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ABSTRACT 

Optimized Forecasting of Dominant U.S. Stock Market Equities 

Using Univariate and Multivariate Time Series Analysis Methods 

by Michael D. Schwartz 

 

 

This dissertation documents an investigation into forecasting U.S. stock market equites via 

two very different time series analysis techniques:  1) autoregressive integrated moving 

average (ARIMA), and 2) singular spectrum analysis (SSA).  Approximately 40% of the 

S&P 500 stocks are analyzed.  Forecasts are generated for one and five days ahead using 

daily closing prices.  Univariate and multivariate structures are applied and results are 

compared.  One objective is to explore the hypothesis that a multivariate model produces 

superior performance over a univariate configuration.  Another objective is to compare the 

forecasting performance of ARIMA to SSA, as SSA is a relatively recent development and 

has shown much potential.   

 

Stochastic characteristics of stock market data are analyzed and found to be definitely not 

Gaussian, but instead better fit to a generalized t-distribution.  Probability distribution 

models are validated with goodness-of-fit tests.  For analysis, stock data is segmented into 

non-overlapping time “windows” to support unconditional statistical evaluation.  

Univariate and multivariate ARIMA and SSA time series models are evaluated for 

independence.  ARIMA models are found to be independent, but SSA models are not able 

to reach independence.  Statistics for out-of-sample forecasts are computed for every stock 
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in every window, and multivariate-univariate confidence interval shrinkages are examined.  

Results are compared for univariate, bivariate, and trivariate combinations of highly-

correlated stocks.  Effects are found to be mixed.   

 

Bivariate modeling and forecasting with three different covariates are investigated.  

Examination of results with covariates of trading volume, principal component analysis 

(PCA), and volatility reveal that PCA exhibits the best overall forecasting accuracy in the 

entire field of investigated elements, including univariate models.  Bivariate-PCA 

structures are applied in a back-testing environment to evaluate economic significance and 

robustness of the methods.  Initial results of back-testing yielded similar results to those 

from earlier independent testing.  Inconsistent performance across test intervals inspired 

the development of a second technique that yields improved results and positive economic 

significance.  Robustness is validated through back-testing across multiple market trends.   
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1. INTRODUCTION 

“Essentially, all models are wrong, but some are useful.” 

– George E.P. Box (1919-2013), in the book in “Robustness in Statistics,” 1979 

 

 

Mankind has a strong desire to be able to reliably forecast future events.  Throughout 

history there have been narratives with soothsayers predicting developments yet to happen.  

In the modern world of facts and science, there are practical matters to address for progress, 

improvements, efficiencies, and profits.  Among possible outcomes, credible forecast 

results support (a) risk management, (b) economic, business, and production planning, 

(c) inventory and production control, (d) control and optimization of industrial processes, 

and (e) evaluation of different policies and models.  Inclusion of the term “events” connotes 

a structure revolving around an ordered set of data called a time series.  Forecasts of this 

nature consider problems with the following properties: 

1. Observations of a single variable or multiple variables are collected over some 

period of time, T, and sampled, either randomly or at fixed instants.  This analysis 

uses data sampled in uniform, discrete intervals 1, 2, ,n N  , resulting in an 

(ordered) time series:  1 2, , ,n NZ z z z  .  Times series nZ  may be either 

univariate or multivariate. 

2. A data point n hZ   is a “future” value to be estimated, i.e., forecasted, located at a 

position h sample intervals beyond the last observed point N.  
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Forecasts are also specified as either in-sample or out-of-sample.  In-sample forecasts rely 

on all data within the observation range and predict* new values within the same period, 

e.g., missing values.  Out-of-sample forecasts estimate future values at time points N h  

using only observation data available at time point N. 

 

This dissertation addresses only out-of-sample forecasts.  Technical, mathematically-

driven approaches are utilized to predict values, constrained by information available at or 

before the beginning of the forecast time point.  Clearly, an underlying premise of these 

forecasts is that future values can be estimated based solely on past information.  Another 

way to view this concept is that patterns in the subject time series may be identified, 

modeled, and subsequently evaluated at future time points.†  Performance of a forecast is 

qualified using the training-validation method:   

1. An input data set of N h  values is separated into two sets of lengths N and h, with 

N h . 

2. Data subset N is used to train a model or form a basis from which to forecast. 

3. A forecast at a time greater than N and less than or equal to h is computed based 

only on N values. 

4. The quality of a forecast is “validated” by comparing predicted values to 

corresponding time values in subset h, using some computable measure of error. 

                                                
*  The terms forecast and predict, defined to have the same meaning, are used 

interchangeably. 
†  This premise is by definition in conflict with one commonly-held assumption about 

financial markets called the random-walk hypothesis.  This hypothesis states that stock 
prices are not predictable because of the belief that prices are utterly random. 
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1.1 Input Data 

The analyses herein target out-of-sample forecasting of stock prices of a select group of 

securities traded in the US stock market.  A search was performed using a freely available 

stock screener [1], filtering for stocks with the following characteristics: 

 Standard & Poor’s (S&P) 500 Index 

 Market Capitalization > $10B  B = 109  

 Average Daily Trade Volume > 1M shares M = 106  

 Initial Public Offering (IPO) Date > 25 years ago 

 Price > $7 

 

These five attributes were chosen for the following reasons.  The S&P 500 Index includes 

large companies listed on the New York Stock Exchange (NYSE) or the National 

Association of Securities Dealers Automated Quotations (NASDAQ) stock market, 

respectively, the first and second largest exchanges in the world.  Equities with large 

capitalizations were selected to limit the number to be analyzed (as a computational 

convenience).  Average daily trading volume greater than one million shares was selected 

as an indicator of liquidity, i.e., the ability to freely and easily trade with small bid/ask* 

spreads, such that these spreads may be reasonably treated as insignificant relative to stock 

price.  Stocks with historical data longer than 25 years were selected for study primarily to 

provide multiple non-overlapping observation windows to support analytical statistical 

                                                
*  Simply, the ask price is defined as the minimum amount (per share) that a seller or sellers 

are willing to receive and the bid price is the maximum amount (per share) that a buyer 
or buyers are willing to pay for a security.  (A transaction transpires when the buyer and 
seller agree on a price.) 
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independence.  Additionally, with data covering a 25 year span, all possible market 

conditions were expected to be encountered and consequently produce a wide range of 

stock behaviors.  Finally, stock prices greater than $7 were chosen as a threshold of study 

interest with the intent to avoid higher bid/ask spreads as reported in [2].   

 

The search yielded 197 stocks (see Appendix 8.1) with varying inception dates before 

1990.  The stock with the latest start date was identified and the time range of all stocks 

was trimmed so that all securities spanned exactly the same time range, June 18, 1990 to 

March 21, 2016, yielding 6491 samples for each.  Data for every stock on the list was 

downloaded from Yahoo! Finance [3].  Daily observation variables included date, open, 

high, low, and close prices, adjusted closing price,* and trading volume. 

 

1.2 Stock Price Time Series 

Examining long-term stock patterns spanning many years reveals that every stock has a 

unique time-domain behavior.  Typical examples are given in Figure 1-1.  Time-dependent 

patterns, also called trends, continuously vary, displaying characteristics (in a global sense) 

ranging from rising to falling to somewhat flat (also known as range-bound).  Within each 

trend (up, down, or sideways) a stock also exhibits varying amounts of statistical variance, 

also termed volatility.   

 

                                                
*  The adjusted closing price is a stock’s daily closing price adjusted to include any 

distributions and corporate actions that transpired at any time prior to market open on 
the following day. 



 

5 

 

 
 

 
 

 
 

Figure 1-1.  Typical Stock Time Series (Daily) 
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1.3 Stochastic Characteristics of Stock Prices 

The origin of modern financial mathematical modeling is credited to French mathematician 

Louis Bachelier, as published in his Ph.D. thesis, “The Theory of Speculation,” in 1900.  

Bachelier proposed that stock prices follow a Brownian motion*.  In 1973, Fisher Black 

and Myron Scholes published their Black-Scholes derivative pricing model in a paper titled 

“The Pricing of Options and Corporate Liabilities.”  Subsequently, Robert Merton 

extended the Black-Scholes formula and in 1997 Scholes and Merton received the Nobel 

Prize in Economic Sciences.†  In modern financial theory, the Black-Scholes model‡ is 

used extensively and is reputed to be one of the foremost concepts for determining fair 

prices of stock options.  A key assumption of the Black-Scholes model is that stock prices 

follow a lognormal distribution (since prices cannot be negative).   

 

In contrast to the normal or lognormal models, results of a stock price study by Eugene 

Fama [4] in 1965 pointed to a stable Paretian distribution.☼  Through analyses of the thirty 

stocks of the Dow Jones Industrial Average, he further states, “The presence, in general, of 

leptokurtosis in the empirical distributions seems indisputable.”  Stable Paretian density 

                                                
*  Brownian motion in physics is equivalent to a Wiener process in mathematics. 
†  Black was ineligible to receive the prize due to his death in 1995, but was mentioned as 

a contributor. 
‡  It is also known as the Black-Scholes-Merton model. 
☼  Benoit Mandelbrot, a Polish-born, French and American mathematician, identified non-

Gaussian stable distributions as “stable Paretian” distributions [48]. 
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functions, except for the special limiting case of a Gaussian, are heavy-tailedж and 

leptokurtic.   

 

While the Wiener process proposed by Bachelier follows a Gaussian (or Normal) 

distribution, the Black-Scholes model obeys a lognormal distribution, and Fama’s study 

yielded a stable Paretian distribution, there remains much ambiguity of actual stock price 

stochastic characteristics.  Stable distributions, i.e., the Paretian, have seen limited use 

because in general they have no closed-form expression.  Nontrivial numerical 

approximations exist, but are computationally onerous [5].   

 

There have been a few studies of the distribution of stock returns in various world markets 

(see for example [6], [7], and [8], and included references), but these typically address the 

assumption of normality versus other distributions such as the Paretian, logistic, 

exponential power, scaled-t, or mixtures of Gaussian distributions.  Data time-indexing of 

these stock return analyses range from monthly or weekly down to intraday high-frequency 

increments.  Investigations primarily seek to quantify the lack of fit.  Most, if not all, 

empirical studies of late reject the assumption of normality.   

 

                                                
ж  Usage here connotes heavier (thicker) tails than the Gaussian distribution. 
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1.4 Stock Distribution Models 

Herein, the investigation considers three fluctuation models for characterizing stock 

distributions:  1) simple daily return, 2) normalized model residuals, and 3) normalized 

detrended stock movement.  These are defined as follows.  

(1) Simple Daily Return – The one-period simple return, nR , is defined as [9]  

1

1 1
1n n n

n
n n

P P PR
P P



 


    , (1-1) 

where nP  is the price of an asset at time sample n.  This (or a logarithmic version) 

is the most commonly reported criterion used for stock distribution analyses and 

produces normalized values centered about zero.  The formula clearly reveals a 

normalized first-order difference equation, a simple high-pass filter. 

(2) Normalized Model Residuals – The set of results produced in Chapter 2 yields a 

univariate autoregressive integrated moving average (ARIMA) model for each 

stock in the input data set.  Model residuals are the difference between the 

observed value and the estimated value from the model.  Residuals represent an 

“observable estimate of the unobservable statistical error.” [10]  “If the trend 

model is reasonably correct, then the residuals should behave roughly like the true 

stochastic component, and various assumptions about the stochastic component 

can be assessed by looking at the residuals.” [11]  Mathematically, the normalized 

model residuals, nNMR , are defined as  

n
n

n

MRNMR
D

  , (1-2) 

where nMR  is the model residual and n nD P  is the data at time sample n. 
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(3) Normalized Detrended Stock – As mentioned previously and seen in Figure 1-1, 

stock trends continually vary.  In order to analyze the probability distribution of a 

time series, detrending, i.e., removal of the trend, is required.  It is standard 

practice in the discipline of signal processing to reduce noise by filtering, exposing 

the desired signal for further processing and analysis.  For extracting the trend 

from a stock time series, a two-sample moving-average filter* is applied and the 

smoothed filter output is subtracted from the original time series,† leaving a set of 

stochastic residuals.  Mathematically, the normalized detrended stock, nNDS , is 

defined as 

 
   

1

1

1n n n
n

n n

n n

n n

D F D DNDS
F D F D

D D
D D






  






 , (1-3) 

where  nF D  is the filtered version of the observation data nD .  Conceptually, 

this approach includes elements of both models (1) and (2).  Normalization is 

performed relative to the filtered signal which represents the estimated model.   

Normalization is applied to the model residuals and the detrended residuals to allow direct 

comparison with the daily-returns model. 

                                                
*  The two sample moving-average filter is defined as    1 / 2n n nF D D D   . 

