
Hausken (2010), Golman and Page (2009), Roberson and Kvasov (2012). 
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experimental findings emphasize the importance of empirical investigation of theoretical models 

of multi-battle contests. We find that, although neither model of the multi-battle contest predicts 

individual behavior accurately, qualitatively speaking, the static model of Szentes and Rosenthal 

(2003) is a better predictor than the dynamic model of Konrad and Kovenock (2009). We believe 

that this discrepancy in predictive power might be of interest to contest designers – both theorists 

and practitioners in the field. We identify possible behavioral explanations for the lack of support 

for the equilibrium predictions of each model. Future theoretical research should focus on how to 

incorporate these behavioral considerations into formal models of multi-battle contests. 

Our findings also contribute to the recent studies investigating behavior in Colonel Blotto 

games (cf., Avrahami and Kareev, 2009; Arad and Rubinstein, 2009; Chowdhury et al., 2012). 

Unlike these studies, which find strong support for theory, we find that individual behavior 

significantly diverges from the theoretical predictions, both quantitatively (in terms of the 

magnitude of overbidding) and qualitatively (in terms of the strategies used). A possible 

explanation for these differences is that we examine non-constant-sum multi-battle contests 

which allow for overdissipation, while Colonel Blotto game studies examine constant-sum multi-

battle contests where resource allocation is restricted. Another explanation is that we examine a 

majoritarian objective function (i.e., the player winning the best of three battles wins the overall 

contest), while Colonel Blotto game studies examine proportional objective function (i.e., each 

battle has its separate reward). Whether it is the non-constant-sum nature or the majoritarian 

objective function that drives the difference between our findings and the findings of previous 

Colonel Blotto game studies is an interesting question for future research. 

Our experiment points out several fruitful avenues for future research. First, as mentioned 

above, it is important to incorporate behavioral considerations that would produce the ‘guerilla 
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warfare’ strategy, instead of the ‘complete stochastic coverage’ strategy, as an equilibrium 

strategy in multi-battle contests. Second, the solution to simultaneous non-constant-sum multi-

battle contest exists only for three battles (Szentes and Rosenthal, 2003; Kovenock and 

Roberson, 2012). One can conduct an experiment with more than three battles and use the results 

to guide the theory in finding the equilibrium solution. After all, theory and experiments should 

be seen as compliments in explaining individual behavior and can be effectively “combined to 

the benefit of both” (Samuelson, 2005). 
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Table 1: Equilibrium Predictions and Aggregate Statistics 

Treatments Sequential Simultaneous 
Prize, v  100 100 
Number of battles, n  3 3 

 Equilibrium Actual Equilibrium Actual 
Expected bid in B1 50.0 16.7 (0.5) 16.7 24.4 (0.6) 
Expected bid in B2 by B1 winner 0.1 34.0 (1.0) 16.7 22.8 (0.6) 
Expected bid in B2 by B1 loser 0.0 24.7 (1.0) - - 
Expected bid in B3 50.0 35.7 (1.0) 16.7 21.9 (0.6) 
The probability of ending in B2 1.0 0.62 (0.02) - - 
Expected average total bid 50.0 59.6 (1.3) 50.0 69.2 (0.9) 
Expected payoff  0.0 -9.6 (1.8) 0.0 -19.15 (1.7) 
Standard error of the mean is in parenthesis. 
We do not find a difference between expected bid in B3 by winners and losers of B2. 
Therefore, we combine the data for the bids in B3. 
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Figure 1: Bids across All Periods in Simultaneous Treatment  

 

 

Figure 2: Bids across All Periods in Sequential Treatment  
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Figure 3: Distribution of Bids in Simultaneous Treatment 

 

Figure 4: Distribution of Bids in Sequential Treatment 
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Appendix (Not for Publication): Instructions for Sequential Treatment 
 
GENERAL INSTRUCTIONS 
This is an experiment in the economics of strategic decision making. Various research agencies have 

provided funds for this research. The instructions are simple. If you follow them closely and make appropriate 
decisions, you can earn an appreciable amount of money. 