†  This is equivalent to high-pass filtering the data. 
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1.5 Stock Distribution Analysis 

1.5.1 Candidate Distributions 

The approach taken for analyzing the stock distribution models was to construct frequency 

distributions, i.e., histograms, for individual stocks.  Preliminary visual evaluation of 

histograms of the distribution models of a few randomly selected stocks from the stock list 

implied several candidate distributions:  1) Cauchy, 2) Laplace, 3) generalized-t, and 

4) Gaussian.*  The more general skewed versions of these distributions were utilized in the 

analysis to account for any possible asymmetry in the observation data.  As developed in 

[12] and [13], all of these distributions may be derived from the skewed generalized t-

distribution (SGT).  The SGT distribution exhibits a high degree of adjustability and many 

special cases.  Five parameters describe the distribution:  , , , p, and q.  Figure 1-2 

depicts the relationships between the many special cases and identifies the parameter 

values required to represent any particular distribution.†   

 

                                                
*  While the Gaussian was visually a poor match for the data, it was included as a reference 

due to its widespread historical usage. 
†  The figure is adapted from [13] and [49]. 
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Figure 1-2.  Skewed Generalized t-Distribution Interrelationships* 

 

The probability density function (PDF) of the skewed generalized t-distribution is defined 

as  

 

  

1

1/

; , , , ,

12 , 1
1

SGT

qp p
p

pp

f y p q
p

y
q q

p q sign y

  




  




           

 , (1-4) 

                                                
*  Abbreviations used in the figure:  S = Skewed, G = Generalized, ED = Error 

Distribution, T = t = t-distribution. 
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where  ,    is the beta function, p > 0 and q > 0 govern the kurtosis (height and tails) of 

the density*,  is the mean (i.e., location parameter),  > 0 controls the variance, and 

1 1    regulates the skewness.  Table 1-1 summarizes the fixed parameters seen in 

Figure 1-2 that are required for the tested special-case distribution models.  By definition, 

none of the SGT parameters in Figure 1-2 has a fixed value.† 

 

Table 1-1.  Summary of SGT Fixed Parameters 

 Cauchy Laplace Normal 

p 2 1 2 

q 1/2   

 

Thus, the PDF for the skewed Cauchy distribution simplifies to  

 

  

2

22

2; , ,
2

1
1

SCauchyf y
y

sign y

  



  


   
    

 . 
(1-5) 

Additionally, the PDF for the skewed Laplace distribution reduces to  

    
1; , , exp

2 1SLaplace
y

f y
sign y


  

   

  
      

 , (1-6) 

                                                
*  Kurtosis increases as p and q decrease resulting in fatter tails, i.e., a leptokurtic 

distribution.  Increasing p and q reduces kurtosis (possibly yielding negative excess 
kurtosis), resulting in thinner tails and a distribution that is more platykurtic. 

†  It may be noted that in the common t-distribution, also known as Student’s t-
distribution, parameter p = 2 and q is unfixed. 



 

13 

and the PDF for the skewed Normal distribution is  

    

2
1; , , exp

1SNormal
y

f y
sign y


  

   

            

 . (1-7) 

 

Computations were performed using the R-language version 3.2.5 and the R-Package ‘sgt’ 

version 2.0.  Model optimization was executed with the function sgtmle to identify all five 

SGT parameters.  Function sgtmle fits data to the skewed generalized t-distribution using 

maximum likelihood estimation and function dsgt was used to compute the model values 

for each density profile. 

 

1.5.2 Goodness of Fit 

After retrieving the input data and preparing the three model sets described in §1.4, a 

goodness-of-fit measure was computed for each model for each of the 197 stocks in the 

list.  Goodness-of-fit models are used to compare fitted (or theoretical) models with 

observed data.  Several measures for goodness of fit were considered as given in the 

subsequent five formulas.  Note that in the following, iy  are the observation values and 

*
iy  are the fitted model values.  

1. Mean Absolute Error (MAE):   

*

1
1

n
i i

i
y y

MAE
n

 


 


  
(1-8) 
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With MAE, outliers have less influence, but the value is easily understood.  There 

is a disadvantage with noisier data since it places equal weighting on all deviations. 

2. Root Mean Square Error (RMSE):  

 2*

1
2

n
i i

i
y y

RMSE
n

 


 


 
(1-9) 

With RMSE, there is more emphasis or influence by outliers due to the squaring 

operation.  This measure is used often and is an absolute measure. 

3. Normalized Mean Absolute Error (NMAE):  

*

1 1
1

1 1

1

n
i i

i
n n

i i
i i

y y
NMAE

y y
n


 

 



  


 
 (1-10) 

This relative measure is used to compare data sets with different scales. 

4. Normalized Root Mean Square Error (NRMSE):   

 2*

1
2

2

1 1

1 1

n
i i

i

n n
i i

i i

y y

nNRMSE
y y

n n






 



  



 
  (1-11) 

NRMSE, additionally known as the Coefficient of Variation, is also used to 

compare data sets with different scales. 
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5. RMSE Normalized to standard deviation ():  

 2*

2 2 1
3

22

11

1

n
i i

i
nn

ii
ii

y y
NRMSE

yy
n


 










   



  (1-12) 

This approach is most appropriate and commonly used when the distribution is 

Normal, since each multiple of σ indicates a percentage of values lying within the 

 band, i.e., 68.3–95.5–99.7%.  In the case of non-Gaussian distribution, 

normalization to σ does not represent these same well-known percentages; 

however, for a unimodal distribution with a known mode, the Gauss Inequality 

(also known as the Camp-Meidell Inequality) may be utilized to find associated 

percentage bands 55.6–88.9–95.1%.  (See [14] and Appendix 8.4 for a discussion.)   

 

After preliminary evaluation of some densities, NRMSE (1-11) was selected as the best 

goodness-of-fit measure for use in the investigation since 1) non-Gaussian densities were 

evident, 2) there was uncertainty regarding the occurrence of outliers, 3) it was desired to 

maintain the significance of outliers, 4) normalization was required to compare the diverse 

price ranges of included stocks, and 5) resulting magnitudes were larger compared to 

NRMSE  which was the next desirable choice. 

 

For additional assessment, the Cramer-Von Mises (CVM) test was applied as a type of 

goodness-of-fit test based on the empirical distribution function.  The basis of the method 

is to determine the quality of agreement for an observed sample cumulative distribution 
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function (CDF) to a hypothesized CDF.  The Cramer-Von Mises test statistic for evaluating 

the null hypothesis 0 : ~ ( )H X F x , that the distribution X follows a hypothetical 

distribution ( )F x , is defined as [15] [16]   

 
2

:
1

2

:
1

1 2 1
12 2

1 2 1
12 2

n
k n

k
n

k n
k

kCVM F x
n n

kU
n n





    
 

    
 




 , (1-13) 

where 1: :, ,n n nx x  refers to an ordered random sample of size n, and :k nU  are ordered 

uniform variables.*  The computed CVM  statistic value is subsequently compared against 

a table of critical values, 1CVM  , to find its corresponding p-value.  The null hypothesis, 

0H , should be rejected if 1CVM CVM   for an   level of significance.  It is important 

to note that the CVM test evaluates a Type II statistical error.†  Computations for the 

Cramer-von Mises test were performed with the function cvm.test available in the R-

Package ‘goftest’ version 1.0-3.   

 

                                                
*  The CVM test of an arbitrary distribution is equivalent to a test of uniformity as 

developed in [15] and [16]. 
†  The Type II error is defined as incorrectly retaining a false 0H .  In other words, there 

is a failure to have enough statistical evidence to reject 0H , which is in no way 
equivalent to having strong evidence to support 0H .   
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1.6 Distribution Analysis Results 

Each of the four distributions previously identified (skewed versions of Cauchy, Laplace, 

Gaussian, and Generalized-t) were individually fit to all 197 stocks in the stock list.  

Moreover, every fit was performed for the daily returns, model residuals, and detrended 

residuals.  For a sense of fits for the various distributions, Figure 1-3 shows an example of 

stock distributions falling near the average of the range of fit errors.*  Clearly, all three sets 

of observation data have similar types of distributions.  The horizontal scales of daily 

returns and model residuals are very similar, but the horizontal scale for the detrended 

residuals is much narrower.  Inasmuch as all three fluctuation models are normalized, there 

appears to be less spread, i.e., smaller variance, in the filtered (detrended) model.  This is 

explained by the additional 1nD   term in the denominator of equation (1-3) which reduces 

the magnitude of the first difference, i.e., the numerator, by approximately two.  The 

vertical axes are set in logarithmic form because a linear scale provided extremely poor 

visibility for distinguishing between curves.  With the logarithmic scale it clear that the 

Gaussian fit is worst in the tail regions.  Corresponding numerical results for Figure 1-3 

are given in Table 1-2.   

 

 

 

  

                                                
*  Note that “Observations” in Figure 1-3 represent conventional histogram bar heights.  

Bars were not included in an attempt to enhance visualization. 
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Figure 1-3.  Typical Example of Distribution Fits 
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Table 1-2.  NRMSE Summary for Southwest Airlines (LUV) 

 Daily Returns Model Residuals Detrended Residuals 

Skewed Cauchy 0.510 0.374 0.509 

Skewed Laplace 0.487 0.344 0.493 

Skewed Gaussian 0.411 0.265 0.409 

Skewed Generalized-t 0.361 0.150 0.359 

 -0.001 -0.001 0.000 

 0.025 0.024 0.012 

 0.059 0.014 0.034 

p 1.786 1.693 1.790 

q 3.163 3.815 3.146 

 

The top section of Table 1-2 shows the fit errors for all distributions and fit models for 

example stock symbol LUV.  Lowest errors are in bold.  Although all three models were 

normalized in an attempt to allow comparisons, of principal importance were relative 

magnitudes within each column.  A key result was that the SGT distributions yielded the 

best fit (lowest error) in all cases.  That the SGT showed the best fit was apparent in the 

curves shown in Figure 1-3 as observations tended to fall on both sides of the SGT curves.  

It was indisputable that the Gaussian distribution possessed a visibly poor fit as it fell off 

in the tail regions, which tended to support rejection of normality as noted in other studies.  

Additionally, the goodness of fit for the Cauchy distribution was limited due to its 

characteristic fatter tails. 
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Parameter estimates from maximum likelihood estimation of the SGT distribution are 

shown in the bottom section of Table 1-2.  Mean, , and skew parameter, , were negligibly 

small, indicating a high degree of symmetry about zero.  The value of the variance-control 

parameter, , was virtually the same for daily returns and model residuals, but was half as 

large for the detrended model.  This discrepancy was previously attributed to the effects of 

the moving average filter.  Parameter values for p and q match closely across all models.  

With p ≈ 1.76 and q ≈ 3.4, the estimated curve was leaning toward a Student’s t-

distribution.  A review of the graphs revealed that the optimum SGT fit for all three 

fluctuation models appeared nearly equidistant from both Laplace and Gaussian 

distributions.   

 

Figure 1-4 shows the normalized RMS errors across all 197 stocks in the stock list for daily 

returns and detrended residuals.  Although not shown, behavior of the model residuals was 

similar.  As a general rule, the SGT distributions yielded the lowest errors.  This is seen in 

the red series in the plots. Also noteworthy was that the Gaussian distributions typically 

have the highest errors, although there are several exceptions.   

 

Table 1-3 provides the numerical statistics of the normalized RMS errors for the entire 

stock list for each of the three models.  The SGT distribution yielded the lowest errors in 

every category, as indicated in bold.   
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Figure 1-4.  Normalized RMS Errors Across All Stocks 
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Table 1-3.  Summary Statistics of NRMSE for All Distribution Estimates 

 Skewed 
Cauchy 

Skewed 
Laplace 

Skewed 
Gaussian 

Skewed 
Generalized-t 

Daily Returns 
Median 
Mean 
Max 
Min 
Std Dev 

 
0.454 
0.508 
1.888 
0.317 
0.185 

 
0.439 
0.488 
2.414 
0.265 
0.212 

 
0.460 
0.548 
3.348 
0.230 
0.335 

 
0.292 
0.341 
1.099 
0.110 
0.169 

Model Residuals 
Median 
Mean 
Max 
Min 
Std Dev 

 
0.381 
0.407 
2.029 
0.239 
0.146 

 
0.356 
0.376 
2.018 
0.164 
0.150 

 
0.414 
0.465 
3.616 
0.244 
0.291 

 
0.174 
0.204 
0.701 
0.054 
0.108 

Detrended Residuals 
Median 
Mean 
Max 
Min 
Std Dev 

 
0.458 
0.509 
2.227 
0.316 
0.187 

 
0.446 
0.491 
2.303 
0.269 
0.194 

 
0.466 
0.547 
3.698 
0.229 
0.332 

 
0.306 
0.351 
1.264 
0.134 
0.177 

 

A graph of results for the second goodness-of-fit evaluation using the Cramer-von Mises 

test is shown in Figure 1-5.  The frequency of occurrence (count) for values less than the 

significance level (threshold = 0.05) are given in the legend for each model.  These 

computed to approximately 12%, 11%, and 3% for daily returns, detrended residuals and 

model residuals, respectively.  Overall, there was good agreement that most of the stock 

distributions (≈ 90%) were accurately classified as generalized t-distributions. 

 



 

23 

 

A summary of the statistics of the estimated parameters is given in Table 1-4.  Parameters 

, , and  were consistent with characteristics mentioned for the example stock LUV.  

Parameter p ≈ 1.64 for the daily returns and detrended residuals and was slightly lower at 

1.58 for the model residuals, all similar to the LUV example.  The median of parameter q 

ranged from 2.66 to 2.94, while the mean was quite variable due to some extreme values.  

Overall, there was a high degree of consistency for each model across the array of stocks.   

 

 

 
 

Figure 1-5.  p-Values for Empirical CDF Goodness-of-Fit 
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Table 1-4.  Summary Statistics of Parameters for All Distribution Estimates 

    p q 

Daily Returns 
Median 
Mean 
Max 
Min 
Std Dev 

 
0.000 
0.000 
0.001 
-0.002 
0.001 

 
0.017 
0.018 
0.039 
0.0005 
0.005 

 
0.028 
0.027 
0.089 
-0.045 
0.021 

 
1.639 
1.622 
2.698 
0.345 
0.314 

 
2.662 
386.9 

33408.4 
0.860 
2800.3 

Model Residuals 
Median 
Mean 
Max 
Min 
Std Dev 

 
0.000 
0.000 
0.001 
-0.001 
0.000 

 
0.017 
0.018 
0.037 
0.006 
0.004 

 
-0.003 
-0.005 
0.027 
-0.065 
0.016 

 
1.584 
1.576 
2.576 
0.572 
0.255 

 
2.942 
338.6 

22890.0 
0.926 
2695.9 

Detrended Residuals 
Median 
Mean 
Max 
Min 
Std Dev 

 
0.000 
0.000 
0.001 
-0.001 
0.000 

 
0.009 
0.009 
0.019 
0.002 
0.002 

 
0.013 
0.009 
0.071 
-0.602 
0.048 

 
1.647 
1.625 
2.701 
0.675 
0.310 

 
2.665 
435.1 

25197.5 
0.614 
2604.8 

 

Figure 1-6 shows a graph of the p-q relationships of the parameter estimates for each model 

for each stock.  Clearly, most of the estimates fell in the range of 1 2.7p   and 

0.9 10q  .  It is rather deceiving that the estimates fall closest to the Cauchy distribution 

in Figure 1-6 in contrast to the example of Figure 1-3 which shows the Laplace distribution 

as a better visual match to ( , ) (1.76,3.4)p q  .  Of course, some data points fell on the 

standard t-distribution (vertical) line.  Evidently, the SGT model has a substantial 

sensitivity to p and q values with respect to distribution tails. 
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Figure 1-6.  Parameter Estimates 

 

1.7 Summary of Stock Characteristics 

The evidence from analyzing approximately forty percent of the stocks in the S&P 500 

resulted in a strong rejection of the assumption of Gaussian distribution of major U.S. 

equities.  Studied stock data belonged to the category of large market capitalization (large-

cap) and spanned over 25 years.  Distributions of daily stock returns, model residuals, and 

detrended residuals all showed fat tails and high peaks as displayed in the example 

histogram of daily returns in Figure 1-7 (using a linear vertical scale)*.  The alternative 

distributions of Cauchy, Laplace, and Gaussian all resulted in poorer fits than the 

Generalized-t model.  Skewness and mean offsets were found to be negligible.  

                                                
*  This is the same observation data shown in Figure 1-3. 
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Figure 1-7.  Typical Example of Non-Logarithmic Histogram Scale 
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2. STATISTICAL FORECASTING OF TIME SERIES 

“Probability is expectation founded upon partial knowledge.” 

– George Boole (1815-1864), in the book “Collected Logical Works,” vol. 2, 1940 

 

 

This chapter addresses an investigation into the forecasting of stock time series based on 

statistical methods.  All of the concepts and definitions introduced in Chapter 1 are 

applicable here as well.  In addition to computing forecasts, their accuracies must be 

specified and this is expressed with probability limits, i.e., confidence intervals, on each 

side of a forecast value.  While any convenient limits may be used, 95% confidence 

intervals (CI) are utilized in this investigation.  In other words, there is a 95% probability 

that a realized value will occur within the CI limits.   

 

The study compares the results of statistical forecasting of univariate time series to 

multivariate time series.  Forecasting methods are applied to a time series, nZ , assuming 

that the time series can be modeled as a stochastic process with an identifiable form.  The 

paradigm used is the very general autoregressive integrated moving average (ARIMA) 

model.  The hypothesis investigated is whether a multivariate time series of correlated 

stocks produces better forecast results than a single (univariate) series alone. 
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2.1 Analysis Approach – Windows and Splits 

Each stock series examined spanned a range of 25 years of daily samples for a total of 6491 

data points.  To obtain independent statistics, a stock time series was divided into non-

overlapping windows of 100 samples each*.  This generated 64 completely independent 

sample windows for each stock.  Analyzing 100-sample windows avoided any seasonal or 

repetitive cycles within or between windows that may have occurred over the data span of 

25 years.  One-hundred sample windows also provided a sufficient set of training data to 

establish an adequate model.   

 

Stock time series have two unique aspects that separate them from naturally-occurring or 

scientifically-based time series:  splits and ex-dividend days.  A stock split causes no 

change in a shareholder’s portfolio value nor in a firm’s asset value.  The occurrence of a 

split appears as a noticeable instantaneous shift in the time series pattern at some specified 

date.†  For securities in the stock list, splits typically occurred 3-5 times over the 25 year 

data range.  A split was managed as follows.  For each stock, split dates and corresponding 

split ratios were obtained from Yahoo! Finance via the getSplits function in the R-Package 

‘quantmod’ version 0.4-5.  If a stock splits on day n with ratio r, e.g., a 2-for-1 split returns 

r = 0.5, then all price data in the window prior to day n are multiplied by r.‡  Implementing 

this adjustment produces a price time series without the large shift, providing continuity 

                                                
*  One hundred daily samples correspond to approximately 4.75 calendar months. 
†  Examples can be seen as vertical price changes in Figure 1-1. 
‡  This approach works for forward or reverse splits. 
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for model building.  On the other hand, the processing of any dividend payout on a stock 

was ignored and considered insignificant for this study.   

 

2.2 Univariate Analysis 

To analyze the univariate time series, computations were performed in the R language 

employing the auto.arima function from the R-Package* ‘forecast’ version 6.2.  The 

auto.arima function returns the best-fit ARIMA model when evaluated against the 

Corrected Akaike Information Criterion (AICC), by searching over all possible models 

within specified model order constraints.  The search range for model order was limited to 

a maximum of 5 for p and a maximum of 5 for q.   

 

Univariate ARIMA Model 

The ARIMA model combines the autoregressive (AR) and moving average (MA) models 

with differencing, also known as the integrated (I) component. Differencing parameter d 

specifies the number of first differences applied to the series to achieve stationarity.  Some 

noteworthy models are identified in Table 2-1 [17]. 

 

                                                
*  All R packages referenced herein may be downloaded from the R Archive Network [50]. 
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Table 2-1.  Special ARIMA Models 

Name Model 

White Noise ARIMA(0,0,0) 

Random Walk ARIMA(0,1,0) with no constant 

Random Walk with Drift ARIMA(0,1,0) with constant 

AR(p) ARIMA(p,0,0) 

MA(q) ARIMA(0,0,q) 

 

A time series is required to be stationary in order to produce a proper model estimate.  If 

the model is estimated in the presence of any non-stationary parameters, the estimated 

coefficients may be incorrect.  Differencing makes the time series stationary.  The number 

of required differences can be determined by checking for unit roots.  In the auto.arima 

function, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit-root test was used.*   

 

The non-seasonal ARIMA(p ,d ,q) model† is defined as  

    1 d
t tB B y c B      , (2-1) 

where  z  is the AR polynomial of order p and  z  is the MA polynomial of order q, 

B is the backshift operator,  t  is a white noise process with zero mean and variance 

2 ,  and c is a constant.  Equation (2-1) may be expanded as 

                                                
*  In the KPSS test, the null hypothesis is stationarity and the alternate hypothesis is a unit 

root, i.e., a non-stationary process. 
†  These parameters p and q are entirely different from those mentioned in Chapter 1. 
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   1 11 1p q
p t q tB B y c B B              , (2-2) 

which may restructured into the predictive form as 

1 1 1 1t t p t p t q t q ty c y y                   . (2-3) 

It is clearly seen in equation (2-3) that predictors include lagged values of ty  and lagged 

error terms of t . 

 

The auto.arima function cycles through various combinations of (p ,q) model orders.  After 

selecting a model order, estimation of parameters c, 1 , …, p , 1 , ..., q  is performed 

using maximum likelihood estimation (MLE).  Maximization is accomplished via the 

AICC, defined as [18] 

  2 1 2
2

p q k p q k
AICC AIC

T p q k
     

 
   

 , (2-4) 

where the Akaike Information Criterion (AIC) is 

 2ln( ) 2 1AIC L p q k       , (2-5) 

and L is the likelihood of the data*, T is sample size, 1k   if 0c  , and 0k   if 0c  .  

The (p ,q) model, with estimated parameters, associated with the optimum AICC value is 

the final selected model. 

 

                                                
*  The likelihood is calculated with the arima function in the R-Package ‘stats’, which 

computes the exact likelihood using a state-space representation of the ARIMA process, 
and the innovations, i.e., errors, and their variance are found via a Kalman filter. 
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Forecasting characteristics of ARIMA models depend on the values taken by parameters c 

and d in the above formulas.  Table 2-2 lists the expected performance traits [17].  

Additionally, as parameter d increases, the size of forecast confidence intervals increase as 

well.  On the low end, when 0d  , the forecast standard deviation tends to the standard 

deviation of the historical (training) data.  Interpretation of the long-term forecasting 

behavior of ARIMA models (Table 2-2) infers convergence to the data sample mean.  This 

implies that the utility of stationary models is principally for short-term predictions. 

 

Table 2-2.  ARIMA Model Forecasting Behavior 

c d Long-Term Forecast 

0 0 Tends to zero 

0 1 Tends to a non-zero constant 

0 2 Follows a straight line 

≠ 0 0 Tends to the mean of the data 

≠ 0 1 Follows a straight line 

≠ 0 2 Follows a quadratic trend 

 

2.3 Univariate Results 

Results of applying the auto.arima function yielded a maximum model order of 4 for 

parameters p or q across all windows of all stocks.  In contrast, the frequency of occurrence 

of random-walk models, ( , , ) (0,1,0)p d q  , seen in Figure 2-1, was prominent, ranging 
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from 43 to 77%, with a mean of 63% (indicated by the red line).*  All random-walk models 

occurred with a first difference in the analyzed time series.  From the properties of a random 

walk, the forecast for a model without drift is simply a horizontal projection attached to the 

last observed sample, while a model with drift may project along a sloped path up or down 

from the last observation.  While actual stock price movements have reasons for moving 

as they do,† the implication of the random-walk model is that forecast direction and 

magnitude cannot be predicted.  Hence, a random-walk model is ineffective for producing 

useful forecasts.  Fortunately, random-walk models, although frequent, did not occur in 

every sample window. 

 

 

 
 

Figure 2-1.  Frequency of Univariate Random-Walk Models 

                                                
*  Drift may or may not be present.  Note that a random-walk model with drift indicates 

that the distribution of step sizes has a non-zero mean as opposed to no drift equating to 
a zero mean. 

†  Although beyond the scope of this work, there are many theories regarding stock price 
movement.  To encapsulate, a stock’s change in price is not random, without purpose, 
but may sometimes be explained subsequently. 
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It is generally believed that a well-fit ARIMA model exhibits a lack of serial correlation 

within the model’s residuals [19].  While it is a common practice to use the Ljung-Box 

portmanteau test [20] for evaluating serial dependence, no theoretical basis has been 

developed for identifying the proper number of lags for the test [21].  For T data points, 

Hyndman [22] recommends using l lags where  min 10, / 5l T .  Since Ljung and Box 

published their test approach in 1978, alternative tests with more power have been 

developed [23] [24].  While the Ljung-Box test is time-based, these alternate tests are based 

in the spectral (density) domain and perform better on both Gaussian and non-Gaussian 

distributions, with only small loss of power.  Normality of stock data is clearly absent as 

established in §1.6, and therefore any test must have the ability to verify serial correlation 

for non-Gaussian distributions. 

 

To establish the reliability of the forecasting analyses, serial correlation tests were 

performed on the model residuals for all stocks in all windows using both the Ljung-Box 

portmanteau test and the test statistic, nT , developed in [23].  The Ljung-Box test is 

implemented in the function Box.test in the R-package ‘stats’* and the spectral density test 

for nT  is implemented by the function UnivTest in the R-package ‘dCovTS’ version 1.0.  

The Ljung-Box test was executed with a lag of 10 and degrees of freedom equal to ARMA 

                                                
*  The ‘stats’ package is included in the R core software. 
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model order p q .  The correlation nT  statistic was computed utilizing a Daniell 

smoothing window,* bandwidth = 10,† and number of bootstrap replicates = 499.   

 

Results of the serial correlation tests are shown in Figure 2-2.  The top graph refers to the 

Ljung-Box test results and the bottom plot refers to nT  test results.  Both scatterplots show 

for each stock the proportion of p-values (out of 64 windows) that are below the threshold 

of 0.05 (shown as a red line).  With a null hypothesis of independence, a small p-value 

expresses strong implication against independence, rejecting the null hypothesis.  Thus, if 

a stock displays a small fraction of p-values below 0.05, then the hypothesis of 

independence is accepted.  The Ljung-Box results indicated 55 out of 197 stocks rejecting 

the null hypothesis, whereas the spectral density statistic, nT , rejected only two.  These two 

(PEP and VZ) were recomputed with the Daniell kernel and again found to have four 

windows with p-values less than 0.05 as displayed in Figure 2-2.  As seen in the figure, the 

fractions appear in discrete jumps since they are increments of 1/64.  Results for stocks 

PEP and VZ produced a fourth window where the p-values were below 0.05, pushing them 

over the 0.05 threshold.  Any window with a low p-value may be interpreted as having a 

model fit that is less than the best possible since some serial correlation of residuals 

remains, but this does not invalidate its model.  Inasmuch as the nT  statistic has 

                                                
*  The computational time of the Daniell window was costly, but produced more accurate 

results (according to [23]).  A Bartlett window was also run, yielding results showing 
no serial correlation for all stocks. 

†  Bandwidth was chosen to follow the Ljung-Box lag = 10. 
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demonstrated higher power [23], all models were accepted as independent and not serially 

correlated, validating the ARIMA model fits.   