The experiment will proceed in two parts. Each part contains decision problems that require you to make a 
series of economic choices which determine your total earnings. The currency used in Part 1 of the experiment is 
U.S. Dollars. The currency used in Part 2 of the experiment is francs. These francs will be converted to U.S. Dollars 
at a rate of _25_ francs to _1_ dollar. You have already received a $20.00 participation fee (this includes your show-
up fee of $7.00). Your earnings from both Part 1 and Part 2 of the experiment will be incorporated into your 
participation fee. At the end of today’s experiment, you will be paid in private and in cash. There are 12 participants 
in today’s experiment. 

It is very important that you remain silent and do not look at other people’s work. If you have any 
questions, or need assistance of any kind, please raise your hand and an experimenter will come to you. If you talk, 
laugh, exclaim out loud, etc., you will be asked to leave and you will not be paid. We expect and appreciate your 
cooperation.  

INSTRUCTIONS FOR PART 1 
In this part of the experiment you will be asked to make a series of choices in decision problems. How 

much you receive will depend partly on chance and partly on the choices you make. The decision problems are not 
designed to test you. What we want to know is what choices you would make in them. The only right answer is what 
you really would choose. 

For each line in the table in the next page, please state whether you prefer option A or option B. Notice that 
there are a total of 15 lines in the table but only one line will be randomly selected for payment. Each line is equally 
likely to be selected, and you do not know which line will be selected when you make your choices. Hence you 
should pay attention to the choice you make in every line. After you have completed all your choices a token will be 
randomly drawn out of a bingo cage containing tokens numbered from 1 to 15. The token number determines which 
line is going to be selected for payment. 

Your earnings for the selected line depend on which option you chose: If you chose option A in that line, 
you will receive $1. If you chose option B in that line, you will receive either $3 or $0. To determine your earnings 
in the case you chose option B there will be second random draw. A token will be randomly drawn out of the bingo 
cage now containing twenty tokens numbered from 1 to 20. The token number is then compared with the numbers in 
the line selected (see the table). If the token number shows up in the left column you earn $3. If the token number 
shows up in the right column you earn $0. 

While you have all the information in the table, we ask you that you input all your 15 decisions into the 
computer. The actual earnings for this part will be determined at the end of part 2, and will be independent of part 2 
earnings. 
Deci
sion 
no. 

Opti
on A 

Option 
B 

Please  
choose  
A or B 

1 $1 $3 never $0 if 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
2 $1 $3 if 1 comes out of the bingo cage $0 if 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
3 $1 $3 if 1 or 2 $0 if 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
4 $1 $3 if 1,2,3 $0 if 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
5 $1 $3 if 1,2,3,4, $0 if 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
6 $1 $3 if 1,2,3,4,5 $0 if 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 
7 $1 $3 if 1,2,3,4,5,6 $0 if 7,8,9,10,11,12,13,14,15,16,17,18,19,20 
8 $1 $3 if 1,2,3,4,5,6,7 $0 if 8,9,10,11,12,13,14,15,16,17,18,19,20 
9 $1 $3 if 1,2,3,4,5,6,7,8 $0 if 9,10,11,12,13,14,15,16,17,18,19,20 
10 $1 $3 if 1,2,3,4,5,6,7,8,9 $0 if 10,11,12,13,14,15,16,17,18,19,20 
11 $1 $3 if 1,2, 3,4,5,6,7,8,9,10 $0 if 11,12,13,14,15,16,17,18,19,20 
12 $1 $3 if 1,2, 3,4,5,6,7,8,9,10,11 $0 if 12,13,14,15,16,17,18,19,20 
13 $1 $3 if 1,2, 3,4,5,6,7,8,9,10,11,12 $0 if 13,14,15,16,17,18,19,20
14 $1 $3 if 1,2, 3,4,5,6,7,8,9,10,11,12,13 $0 if 14,15,16,17,18,19,20
15 $1 $3 if 1,2, 3,4,5,6,7,8,9,10,11,12,13,14 $0 if 15,16,17,18,19,20
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INSTRUCTIONS FOR PART 2 
YOUR DECISION 
The second part of the experiment consists of 20 decision-making periods. The 12 participants in today’s 