 
 

 

 
 

Figure 2-2.  Serial Correlation p-Values for Univariate Model Residuals 

 

Accuracy of forecasting direction of movement was found by comparing one-step ahead 

and five-step ahead predictions with out-of-sample data.  Results of directional forecast 

accuracy for each stock are displayed in Figure 2-3 and summarized in Table 2-3.  A 50% 
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threshold represents a type of result from a random occurrence, meaningless for effective 

forecasting.  Results above (or below) the 50% threshold provide an improvement to a 

random guess, either forecasting the correct direction of movement, or forecasting 

incorrectly the direction of movement.*  Table 2-3 also includes the number of occurrences 

for which the sign of forecast directional accuracy was the same for both one-step and five-

steps ahead.  In other words, if both the one-step and the five-step forecast were both greater 

than 50% or both less than 50%, that stock was counted in the total for being in the same 

direction.  This may provide a stronger indication of expected directional movement. 

 

 

 
 

Figure 2-3.  Univariate Directional Forecast Accuracy 

                                                
*  It may also be useful for trading to recognize (with some probability) that a forecast 

direction is incorrect. 
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Table 2-3.  Univariate Directional Accuracy Summary 

Forecast Interval Accuracy Frequency (Out of 197) 

Ahead 1 

> 60% 2 

> 55% 24 

> 50% 93 

< 45% 8 

< 40% 0 

Ahead 5 

> 60% 1 

> 55% 18 

> 50% 93 

< 45% 22 

< 40% 2 

Ahead 1 & Ahead 5 Same Direction 111 

 

Coverage refers to the percentage of forecasts that fall within a confidence interval.  For 

each forecast window of each stock, the one-step- and five-steps-ahead forecasts falling 

within the 95% confidence interval were counted and the fraction of total windows was 

computed.  Results are displayed in Figure 2-4.  The results were greater than 82% for all 

stocks, with the average for one-step ahead at 92.5% and for five-steps ahead at 92.8%. 
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Figure 2-4.  Univariate Forecast Coverage within 95% CI 

 

2.4 Multivariate Analysis 

Multivariate analyses were performed on pairs of correlated stocks.  Vector time series 

models were estimated utilizing the R language and a modified* version of Tsay’s [25] 

VARMA† function available from the R-Package ‘MTS’ version 0.33.  Each time series 

(100-sample window) was initially made stationary by differencing via the ndiffs‡ function 

available in the R-Package ‘forecast’ version 6.2.  Search range for model order was limited 

to 0 2p   and 0 2q  , resulting in nine models computed for each multivariate series 

                                                
*  Any function described as a “modified” version connotes that the essential elements of 

the original function were retained, but that unused lines of code were eliminated. 
†  VARMA is the abbreviation for Vector Autoregressive Moving Average. 
‡  As in the univariate case, the KPSS test was applied as the unit-root test to determine 

the number of differences to reach stationarity.  Computational results yielded a 
difference value of either zero, one, or two, for any window. 
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as given in Table 2-4.  Forecasts were subsequently generated based on the “best” estimated 

model, i.e., the model with the lowest AIC, by employing a modified version of Tsay’s 

VARMApred function found in the ‘MTS’ package.  Inverse differencing was successively 

applied to recover the forecast in the original domain of the time series. 

 

Table 2-4.  VARMA Model Search Range 

Model* 1 2 3 4 5 6 7 8 9 

p 0 1 0 1 2 0 2 1 2 

q 0 0 1 1 0 2 1 2 2 

 

2.4.1 Pre-screening of Multivariate Pairs 

As the computational cost of estimating VARMA models was found to be high during 

preliminary executions, a screening operation was performed to reduce the number of 

possible multivariate sets prior to estimating models.  It was hypothesized that correlated 

stocks would improve forecast results.  Multivariate correlation for all stocks across time-

matched windows was performed with a modified version of Tsay’s ccm function found in 

the ‘MTS’ package, implementing equations (2-8) to (2-11) as follows.   

 

First, the lag-l cross-correlation matrix (CCM) for a stationary multivariate time series tz  

is defined as [25] 

                                                
*  If identical AIC values were encountered, model-order preference was from 1 to 9. 
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1 1
,l l l ij      ρ D Γ D  ,* (2-6) 

where  1, , kdiag  D   is the diagonal matrix of standard deviations of the elements 

of tz , and the lag-l cross-covariance matrix is 

     cov , tr
l t t l t t lE 

      
Γ z z z μ z μ  ,† (2-7) 

with  tEμ z  as a k-dimensional constant vector and the expected value of time series 

 1 2, ,..., tr
t t t ktz z zz .  Clearly, k is the number of time-series vectors. 

 

Correspondingly, the sample CCM components for the sample   1
T

t tz  are estimated as 

follows:  

1

1ˆ
T

z t
tT 

 μ z  , (2-8) 

   0
1

1ˆ ˆ ˆ
1

T tr
t z t l z

tT 


  
 Γ z μ z μ  , (2-9) 

   
1

1ˆ ˆ ˆ
1

T tr
l t z t l z

t lT 
 

  
 Γ z μ z μ  , (2-10) 

                                                
*  Bold letters represent a matrix.  ,l ij    symbolizes a k k  matrix of correlation 

elements. 

†  trA  is the transpose of A  (not to be confused with T which is the sample size). 
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1 1
,ˆ ˆ ˆˆ ˆl l l ij      ρ D Γ D  , (2-11) 

where  0,11 0,ˆ ˆ ˆ,..., kkdiag  D  and 0,ˆ ii  is the element in location ( , )i i  of 0Γ̂ .  To 

determine significance of correlation, ,l ijS , individual elements of the sample CCM ˆ lρ  

were evaluated against the approximate 5% significance level with the test:  

,
,

,

ˆif 21, (significant)
0, (not significant)ˆif 2

l ij
l ij

l ij

T
S

T





  


 .* (2-12) 

The 19306 stock pair combinations were then sorted in order of frequency of significantly-

correlated windows.  Those with greater than 90% correlated windows were selected for 

forecasting analyses. 

 

2.4.2 Multivariate ARIMA Model 

The multivariate ARMA model, or vector ARMA (VARMA), is defined as a multi-

dimensional form of the univariate ARMA model: 

0
1 1

p q

t i t i j t j t
i j

 
 

    z φ φ z θ ε ε  . (2-13) 

                                                
*  Under the white noise assumption, a more exact test would be against 1.96 T  or two 

standard errors. Precision was unnecessary as the significance test was simply seeking 
to reduce the number of time series combinations to evaluate. 
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For VARMA, p and q define model order as in the univariate case, 0φ   is a 1k   constant 

vector, iφ  and jθ  are k k  constant matrices, and  tε  is a zero-mean sequence of i.i.d.* 

random vectors with positive-definite covariance matrix Σ .  As in the univariate case, the 

VARMA may be written in compact form using back-shift operator B as 

   0t tB B φ z φ θ ε  . (2-14) 

In this form,   1 ... p
k pB B B   φ I φ φ  and   1 ... q

k qB B B   θ I θ θ , both matrix 

polynomials in B, and kI  is the k k  identity matrix.   

 

Thus, multivariate or vector autoregressive integrated moving average (VARIMA) was 

implemented by first making stationary each member of the (correlated) time-series pair, 

then applying the VARMA function to estimate nine models to find the best one.  The best 

multivariate model was then forecast using the VARMApred function, followed by inverse 

differencing, i.e., discrete integration, to project the forecasts back into the original (un-

differenced) time domain.   

 

Confidence intervals for the multivariate time-domain forecast results were sought for 

comparison with the univariate cases.  While the VARMApred function produced estimates 

of standard errors, model forecasts were estimated within the constraints of a “differenced” 

domain.  With the assumption of a Gaussian distribution for the standard errors,† it was 

                                                
*  i.i.d. is defined as independent and identically distributed. 
†  Standard errors in VARMApred are based on the assumption of a Gaussian distribution. 



 

44 

ascertained that integration of the squared standard errors, i.e., the variances, produced a 

valid output reconstruction of the variances in the un-differenced domain [26].*  Thus, to 

obtain the reconstituted forecast errors, the predicted errors were inverse-differenced either 

zero, once, or twice, corresponding to the number of differences applied to make the 

particular series stationary for VARMA modeling.  For a one-to-one comparison with the 

univariate analysis, the 95% confidence intervals were computed as the square root of the 

integrated standard-error variances scaled by 1.96 × 2 (both sides of the interval). 

 

2.5 Multivariate Results 

Screening for significance reduced the number of multivariate pairs from 19306 to 45 pairs 

with correlations above 92% (“Tier 1”) and 40 pairs with correlation at 90.6% (“Tier 2”).†  

The majority of significant correlations for these 85 pairs occurred at a lag of zero as shown 

in Figure 2-5.  Maximum correlation occurred with a frequency of 4733 at lag zero, with 

the next most frequent lag occurrence of 85 times at lag 1. 

 

                                                
*  An integrator is a linear system, and it is known that a Gaussian input process to a linear 

system yields a Gaussian output process.  
†  Greater than 92% translates to 59 or more (out of 64) significantly-correlated windows, 

while 90.6% equals 58 (of 64) significantly-correlated windows. 
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Figure 2-5.  Lag Correlation 

 

While the maximum order of the multivariate ARIMA model was restricted to fall in the 

range of zero to two for p and for q, the bivariate model inherently doubles the number of 

coefficients due to the matrix configuration of iφ  and jθ .  Thus, a second order model 

yields possibly four coefficients for either p and/or q.  In opposition, the random-walk 

model with no coefficients for iφ  or jθ , except possibly the constants 0φ , occurred with 

a mean frequency of 34.7% with the distribution as shown in Figure 2-6.*  The implications 

of the multivariate random-walk models are identical to the univariate cases. 

 

                                                
*  All random-walk models were found to be first order: ( , , ) (0,1,0)p d q  . 
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Figure 2-6.  Frequency of Bivariate Random-Walk Models 

 

As in the univariate case, a lack of serial correlation for VARIMA model residuals was 

also sought for representing a well-fit representation.  To aid in validation, a multivariate 

version of the Ljung-Box portmanteau test was evaluated with a modified version of Tsay’s 

mq function found in the ‘MTS’ R-package [25].  The multivariate version of the Ljung-

Box statistic is defined as 

 1 12
0 0

1

1 ˆ ˆ ˆ ˆ( )
m

tr
k ll

t
Q m T Trace

T l
 




 Γ Γ Γ Γ  , * (2-15) 

where again T is the sample size, l is the lag, and 0Γ̂  and ˆ lΓ  are defined previously in 

equations (2-9) and (2-10), respectively.  Lag was set at 10 to match the univariate tests.   

 

                                                
*  m is some positive integer, and is set equal to l in the mq function.   
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Inasmuch as the Ljung-Box test assumes a Gaussian distribution and performs with lower 

power for non-Gaussian data, a multivariate version of the spectral-density-based 

correlation test was applied to support validation of serial independence of model residuals.  

The statistic proposed in [27] was computed using function mADCFtest in the ‘dCovTS’ 

R-package.  Parameters were set for a Daniell smoothing kernel, bandwidth = 10, and 

number of bootstrap replicates = 499, as in the univariate analysis.  The spectral density 

test statistic is defined as [27] 

   
1

2 * 1 1

1

ˆ ˆ ˆ ˆ( ) ( ) ( )
n j

n bw
j

T n j k Trace j j


 


  V D V D  ,† (2-16) 

where  1
11ˆ ˆ ˆ(0),..., (0)kkdiag V V D , diagonal elements   1( ) k

rr rV j   are the auto-

distance covariance function of  ,t rz ,   1( 0) k
rm rV   are off-diagonal auto-distance-

correlation-matrix elements that measure the concurrent dependence between  ,t rz  and 

 ,t mz , ( )k   is the smoothing kernel function, and bw is the bandwidth.   

 

Serial correlation test results are plotted in Figure 2-7 for the bivariate Ljung-Box and 

spectral density nT  statistics.  The plots show the fraction of p-values (out of 64 windows) 

that are below the 0.05 threshold (displayed as a red line).  Here again, with the null 

hypothesis of independence, a small p-value rejects the null hypothesis and thus represents 

                                                
†  *ˆ ( )V  denotes the complex conjugate of matrix ˆ ( )V  
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a strong indication against independence.  Hence, as a test based in statistical probabilities, 

if test results show a small fraction of p-values below 0.05, then independence is affirmed.   

 

 

 

 
 

Figure 2-7.  Serial Correlation p-Values for Bivariate Model Residuals 

 

The Ljung-Box results rejected four stock pairs while the spectral test did not reject any.  

Fractions below 0.05 allowed the occurrence of zero to three windows with possible serial 
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dependence.  Values appearing at 0.0625 or above indicate additional windows with 

possible serial dependence.  Any serial dependence suggests that the model fit for that 

particular window may not be optimal.  With no scores above 0.05, the spectral test 

appeared to show higher power than Ljung-Box.  All models were accepted as independent, 

validating the VARIMA model fits. 

 

Forecast directional accuracy was again investigated with one-step-ahead and five-steps-

ahead predictions on out-of-sample data.  Figure 2-8 shows the results for each pair of 

stocks.*  Implications surrounding the 50% threshold are the same as stated for the 

univariate analysis.  A summary of directional accuracy statistics is given in Table 2-5, 

identifying the number of occurrences for each accuracy condition.  The last line gives the 

number of incidents where both stocks in the pair forecast the same direction (all correct 

or all incorrect). 

 

                                                
*  S1 refers to Stock 1 and S2 refers to Stock 2 in the stock pairs list provided in the 

Appendix. 



 

50 

 

 
 

Figure 2-8.  Bivariate Directional Forecast Accuracy 

 

Table 2-5.  Bivariate Directional Accuracy Summary 

Forecast Interval Accuracy 
Stock 1 Frequency 

(Out of 85) 
Stock 2 Frequency 

(Out of 85) 

Ahead 1 

> 60% 8 8 

> 55% 25 30 

> 50% 50 57 

< 45% 12 7 

< 40% 3 2 

Ahead 5 

> 60% 7 10 

> 55% 29 24 

> 50% 48 46 

< 45% 20 14 

< 40% 3 4 

Ahead 1 & Ahead 5 Same Direction 45 39 

Ahead 1 & Ahead 5 Same Direction 45 
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Coverage analysis was also performed for the multivariate stock pairs.  Results displayed 

in Figure 2-9 revealed greater than 79% coverage for all stocks in the pairs list, with the 

great majority above 85%.  Coverage averages for the points displayed in Figure 2-9 are 

given in Table 2-6.   

 

 

 
 

Figure 2-9.  Bivariate Forecast Coverage within 95% CI 

 

Table 2-6.  Bivariate Mean Coverage 
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(%) 
Ahead 5 

(%) 

Stock 1 91.1 96.5 
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2.6 Summary of Univariate–Bivariate Results 

This study investigated the hypothesis that a multivariate analysis would outperform a 

univariate forecast.  A summary of univariate and bivariate forecasting results provided in 

Table 2-7 supports this hypothesis.*  The less-frequent occurrence of the random walk in 

the bivariate models reduced the obviously undesirable incidence of unpredictability.  

Moreover, directional forecast accuracy was superior for the bivariate model as 

demonstrated by the greater numbers in the regions farther from the 50% uncertainty 

midline.  In the > 60% region, the bivariate models produced greater than 9% of their one-

step forecasts compared to 1% for the univariate models.  For the five-step forecasts in the 

> 60% region, the bivariate models yielded approximately 10% compared to the univariate 

results of 0.5%.  Assuming that an individual who trades stocks seeks higher-probability 

trades,† the trader will presumably be more inclined toward particular stocks near the edges 

of the directional accuracy range as a technique to reduce risk.  As another indicator of 

forecast quality, the bivariate confidence interval coverage was approximately 1.5% worse 

for the one-step forecasts but 3.4% better for the five-steps-ahead forecasts. 

 

Additionally, the 95%-confidence-interval widths were compared for univariate and 

bivariate results.  Each member of the 85 stock pairs was evaluated against its matching 

univariate competitor.‡  The one-step- and five-steps-ahead bivariate confidence intervals 

                                                
*  The serial-correlation tests provide only validating support for the models and do not 

contribute to the quality of the forecasts, and therefore are not included in this table.   
†  A higher-probability trade is one that is more likely to be profitable. 
‡  Within the 85 pairs, there were 107 unique stocks, i.e., some pairs included one member 

stock that was included in one or more other pairs. 
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of these 170 stocks (some duplicates) were compared with their corresponding univariate 

confidence intervals.  The objective was to determine if the additional computations 

required for the multivariate models produced smaller 95%-confidence intervals and 

thereby enhanced forecasts.  Results are displayed in Figure 2-10.  The top graph shows 

the mean frequency of occurrence for shrinkage of the bivariate confidence intervals.  For 

the one-step forecast, all bivariate confidence intervals were smaller at least 78% of the 

time, with an average frequency of occurrence for shrinkage greater than 87%.  For five-

step forecast confidence intervals, the frequency of occurrence of smaller bivariate 

intervals was lower, averaging approximately 74%.  It is noteworthy that every pair showed 

an average reduction of the confidence interval width compared to its univariate 

counterpart.  This is demonstrated by all shrinkage frequency values appearing above the 

50% threshold (blue line).  The bottom graph in Figure 2-10 shows the amount of shrinkage 

produced by the bivariate models.  Mean Percent Shrinkage (MPS) was defined as 

, ,

,1

1 100%
M x m x m

x
x mm

UCIW BCIW
MPS

M UCIW

  
       

  , (2-17) 

where ,x mUCIW  is the univariate confidence interval width for stock x in window m, 

,x mBCIW  is the CI width for the corresponding stock in the bivariate pair, and M is the 

total number of windows (= 64).  Values appearing in the region above the (blue) threshold 

line at zero indicate a shrinkage of the multivariate confidence interval, i.e., an 

improvement over the corresponding univariate model.  In contrast, those with values 

below zero indicate an increase in the multivariate confidence interval.  The one-step 

shrinkage was fairly consistent and averaged 4.2%, but was always positive, i.e., yielding 

shrinkage.  The five-step CI shrinkage was more varied and yielded an average negative 
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shrinkage of 1.7%, resulting in an average slight increase of the multivariate confidence 

intervals.  Table 2-8 summarizes the results.  While the one-step forecast showed an 

improvement, narrowing the CI width in all cases, the five-step CI was more often wider, 

yielding only 25 and 30 CI reductions for Stock 1 and Stock 2, respectively, out of the 85 

pairs.  Thus, for short-term (one-step) forecasts, use of the bivariate model appeared 

advantageous.  The bivariate model also showed advantage to the longer term five-step 

prediction, as well, but more focusing of asset selection was required.  Such a narrowing 

is a natural outcome for identifying a stock to trade, and hence is neither a difficult nor 

unreasonable extra step. 
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Table 2-7.  Univariate-Bivariate Comparison 

Parameter Univariate 
(%) 

Bivariate 
(%) 

Random Walk 63.0 34.7 

Ljung-Box p-Value < 0.05 27.9 4.7 

Spectral Density p-Value < 0.05 1.0 0.0 

Directional Forecast Accuracy  Stock 1 Stock 2 

Ahead 1 

> 60% 1.0 9.4 9.4 

> 55% 12.2 29.4 35.3 

> 50% 47.2 58.8 67.1 

< 45% 4.1 14.1 8.2 

< 40% 0.0 3.5 2.4 

Ahead 5 

> 60% 0.5 8.2 11.8 

> 55% 9.1 34.1 28.2 

> 50% 47.2 56.5 54.1 

< 45% 11.2 23.5 16.5 

< 40% 1.0 3.5 4.7 

Confidence Interval Coverage   

Ahead 1 92.5 91.1 90.9 

Ahead 5 92.8 96.5 95.8 
 

 



 

56 

 

 

 
 

Figure 2-10.  Univariate-Bivariate Confidence Intervals 

 

 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

M
ul

tiv
ar

ia
te

 C
I S

hr
in

ka
ge

 F
re

qe
un

cy

Stock Pair Number

S1 Ahead 1 S2 Ahead 1 S1 Ahead 5 S2 Ahead 5

-12
-10
-8
-6
-4
-2
0
2
4
6
8

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85M
ea

n 
C

on
fid

en
ce

 I
nt

er
va

l S
hr

in
ka

ge
 (

%
)

Stock Pair Number

S1 Ahead 1 S2 Ahead 1 S1 Ahead 5 S2 Ahead 5

Multivariate Shrinkage 

Multivariate Growth 

Multivariate Growth 

Multivariate Shrinkage 



 

57 

Table 2-8.  Univariate-Bivariate CI Statistics 

Bivariate Shrinkage 
Ahead 1 

(%) 

Ahead 5 

(%) 

Frequency (Stock 1) 87.4 73.8 

Frequency (Stock 2) 86.9 75.1 

Mean Shrinkage (Stock 1) 4.1 -2.1 

Mean Shrinkage (Stock 2) 4.2 -1.3 

 

Considering all these elements together, it is plausible to conclude that multivariate, i.e., 

bivariate, forecasting is superior to univariate prediction, within some constraints. 

 

2.7 Extension to Trivariate Sets 

With noticeable improvements resulting from application of the bivariate form, a 

supplementary investigation was conducted to determine whether additional performance 

enhancement was attainable with trivariate models.  A set of stock triplets was built from 

the list of highly-correlated stock pairs by combining “overlapping” pairs.  For example, if 

one stock pair constituted  1 2,S S  and another stock pair comprised  1 3,S S , then a 

triplet was formed as  1 2 3, ,S S S .  Furthermore, if three pairs existed as  1 2,S S , 

 1 3, ,S S   2 4,S S , then all possible “overlapping” triplets were formed:   1 2 3, ,S S S , 

 1 2 4, ,S S S .  Results of screening the stock pairs list (Appendix 8.2) yielded a set of 85 

stock triplets as given in Appendix 8.3.  Analogous tests to those performed on the pairs 

were adapted to execute on the triplets.  Although the models were restricted to 
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     0,0 , 2, 2p q   as previously outlined, the trivariate model substantially increased 

the number of coefficients for the matrices iφ  and jθ , yielding a 3×3 matrix for each (up 

to nine coefficients for each).  In contrast, the random-walk model produces zero 

coefficients with the possibility of a constant 0φ  (3×1 matrix) and resulted in a mean 

frequency of occurrence of 44.8% with the distribution shown in Figure 2-11.   

 

 

 
 

Figure 2-11.  Frequency of Trivariate Random-Walk Models 
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than the three allowed to stay below 0.05.  Again, the spectral test produced superior results 

to the Ljung-Box technique, demonstrating its higher power.  The trivariate VARIMA 

models were accepted as independent by this validation process. 

 

 

 

 
 

Figure 2-12.  Serial Correlation p-Values for Trivariate Model Residuals 
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Forecast directional accuracy for the trivariate models was investigated for the one-step 

and five-step predictions for out-of-sample data.  Results displayed in Figure 2-13 separate 

the one-step and five-step accuracies for clarity.*  As stated previously, the 50% level 

signifies unpredictability.  Triplets that fall farther from 50% indicate more consistency in 

their statistical forecasting accuracy.  Greater than 50% represents correct directional 

forecasting, whereas less than 50% reflects incorrect prediction.  A summary of directional 

accuracy statistics is provided in Table 2-9.  The last line in the table shows the number of 

occurrences where all three stocks in the triplet forecast the same direction (either all 

correct or all incorrect).   

 

Coverage analysis results for the trivariate models are shown in Figure 2-14.  One-step-

ahead coverage showed better than 82% with a mean of 91.5% and the five-steps-ahead 

coverage was greater than 89% with a mean of 96.5%.  Table 2-10 provides a breakdown 

of the averages. 

                                                
*  S1, S2, and S3 refer to Stock 1, Stock 2, and Stock 3, respectively, in the stock triplet 

list provided in the Appendix.   
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Figure 2-13.  Trivariate Directional Forecast Accuracy 
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Table 2-9.  Trivariate Directional Accuracy Summary 

Forecast 
Interval Accuracy 

Stock 1 
Frequency 
(Out of 85) 

Stock 2 
Frequency 
(Out of 85) 

Stock 3 
Frequency 
(Out of 85) 

Ahead 1 

> 60% 10 10 10 

> 55% 26 30 26 

> 50% 48 53 56 

< 45% 14 11 13 

< 40% 3 2 1 

Ahead 5 

> 60% 13 6 10 

> 55% 24 24 32 

> 50% 40 46 46 

< 45% 14 7 11 

< 40% 1 0 5 

Ahead 1 & 
Ahead 5 

Same 
Direction 52 35 54 

Ahead 1 & 
Ahead 5 

Same 
Direction 13 
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Figure 2-14.  Trivariate Forecast Coverage within 95% CI 
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2.8 Summary of Overall Multivariate Results 

Investigating the hypothesis of improved time-series forecasting performance through 

multivariate modeling yielded a mixture of results.  Table 2-11 provides a summary of 

results for univariate, bivariate, and trivariate forecast outcomes covering approximately 

twenty-five years of daily stock market data.  Through application of traditional time series 

analysis techniques, it was evident that multivariate analysis outperformed a univariate 

approach.  Furthermore, the bivariate form appeared to yield the best overall performance, 

even superior to the more complex trivariate model.  A possible explanation is a lower 

correlation coefficient attributed to the third stock in the triplet.  Inasmuch as triplets were 

built from highly-correlated stock pairs such that two of three pair combinations within the 

triplet had high correlation, it was most probable that the third doublet had a correlation 

coefficient less than 90%.  A diminished interrelationship of the third doublet would inject 

a confounding factor into the triplet model, reducing the model’s effectiveness.  It was 

noteworthy that the trivariate models yielded a significant increase in the frequency of 

occurrence of random-walk models. 

 

The distribution of confidence interval shrinkage is shown in Figure 2-15.  The 50% 

threshold seen as a yellow line in the figure separates multivariate confidence-interval 

shrinkage from growth.  Clearly, as seen in the top plot, the trivariate confidence interval 

widths showed a mean shrinkage for all stocks in the triplets as compared with their 

univariate match.  The bottom graph in Figure 2-15 shows the amount of shrinkage.  These 

results were similar to those seen in the bivariate case described earlier (§2.6).  Numerical 
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results are summarized in Table 2-12.  Again, statistics of the bivariate model showed a 

superior performance to the trivariate form in all categories.   