experiment will be randomly re-matched every period into 6 groups with 2 participants in each group. Therefore, the 
specific person who is the other participant in your group will change randomly after each period. The group 
assignment is anonymous, so you will not be told which of the participants in this room are assigned to your group 

Each period consists of a maximum of three rounds. The period ends when one of the participants wins 
two of the three rounds ("best of three"). Thus, each period will consist of either two or three rounds. In each round, 
you and the other participant in your group will simultaneously make a bid (any number, including 0.1 decimal 
points). Your bid in each round cannot exceed 100 francs. The more you bid, the more likely you are to win a 
particular round. This will be explained in more detail later. The participant who is first to win two rounds receives 
the reward of 100 francs. Your total earnings depend on whether you receive the reward or not and how many 
francs you spent on bidding. An example of your decision screen is shown below in Figure 1: 

Figure 1 – Decision Screen 

 
 CHANCE OF WINNING A ROUND 

If you bid more than the other participant in a particular round you win that round with certainty. So, if you 
bid 30 francs in a particular round while the other participant bids 29.9 francs in the same round then the computer 
will chose you as the winner of that round. In case both participants bid the same amount in the same round, the 
computer determines randomly who wins that round. In case both participants bid zero, the computer determines 
randomly who wins the round. 

 
YOUR EARNINGS 

 Your earnings depend on whether you receive the reward or not and how many francs you spent on 
bidding. The participant who is first to win two rounds receives the reward of 100 francs. Regardless of who 
receives the reward, both participants will have to pay their bids in each round. Thus, the period earnings will be 
calculated in the following way: 
 (1) If the period lasted for only two rounds  
 Earnings of the participant who won both rounds are = 
   = 100 - (bid in round 1) - (bid in round 2) 
 Earnings of the participant who won neither rounds are = 
   = 0 - (bid in round 1) - (bid in round 2) 
(2) If the period lasted for three rounds  
 Earnings of the participant who won two rounds are =  
   = 100 - (bid in round 1) - (bid in round 2) - (bid in round 3)  
 Earnings of the participant who won one round are = 
   = 0 - (bid in round 1) - (bid in round 2) - (bid in round 3) 
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END OF THE ROUND 
After both participants make their round bids, the computer will determine the winner of the round. Both 

participants will observe the outcome of the round – your bid, other participant’s bid and winner, as shown in Figure 
2. Then they make bids in another round. This continues until one of the participants in the group wins two rounds. 

Figure 2 – Intermediate Screen 

 
END OF THE PERIOD 
The period ends when one of the participants in the group wins two rounds. At the end of the period, the 

computer will calculate your period earnings based on whether you received the reward or not and how many francs 
you spent on bidding in each round. Your earnings from that period will be reported on the outcome screen as shown 
in Figure 3. Once the outcome screen is displayed you should record your results for the period on your Personal 
Record Sheet under the appropriate heading. You will be randomly re-matched with a different participant at the 
start of the next period. 

Figure 3 – Outcome Screen 

 
END OF THE EXPERIMENT 
At the end of the experiment we will use the bingo cage to randomly select 2 out of 20 periods for actual 

payment. Depending on the outcome in a given period, you may receive either positive or negative earnings. You 
will sum the total earnings for these 2 periods and convert them to a U.S. dollar payment, as shown on the last page 
of your personal record sheet. Remember you have already received a $20.00 participation fee (equivalent to 500 
francs). If your earnings from this part of the experiment are positive, we will add them to your participation fee. If 
your earnings are negative, we will subtract them from your participation fee. 

Are there any questions? 
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