 

Table 2-11.  Univariate-Multivariate Comparison 

Parameter Univariate 
(%) 

Bivariate 
(%) 

Trivariate 
(%) 

Random Walk 63.0 34.7 44.8 

Ljung-Box  
p-Value < 0.05 27.9 4.7 18.8 

Spectral Density 
 p-Value < 0.05 1.0 0.0 1.2 

Directional  
Forecast Accuracy  Stock 1 Stock 2 Stock 1 Stock 2 Stock 3 

Ahead 1 

> 60% 1.0 9.4 9.4 11.8 11.8 11.8 

> 55% 12.2 29.4 35.3 30.6 35.3 30.6 

> 50% 47.2 58.8 67.1 56.5 62.4 65.9 

< 45% 4.1 14.1 8.2 16.5 12.9 15.3 

< 40% 0.0 3.5 2.4 3.5 2.4 1.2 

Ahead 5 

> 60% 0.5 8.2 11.8 15.3 7.1 11.8 

> 55% 9.1 34.1 28.2 28.2 28.2 37.6 

> 50% 47.2 56.5 54.1 47.1 54.1 54.1 

< 45% 11.2 23.5 16.5 16.5 8.2 12.9 

< 40% 1.0 3.5 4.7 1.2 0.0 5.9 

Confidence 
Interval Coverage       

Ahead 1 92.5 91.1 90.9 91.0 91.4 92.1 

Ahead 5 92.8 96.5 95.8 96.8 95.9 96.9 
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Figure 2-15.  Univariate-Trivariate Confidence Intervals 
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Table 2-12.  Bivariate-Trivariate Confidence-Interval Statistics 

Multivariate Shrinkage 
Ahead 1 (%) Ahead 5 (%) 

Bivariate Trivariate Bivariate Trivariate 

Frequency (Stock 1) 87.4 83.0 73.8 70.8 

Frequency (Stock 2) 86.9 83.0 75.1 73.6 

Frequency (Stock 3)  83.6  73.3 

Mean Shrinkage (Stock 1) 4.1 3.1 -2.1 -2.8 

Mean Shrinkage (Stock 2) 4.2 3.2 -1.3 -2.2 

Mean Shrinkage (Stock 3)  3.1  -2.1 
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3. FORECASTING WITH SINGULAR SPECTRUM ANALYSIS 

“It is far better to foresee even without certainty than not to foresee at all.” 

– Henri Poincare (1854-1912), in the book “The Foundations of Science,” 1913 

 

 

This chapter expounds on a method known as singular spectrum analysis (SSA) to 

investigate time-series modeling and forecasting.  The recent introduction of the SSA 

approach into modern analytical methods is commonly identified with the 1986 articles of 

Broomhead and King [28] [29].   Subsequently, significant additional supporting theory 

and operational details have been developed and documented by Golyandina, et al., in two 

books [30] [31].*  Inasmuch as SSA is a relatively new development, it is not widely 

known, particularly among statisticians and economists.†  Although SSA is completely 

unrelated to ARIMA, GARCH,‡ and wavelet methods, it is associated with principal 

component analysis (PCA) and empirical mode decomposition (EMD). 

 

SSA is a nonparametric technique that blends aspects of signal processing, linear algebra, 

nonlinear dynamical systems, finite-difference equations, and multivariate geometry.  The 

usual objective of SSA is to decompose a time series into a collection of interpretable 

components consisting of a (possibly slowly-varying) trend, oscillatory elements, and 

                                                
*  See also their included references. 
†  However, it “has become a standard tool in meteorology and climatology; it is also a 

well-known technique in nonlinear physics and signal processing.” [30] 
‡  Generalized Autoregressive Conditional Heteroskedasticity 
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(unstructured) noise.  In application to forecasting, the goal is simplified, requiring only 

identification and extraction of the composite signal model from a time series assumed to 

consist of signal plus noise.  Exposing the underlying composition of the signal structure 

is unnecessary as it provides no additional benefit to automated forecasting. 

 

In this chapter, parallel to analyses reported in Chapter 2, stock data described in Chapter 1 

are forecast and analyzed to determine accuracies and 95% confidence intervals, within the 

framework of SSA.  Performance of univariate and multivariate time series are compared.  

The study herein evaluates whether a multivariate time series of correlated stocks surpasses 

a univariate-based forecast and assesses performance results of SSA to ARIMA modeling.  

Similar to the classical ARIMA investigation, there is an underlying assumption that the 

time series can be modeled with an identifiable structure, although for SSA it is a 

nonparametric form. 

 

3.1 Univariate SSA Methodology 

In the SSA modeling process, a time series is subjected to a decomposition stage followed 

by a reconstruction stage.  The decomposition stage (A) consists of two steps:  

1) embedding, and 2) singular value decomposition (SVD).  The reconstruction stage (B) 

also comprises two steps:  1) grouping, and 2) diagonal averaging.  These are explained as 

follows. 
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A.1  Decomposition – Embedding 

The process of embedding converts a one-dimensional time series  1 2, , ,N NX x x x   

into a multidimensional series.  With a series length 2N  , model parameters include 

integers L called the window length (with 1 L N  ), and 1K N L   .  Embedding is 

performed by mapping the sequence NX  into a set of K lagged vectors, each of length L 

as  T
1 1, , ,i i i i LX x x x     with 1 i K  .*  The trajectory matrix of the original series 

NX  is the multidimensional series: 

 

1 2 3

2 3 4
,

3 4 51 2 , 1

1 2

: : : ( )

K

L K
K i j i j

L L L N

x x x x
x x x
x x xX X X x

x x x x



 

 
 
 
   
 
 
 
 

X





    


 . (3-1) 

Clearly, the iX  vectors are columns of X , and both columns and rows of X  are subseries 

of NX .  Note also that X  is a Hankel matrix and as such has equal elements along the 

antidiagonals constanti j  .   

 

A.2  Decomposition – Singular Value Decomposition (SVD) 

SVD is applied to the trajectory matrix X .  Defining TS X X , eigenvalues of S  denoted 

as 1 2, , , L   , with eigenvalues in decreasing order of magnitude  1 2 L     , 

and 1 2, , , LU U U  as the orthonormal system of corresponding eigenvectors, setting 

                                                
*  Here, TA  is the transpose of vector A. 



 

71 

rank max( , such that 0)id X i     and T
i i iV U  X , the SVD of the trajectory 

matrix may be written as  

1 2 d   X Y Y Y  , (3-2) 

where T
i i i iU VY .  The iY  matrices have rank one and are called elementary matrices, 

iU  and iV  are the left and right eigenvectors of the trajectory matrix and in SSA literature 

are designated empirical orthogonal functions (EOFs) and principal components, 

respectively.  The ensemble  , ,i i iU V  is labeled the i-th eigentriple of X , i  

 1, 2, ,i d   are the singular values of X , and the set  i  is called the spectrum of 

matrix X .   

 

B.1  Reconstruction – Grouping 

Grouping refers to collecting eigentriples into sets.  The procedure corresponds to 

partitioning the index set  1, 2, ,d  into m disjoint subsets 1 2, , , mI I I .  With a group 

of indices  1 2, , , pI i i i  , the corresponding matrix 
1 2 pI i i i   X X X X  defines 

the group partition.  Combining the SVD expansion (3-2) and resultant matrices for groups 

1 2, , , mI I I  yields the total decomposition  

1 2 mI I I   X X X X  , (3-3) 

where , 1, 2, ,I j
I j

j m


 X Y  .   
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In standard SSA, the objective of this grouping step is to separate the original time series 

into independent sets, preferably orthogonal, so that the underlying trend, (possibly 

multiple) oscillation formations, and noise can be separated and identified.  In forecasting 

applications, the objective is to distinguish the composite signal structure (trend and 

oscillations, collectively) from the noise-ladened signal. 

 

B.2  Reconstruction – Diagonal Averaging 

Diagonal averaging converts each .
jIX . matrix from (3-3) into a vector , i.e., a time series, 

of length N.  For an L K  matrix Z  with elements i jz ,* the k-th term of the transformed 

vector  1 2, , , Nz z z z  , is produced by averaging i jz  over all ,i j  such that 

1,i j k    i.e., along the antidiagonals.  To illustrate, for 1k  , 1 1,1z z , and with 

2,k     1 1, 2 2,11 2z z z  , and so forth.  Diagonal averaging matrix 
jIX  yields a 

reconstructed series  

1 2 mI I I   X X X X    , (3-4) 

which is equivalent to the original series  1 2, , ,N NX x x x   decomposed into a sum of 

m series  

 ( )

1
1, 2, ,

m
j

n n
j

x x n N


     , (3-5) 

                                                
*  This corresponds to 1 i L  , 1 j K  , and 1N L K   . 
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where  ( ) ( ) ( ) ( )
1 2, , ,j j j j

N NX x x x     corresponds to 
jIX .  Conceptually, the procedure of 

diagonal averaging in SSA may be regarded as an inverse of the embedding process, but 

operating on a modified data set that approximates the original input. 

 

3.1.1 Univariate SSA Forecasting 

Obtaining a plausible forecast with singular spectrum analysis assumes the following:* 

1. The series possesses a structure. 

2. The structure can be identified. 

3. The structure leads to a method of time series continuation. 

4. The identified structure holds through the (future) forecast interval. 

SSA forecasting can be divided into two types: 1) recurrent, and 2) vector.  Computations 

performed in this study focused exclusively on recurrent forecasting since results of 

preliminary investigations showed more stable, i.e., reliable, outcomes.  Consequently, 

only recurrent forecasting is described below. 

 

Recurrent Forecasting (R-SSA) [32] 

Recurrent forecasting within the SSA framework is considered the primary algorithm [33].  

With 1, 2, ,j L  , defining ,i ju  as the i-th entry in eigenvector jU  of the trajectory 

matrix, and j  as the last element of jU , the forecast values  1 2ˆ ˆ ˆ, , ,N N N Mx x x    are 

computed as 

                                                
*  These assumptions are not unlike assumptions for ARIMA-based forecasting. 
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where 1 2, , , Nx x x    are the reconstructed series,  

 
1,

2 2 2
1 1 2

, 1,2, , 1
1

r j L j
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j r

u
a i L



  





 
        
 

 


 . (3-7) 

Also, r is the dimension of the linear space Lr spanned by the columns of the trajectory 

matrix, and r L .   

 

3.1.2 SSA Implementation 

Time series analyses via the SSA method are performed in the R language utilizing several 

routines from the R-package ‘Rssa’ version 0.13-1.  As in the ARIMA modeling, input 

data for each stock is identically preprocessed, dividing it into the same 100-sample 

windows* and split-adjusting as described in §2.1.  Preliminary studies of the stock data 

set revealed that sequential SSA is useful and necessary to produce any reasonable output 

results.  Sequential SSA attempts to overcome the complication of weakly-separable series 

components, i.e., those with closely-spaced singular values, by first performing the SSA 

                                                
*  Hereupon, the 100-sample-input-data windows will be called data frames where 

necessary as a distinction from the SSA length-L window. 
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process on the input data with window length 1L , followed by a second application of SSA 

with window length 2L  on the residuals* from the first pass.†   

 

The ssa function (from ‘Rssa’) was used to generate an SSA model for an input time series.  

Since window length, L, is a required input parameter and profoundly impacts the returned 

model, an automated approach was developed to select a suitable window length for each 

data frame.  The essence of the approach assumed that the largest spectral peak in the 

waveform represented the most significant signal on which to focus.  The spectral density 

of the data frame was first estimated with the periodogram function spec.pgram, provided 

in the base-R ‘stats’ package.  Subsequently, all spectral peaks were found with the fpeaks 

function from the R-package ‘seewave’ version 2.0.5 and the peak with the largest 

magnitude was identified.  The inverse of this peak’s frequency, i.e., its period, after 

rounding, was selected as the window length L.  A constraint on minimum window length 

was set to five because experimental observations showed that smaller limits produced 

poor forecast results.‡ 

 

The reconstruction process was carried out with the ‘Rssa’ reconstruct function, which 

requires a group (of eigenvectors) to be specified as an input parameter.  Hence, a process 

                                                
*  Residuals are the remains after extracting the resulting signal model, as in ARIMA 

modeling. 
†  There is nothing preventing additional passes, but little improvement was found with 

more than two. 
‡  Moreover, with window lengths less than five, occasional results yielded unstable, i.e., 

unbounded, forecasts. 
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for automatic group selection was also developed.  A measure of deviation of two series 

(1)F  and (2)F  is the weighted correlation (w-cor) defined as [30] 

   (1) (2)
( ) (1) (2)
12 (1) (2)

,
,w

w w

F F
F F

F F
   , (3-8) 

where  ( ) ( ) ( ),i i i
w w

F F F , for 1, 2i  .  A small absolute value of correlation infers 

that the two series are close to orthogonal and thus separable; conversely, with a large 

absolute value, separability is poor, if not impossible.  To identify desirable groupings, the 

‘Rssa’ function wcor was applied to the SSA model to compute a correlation matrix of all 

eigenvectors in the model.*  Matrix elements are sorted by size in each column† and a 

threshold of 0.2 was applied to find eigenvectors with low correlation for addition into a 

reconstruction group.  Furthermore, a test threshold of greater than 0.9 was imposed on 

adjacent eigenvectors to find possible harmonic pairs for inclusion into the group.‡  Under 

nonharmonic conditions an eigenvector with any high correlation value is rejected from 

inclusion into the group. 

 

Recurrent forecasting was performed using the ‘Rssa’ function rforecast.  This function 

determined the mean forecast values only.  Confidence intervals surrounding these mean 

values were computed with a modified version of the ‘Rssa’ function bforecast which 

                                                
*  The number of available eigenvectors in a model equals the window length L. 
†  The correlation matrix is symmetric, so sorting rows or columns is equivalent. 
‡  Harmonic pairs display a periodic characteristic when plotted against each other. 
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estimates confidence intervals using a bootstrap☼ technique.  In bforecast, confidence 

intervals were estimated by taking multiple random permutations of model residuals 

(assumed to be uncorrelated, noise-like) finding the specified sample quantiles.  After 

discovering that the residuals exhibited substantial autocorrelation, the bforecast function 

was modified to accept block resampling.  Block sampling is a method that was introduced 

in 1989 to retain the correlation formation in bootstrapped time series by resampling blocks 

of consecutive data units, rather than single data points [34].  In support of this concept, 

block size was computed equal to the so-called “variance inflation factor,” VIF, because 

this value is sometimes cited as the “time between effectively independent samples,” or the 

“decorrelation time” [34] [35]:  

1

1
Block Size 1 2 1

N
n

n

nVIF r
N





     
 

  , (3-9) 

where N is the sample size, and nr  is the autocorrelation estimate at lag n.   

 

With the methodology described above, for each of two sequential SSA passes, means and 

confidence intervals were computed for each forecast step from one to maxh , the maximum 

forecast step.  Composite results were obtained by summing mean outputs and root-sum-

squaring (RSS) upper and lower CI values independently, according to 

1 2

2 2( ) ( ) ( )x x xh h h     , (3-10) 

                                                
☼  Bootstrapping is a computationally-intensive technique used to estimate statistics of a 

distribution by repeatedly resampling, with replacement, applicable data to produce 
numerous synthetic, equivalently-sized sample sets [34]. 
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where ( )x h  represents either the upper or lower confidence interval offset* from the mean 

at forecast step h, and 1x  and 2x  refer to the first and second pass results, respectively.  

Interim results appeared implausible as typical returns from equation (3-10) yielded fairly 

consistent confidence intervals with increasing forecast horizon.†  To realize a sensible CI 

offset with increasing forecast horizon h, a cumulative sum of squares was applied as  

2

1
( ) ( ) ( )

Cum

h
x x

i
CI h h i 


    . (3-11) 

 

Finally, initial experiments showed that ‘Rssa’-based forecast results appeared to continue 

from the end point of the reconstruction approximation, rather than from the original time 

series.‡  This outcome can contribute significant errors to the time series forecast when 

disparate endpoints exist between the two series.  To alleviate this predicament, the offset 

of the forecast with respect to the reconstructed series was determined and an adjustment 

was applied to shift the values to present the same offset relative to the original series.   

 

                                                
*  Offset is in absolute value.  Lower CI values are subtracted from the mean. 
†  The statistically-based supposition is that due to an increase in uncertainty, CI width 

increases as forecast horizon increases. 
‡  Furthermore, observations revealed that close alignment of series endpoints between the 

reconstruction and original series was window- and model-dependent and random.   
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3.2 Univariate SSA Results 

Applying singular spectrum analysis to the stock data typically yielded multi-group 

models.  At times, the group selection process (described in §3.1.2) yielded only one group 

for each sequential-SSA pass.  Frequency of occurrence for these “simple” one-group 

models was collected and plotted for comparison with ARIMA random-walk models.  As 

seen in Figure 3-1, the frequency of occurrence of simple models was quite low, averaging 

1.9% (indicated by a red line), as compared to the ARIMA random-walk mean of 63% 

(Figure 2-1).  A one-group model only indicates a lack of separability in the eigenvector 

space.  While the random-walk model forms unpredictable forecasts, a one-group SSA 

model, although simple, nevertheless produces viable forecasts.   

 

 

 
 

Figure 3-1.  Frequency of Univariate SSA Simple Models 
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Unlike the ARIMA models, there was noticeable correlation remaining in the second-pass-

SSA residuals as determined by the Ljung-Box portmanteau test.*  The mean rejection rate 

was 97.3%.†  Working under the assumption that correlation represented more information 

to be gleaned from the residuals, two additional experiments were conducted to try to 

realize uncorrelated residuals.  First, for each window of each stock, the second-pass-SSA 

residuals were subjected to fitting by a standard ARIMA model.  This yielded a 

substantially-reduced Ljung-Box rejection rate of 10.5%, but included a reduction in 

forecast accuracy.  As a second experiment, a third pass of sequential SSA was performed.  

Results showed a small decrease of Ljung-Box rejection to 88.7% and a small loss in 

forecast accuracy.  With no improvement in forecast accuracy, neither of these third 

processing steps was considered advantageous. 

 

As in Chapter 2, accuracy of forecasting directional movement was evaluated by one-step 

and five-step predictions of out-of-sample data for each window of each stock.  Figure 3-2 

shows a plot of the results for each of 197 stocks.‡  Here again, any results above (or below) 

50% (blue line) indicates an improvement over a random guess.  Examination of the 

numerical summary given in Table 3-1 reveals that univariate SSA analyses showed a 

marked improvement over ARIMA models for positive directional forecasts.  In contrast,  

 

                                                
*  Although, visually the residuals did appear randomly distributed. 
†  Consequently, it did not make sense to execute the time-consuming spectral-density-

based test for correlation due to the extremely high Ljung-Box rejection rate. 
‡  See Appendix 8.1 for a listing. 
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Figure 3-2.  Univariate SSA Directional Forecast Accuracy 

 

Table 3-1.  Univariate ARIMA-SSA Directional Accuracy 

Forecast Interval Accuracy 
ARIMA 

Frequency 

(Out of 197) 

SSA 
Frequency 

(Out of 197) 

Ahead 1 

> 60% 2 13 

> 55% 24 47 

> 50% 93 102 

< 45% 8 40 

< 40% 0 9 

Ahead 5 

> 60% 1 13 

> 55% 18 44 

> 50% 93 97 

< 45% 22 41 

< 40% 2 11 

Ahead 1 & Ahead 5 Same Direction 111 88 
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the number of incorrect forecasts also increased noticeably as seen in the counts below 

45%.  While the SSA method appeared promising, more extensive testing would be advised 

to establish robustness of forecasts. 

 

As previously defined with ARIMA, for each stock, the percentage of forecasts falling 

within the 95% confidence interval is called the coverage.  One-step and five-step 

confidence interval coverage results for SSA are displayed in Figure 3-3.  Overall results 

were greater than 81% coverage for all stocks.  The mean for one-step ahead was 90.8% 

and for five steps ahead was 92.1%. 

 
 

 
 

Figure 3-3.  Univariate SSA Forecast Coverage within 95% CI 
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models:  1) all windows of a given stock were evaluated for SSA CI shrinkage or growth 

with respect to the equivalent ARIMA CI and a frequency (proportion) was computed; and 

2) the mean percentage of shrinkage (across all windows) was calculated for each stock.  

As seen in the top plot of results provided in Figure 3-4, mean frequency of shrinkage (as 

opposed to growth) for SSA only occurred in seven cases for the one-step forecasts and in 

only a single instance for the five-step forecasts.  The bottom plot in Figure 3-4 shows that 

SSA CI growth always resulted (in the mean).  Although mean SSA confidence intervals 

were wider than those for ARIMA, impact to accuracy results appeared unrelated since 

results for SSA accuracy were better than ARIMA accuracy.  Finally, the statistical means 

across all 197 stocks are provided in Table 3-2.   

 

Table 3-2.  ARIMA-SSA Univariate CI Statistics 

ARIMA-SSA Shrinkage 
Ahead 1 

(%) 

Ahead 5 

(%) 

Frequency 39.0 31.3 

Mean Shrinkage -20.2 -32.5 
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Figure 3-4.  ARIMA-SSA Confidence Intervals 
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3.3 Multivariate SSA 

Extending univariate SSA to a multivariate framework yields four possible forecasting 

algorithms:  multivariate series may be stacked vertically or horizontally, then forecast by 

recurrent or vector methods [36].  For consistency with prior analyses, the multivariate 

SSA (MSSA) method applied herein uses horizontally-stacked, recurrent forecasting [37].*  

The modeling stages for MSSA are equivalent to those for univariate SSA: decomposition 

followed by reconstruction, each separated into two parts.  The difference is in the structure 

of the trajectory matrix.   

 

Multivariate Horizontal Model 

A multivariate system is composed of multiple univariate time series  ( )( )
1

Nmm
j j

X x


 , 

1, ...,m M , of M series of length N.  The embedding stage consists of constructing a 

trajectory matrix for each univariate series ( )mX , then horizontally stacking the individual 

matrices to form a composite multivariate trajectory matrix as  

(1) (1) ( ) ( ) (1) ( )
1 1: : : : : : : :M M M

K KX X X X        
X X X     , (3-12) 

where each ( )m
kX  has length L and the ( )mX  matrices are size L K .  Subsequent 

processing steps for SVD, grouping, and diagonal averaging, are identical to the univariate 

case.   

 

                                                
*  Horizontal stacking is the only format implemented in the ‘Rssa’ package at this time. 
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Multivariate Recurrent Forecasting [37] 

After identification of the r leading eigentriples and the selected groups, a system of 

reconstructed signals is defined as  ( )( )
1

Nmm
j j

X x


  , 1, ...,m M .  With the multivariate 

recurrent algorithm, forecasting may be performed using the left eigenvectors   1
r

j j
U


 or 

the right eigenvectors   1
r

j j
V


.  For consistency with the previous univariate analysis, left 

eigenvectors were used as described in the following.   

 

In a concept parallel to the univariate scenario, the last 1L   values of the reconstructed 

signals are collected in a matrix  

(1) (1)
1

(2) ( 2)
1

( ) ( )
1

, ,

, ,

, ,

NN L

NN L

M M
NN L

x x

x x

x x

 

 

 

 
 
 
   
 
  
 

X

 

 




 

 , (3-13) 

jU  denotes the vectors of the first 1L   coordinates of the jU  eigenvectors, and j  

defines the last coordinates of the eigenvectors.  With 2

1

r
j

j
 


  , if 1  , then the 

forecast,  T(1) ( 2) ( M )ˆ ˆ ˆ, , ,N N N NR x x x  , exists and may be computed with  

N LR G X  ,     where     2
1

1
1

r
L j j

j
G U








  . (3-14) 

Equation (3-14) expresses that forecasts of each series are generated from the same linear 

recurrent formula produced by considering all series in the multivariate system. 



 

87 

Multivariate Implementation 

The same basic approach taken for SSA-based univariate analysis was utilized for 

multivariate SSA investigation.  Refer to §3.1.2.  Routines from the R-package ‘Rssa’ are 

multivariate-compatible by specifying the input parameters accordingly.  Sequential SSA 

was again used to separate complex component commingling.   

 

The window-length input parameter for the ‘Rssa’ function ssa used the previously-

described method for finding the period of the largest spectral peak, but selected the largest 

peak of multiple series as the guide for determining the value.  The working assumption 

was that the highest peak corresponded to the strongest separable signal.  Five was again 

used for the minimum window length.   

 

The process for automatic group selection was identical to the univariate case because only 

a single weighted-correlation matrix is generated by the process.  Thresholds were set to 

the same levels. 

 

Mean values of recurrent forecasting were also found via the rforecast function, but with 

the direction set for left eigenvectors, as mentioned previously.  Confidence intervals were 

computed with a modified bforecast function designed to accept joint block sampling to 

maintain intra-series- and system-correlation structure.  Whereas the univariate analysis 

used block sampling, multivariate block sampling was executed by finding the block size 

[see equation (3-9)] for each series and selecting the largest block size to perform parallel 
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block sampling.  In this manner, time-aligned blocks of residuals from each series were 

resampled to compute the bootstrapped confidence intervals.   

 

Upper and lower confidence interval offsets for each series were computed separately, 

parallel to the univariate model.  Lastly, as observed in the univariate outputs, ‘Rssa’ 

multivariate forecasts appeared relative to the reconstructed series, rather than the original 

series.  Consequently, to remedy this manifestation, an adjustment was applied individually 

to multivariate series forecasts so that offsets relative to the reconstructed series were 

shifted to exhibit the same offset relative to the original series. 

 

3.4 Bivariate SSA Results 

Bivariate singular spectrum analysis was applied to the same stock-pair list obtained from 

correlation screening as described in §2.4.1 and §2.5 for ARIMA analyses.  Inasmuch as 

SSA is a nonparametric method, differences in processing and forecasting do not contribute 

supplementary coefficients, but simply generate additional outputs due to the augmented 

trajectory matrix.  The properties of model groups are identical to univariate SSA (see 

§3.2), but naturally, the selected groups are different.  Frequency of simple models was 

tracked and is plotted in Figure 3-5.  The mean frequency of occurrence was 3.1% (shown 

as a red line), slightly higher than for univariate SSA, but still significantly below the 34.7% 

found for bivariate ARIMA.  Here again, the one-group model only expresses a lack of 

separability in the eigenvector space, but nevertheless yields valid forecasts. 
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Similar to the univariate-SSA outcome, noticeable correlation remained in the bivariate 

second-pass residuals as found with the Ljung-Box portmanteau test (not shown).  The 

mean rejection rate was 99.7%.  Based on the results from the univariate analysis, no 

attempt was made to extract additional information by either ARIMA modeling of the 

residuals or a third pass of SSA. 

 

 

 
 

Figure 3-5.  Frequency of Bivariate SSA Simple Models 
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Figure 3-6.  Bivariate SSA Directional Forecast Accuracy 

 

Results for one-step and five-step directional forecast accuracy for out-of-sample data are 

plotted in Figure 3-6 for the 85 stock pairs.  Results above (or below) 50% (yellow line) 

represent probability improvement over a random guess.  Examination of Table 3-3, which 

summarizes and compares results of bivariate ARIMA and SSA, revealed similar 

performance, but the counts for ARIMA forecasts appeared somewhat better.   
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Table 3-3.  Bivariate ARIMA-SSA Directional Accuracy Summary 

 
Forecast 
Interval 

 
Accuracy 

ARIMA SSA 

Stock 1 
Frequency 
(Out of 85) 

Stock 2 
Frequency 
(Out of 85) 

Stock 1 
Frequency 
(Out of 85) 

Stock 2 
Frequency 
(Out of 85) 

Ahead 1 

> 60% 8 8 3 4 

> 55% 25 30 17 20 

> 50% 50 57 47 42 

< 45% 12 7 11 15 

< 40% 3 2 2 3 

Ahead 5 

> 60% 7 10 3 8 

> 55% 29 24 11 27 

> 50% 48 46 40 48 

< 45% 20 14 16 19 

< 40% 3 4 2 3 

Ahead 1 & 
Ahead 5 

Same 
Direction 45 39 43 46 

Ahead 1 & 
Ahead 5 

Same 
Direction 45 46 

 

Computational results for confidence interval coverage for bivariate SSA forecasts are 

given in Figure 3-7.  One-step and five-step CI coverages are plotted for both stocks in the 

pair, designated as S1 and S2.*  Overall results were greater than 68% coverage for all 

stocks, much lower than the bivariate-ARIMA minimum coverage of 79%.  A summary-

comparison for ARIMA-to-SSA is given in Table 3-4.  Mean coverage was clearly lower 

for bivariate SSA. 

                                                
*  S1 and S2 correspond to Stock 1 and Stock 2, respectively, in the list in Appendix 8.2. 
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Figure 3-7.  Bivariate SSA Forecast Coverage within 95% CI 

 

Table 3-4.  Bivariate Mean Coverage Comparison 

 

ARIMA SSA 

Ahead 1 
(%) 

Ahead 5 
(%) 

Ahead 1 
(%) 

Ahead 5 
(%) 

Stock 1 91.1 96.5 83.3 83.8 

Stock 2 90.9 95.8 82.9 83.8 

 

3.5 Summary of Univariate-Bivariate SSA Results 

The objective of this investigation was to evaluate the hypothesis that an SSA-based 

bivariate forecast would outperform its univariate version, as was demonstrated for the 

ARIMA process.  Results were mixed, as seen in the summary provided in Table 3-5.  The 

occurrence of the simple model was slightly higher in the bivariate analysis, indicating 

60%
65%
70%
75%
80%
85%
90%
95%

100%

0 10 20 30 40 50 60 70 80 90

C
ov

er
ag

e

Stock Pair Number

S1 Ahead 1 S2 Ahead 1 S1 Ahead 5 S2 Ahead 5



 

93 

more difficult separability of the time series.  The more complex bivariate trajectory matrix 

may explain the slight increase.  Directional accuracy results were mixed.  The univariate 

model displayed better one-step forecast accuracy, as it produced higher percentages for 

> 55% and > 60% regions; however, for five-step forecasts in these regions, the univariate 

results landed between the Stock 1 and Stock 2 predictions.  Thus, for five-step forecasts, 

it is inconclusive whether bivariate or univariate accuracy is better.  A possible explanation 

for the wide difference in Stock 1 and Stock 2 forecast results may be that discrepancies 

within series pairs return model compromises during the group selection process.*  Lastly, 

recall that CI coverage provides the statistics for the number of forecasts falling inside 

confidence intervals.  Examination of the CI coverage clearly revealed that bivariate 

coverage averaged 9.4% and 9% less for one-step and five-step forecasts, respectively.  

Although such degradation in coverage was substantial, degradation in forecast accuracy 

was mixed, producing an ambiguous indicator with respect to CI coverage and a nebulous 

response since the CI widths are computed based on residuals only. 

 

 

                                                
*  In an effort to identify other possible explanations, analyses were repeated with Stock 1 

and Stock 2 categories interchanged in the pair definitions, producing swapped, 
identical results. 
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Table 3-5.  SSA Univariate-Bivariate Comparison 

Parameter Univariate 
(%) 

Bivariate 
(%) 

Simple Model 1.9 3.1 

Directional Forecast Accuracy  Stock 1 Stock 2 

Ahead 1 

> 60% 6.6 3.5 4.7 

> 55% 23.9 20.0 23.5 

> 50% 51.8 55.3 49.4 

< 45% 20.3 12.9 17.6 

< 40% 4.6 2.4 3.5 

Ahead 5 

> 60% 6.6 3.5 9.4 

> 55% 22.3 12.9 31.8 

> 50% 49.2 47.1 56.5 

< 45% 20.8 18.8 22.4 

< 40% 5.6 2.4 3.5 

Confidence Interval Coverage   

Ahead 1 90.8 83.3 82.9 

Ahead 5 92.1 83.8 83.8 

 

Bivariate confidence interval widths were compared against univariate CI widths, like that 

done for ARIMA modeling (see §2.6).  Results, given in Figure 3-8, show a high frequency 

of occurrence (> 81%) and significant CI shrinkage (> 22%) for bivariate SSA.  Mean 

values are summarized in Table 3-6 and mean percent shrinkage was computed as 

previously defined in equation (2-17).  Substantial bivariate CI shrinkage while 

maintaining similar forecast accuracy pointed toward advantage of the bivariate model. 
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Figure 3-8.  Univariate-Bivariate SSA Confidence Intervals 
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Table 3-6.  Univariate-Bivariate SSA CI Statistics 

Bivariate Shrinkage 
Ahead 1 

(%) 

Ahead 5 

(%) 

Frequency (Stock 1) 82.6 84.2 

Frequency (Stock 2) 81.7 84.2 

Mean Shrinkage (Stock 1) 22.9 25.8 

Mean Shrinkage (Stock 2) 22.7 25.9 

 

3.6 Trivariate SSA 

For complete comparison, trivariate SSA analysis was applied to the set of stock triplets 

(see Appendix 8.3) used for ARIMA modeling.  Trivariate SSA generates an extension of 

the trajectory matrix like that described for bivariate SSA.  Frequency of simple models 

was found, as shown in Figure 3-9, to have a mean of 4.1% (displayed as a red line), slightly 

higher than bivariate SSA results.   

 

 

 
 

Figure 3-9.  Frequency of Trivariate SSA Simple Models 
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Results of the Ljung-Box portmanteau test showed obvious residual correlation of the 

sequential-SSA second-pass (not shown) with a mean rejection rate of 99.7%.  As 

previously stated for the bivariate results, no effort was made to extract additional 

information due to the poor results obtained from the univariate-based experiments. 

 

For the 85 triplets, results of one-step and five-step directional forecast accuracies for out-

of-sample data are displayed in Figure 3-10.  Results farther away from the 50%-threshold 

(yellow line) random guess represent improvements.*  Table 3-7 summarizes the trivariate 

results for both SSA and ARIMA models.  ARIMA yielded superior one-step directional 

accuracy forecasts over SSA.  Five-step directional accuracy was very similar between 

SSA and ARIMA, with a slight advantage to SSA for better consistency encompassing the 

three-stock groups.  Trivariate SSA appeared to surpass ARIMA with regard to identifying 

triplets all moving in the same direction.  Generally, SSA demonstrated greater 

concordance in forecasting across three stocks comprising the triplets, giving SSA a slim 

advantage over ARIMA. 

                                                
*  Even consistently incorrect forecasts may be more utilitarian than random guesses. 
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Figure 3-10.  Trivariate SSA Directional Forecast Accuracy 
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Table 3-7.  Trivariate SSA Directional Accuracy Summary 

Forecast 
Interval Accuracy 

Frequency (Out of 85) 

ARIMA SSA 

Stock 1 Stock 2 Stock 3 Stock 1 Stock 2 Stock 3 

Ahead 1 

> 60% 10 10 10 5 4 7 

> 55% 26 30 26 24 24 21 

> 50% 48 53 56 41 45 47 

< 45% 14 11 13 14 17 19 

< 40% 3 2 1 2 5 5 

Ahead 5 

> 60% 13 6 10 9 11 10 

> 55% 24 24 32 15 32 31 

> 50% 40 46 46 41 55 64 

< 45% 14 7 11 8 9 6 

< 40% 1 0 5 2 3 2 

Ahead 1 & 
Ahead 5 

Same 
Direction 52 35 54 43 46 48 

Ahead 1 & 
Ahead 5 

Same 
Direction 13 20 

 

Confidence interval coverage for trivariate SSA forecasts are shown in Figure 3-11, with 

mean statistics provided in Table 3-8.  The top plot in the figure shows the one-step CI 

coverage and the bottom plot shows the five-step coverage.  Examination of the plots 

revealed Stock 3 to have the most variation in coverage, extending both above and below 

Stock 1 and Stock 2, but exhibited a mean approximately 6% lower.  SSA coverage was 
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clearly lower than ARIMA coverage, but SSA also demonstrated more consistency 

between one- and five-step coverage. 

 

 

 

 
 

Figure 3-11.  Trivariate SSA Forecast Coverage within 95% CI 

 

30%
40%

50%

60%
70%

80%

90%
100%

0 10 20 30 40 50 60 70 80 90

C
ov

er
ag

e

Stock Triplet Number

S1 Ahead 1 S2 Ahead 1 S3 Ahead 1

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90

C
ov

er
ag

e

Stock Triplet Number

S1 Ahead 5 S2 Ahead 5 S3 Ahead 5



 

101 

Table 3-8.  Trivariate Mean Coverage Comparison 

 

ARIMA SSA 

Ahead 1 
(%) 

Ahead 5 
(%) 

Ahead 1 
(%) 

Ahead 5 
(%) 

Stock 1 91.0 96.8 85.0 85.5 

Stock 2 91.4 95.9 86.0 85.8 

Stock 3 92.1 96.9 79.3 79.0 
 

3.7 Summary of Trivariate SSA Results 

A statistical summary of SSA results is given in Table 3-9.  Overall, trivariate SSA 

appeared to produce superior forecasting results; however, univariate forecast statistics 

were better in the one-step, > 60%-accuracy category for all but trivariate Stock 3 which 

was best.  For five-step forecasting, trivariate SSA was clearly the best.  It was interesting 

to note that for confidence interval coverage, trivariate SSA landed between the other two, 

with the exception of the Stock 3 category which showed the worst coverage.  A review of 

the shrinkage plots in Figure 3-12 revealed good consistency for Stock 1 and Stock 2 

categories, whereas there was a wide variation in shrinkage results for Stock 3, which 

yielded more extreme values than with Stock 1 or Stock 2.*  As seen in the CI shrinkage 

statistics given in Table 3-10, bivariate SSA produced more CI shrinkage than trivariate 

SSA, but both showed substantial shrinkage over univariate SSA, except for the trivariate 

Stock 3 category.  If mean statistics are ignored and more focus is applied to the Stock 3 

                                                
*  For clarity, not shown on the lower plot for S3 Ahead 1 are 8 points below -100% (which 

are > -322%) and for S3 Ahead 5 are 7 points below -100% (which are > -305%). 
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category, then selecting a specific more extreme stock triplet might yield better returns.  

Moreover, it is reasonable to assume that a typical trader/investor, operating with a 

portfolio consisting of a limited amount of operating capital, would therefore focus on 

higher-probability trades. 

 

Table 3-9.  SSA Multivariate Comparison 

Parameter Univariate 
(%) 

Bivariate 
(%) 

Trivariate 
(%) 

Simple Model 1.9 3.1 4.1 

Directional Forecast 
Accuracy  Stock 1 Stock 2 Stock 1 Stock 2 Stock 3 

Ahead 1 

> 60% 6.6 3.5 4.7 5.9 4.7 8.2 

> 55% 23.9 20.2 23.5 28.2 28.2 24.7 

> 50% 51.8 55.3 49.4 48.2 52.9 55.3 

< 45% 20.3 12.9 17.6 16.5 20.0 22.4 

< 40% 4.6 2.4 3.5 2.4 5.9 5.9 

Ahead 5 

> 60% 6.6 3.5 9.4 10.6 13.9 11.8 

> 55% 22.3 12.9 31.8 17.6 37.6 36.5 

> 50% 49.2 47.1 56.5 48.2 64.7 75.3 

< 45% 20.8 18.8 22.4 9.4 10.6 7.1 

< 40% 5.6 2.4 3.5 2.4 3.5 2.4 

Confidence Interval 
Coverage      

Ahead 1 90.8 83.3 82.9 85.0 86.0 79.3 

Ahead 5 92.1 83.8 83.8 85.5 85.8 79.0 
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Figure 3-12.  Univariate-Trivariate SSA Confidence Intervals 
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Table 3-10.  Bivariate-Trivariate SSA Confidence-Interval Statistics 

Multivariate Shrinkage 
Ahead 1 (%) Ahead 5 (%) 

Bivariate Trivariate Bivariate Trivariate 

Frequency (Stock 1) 82.6 78.5 84.2 80.9 

Frequency (Stock 2) 81.7 77.3 84.2 79.2 

Frequency (Stock 3)  64.0  65.7 

Mean Shrinkage (Stock 1) 22.9 18.9 25.8 21.9 

Mean Shrinkage (Stock 2) 22.7 17.8 25.9 21.4 

Mean Shrinkage (Stock 3)  -13.8  -9.8 

 

3.8 Overall Summary of ARIMA-SSA Results 

A side-by-side summary of ARIMA and SSA results is provided in Table 3-11.  A review 

indicated that forecast accuracy rates were generally better for bivariate and trivariate 

ARIMA for both one and five steps.  Univariate SSA showed substantially higher forecast 

accuracies, but also higher rates of incorrect forecasts.  SSA yielded generally higher rates 

of incorrect forecasts across all models and lower confidence interval coverages.  A 

comparison of these overall results confirmed the hypothesis that the multivariate model 

produces improved forecasts over the univariate model. 
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Table 3-11.  Composite Summary of ARIMA-SSA Results 

Parameter Univariate 
(%) 

Bivariate 
(%) 

Trivariate 
(%) 

 ARIMA SSA ARIMA SSA ARIMA SSA 

Random-Walk | 
Simple Model 63.0 1.9 34.7 3.1 44.8 4.1 

Directional  
Forecast Accuracy   S1 S2 S1 S2 S1 S2 S3 S1 S2 S3 

Ahead 1 

> 60% 1.0 6.6 9.4 9.4 3.5 4.7 11.8 11.8 11.8 5.9 4.7 8.2 

> 55% 12.2 23.9 29.4 35.3 20.2 23.5 30.6 35.3 30.6 28.2 28.2 24.7 

> 50% 47.2 51.8 58.8 67.1 55.3 49.4 56.5 62.4 65.9 48.2 52.9 55.3 

< 45% 4.1 20.3 14.1 8.2 12.9 17.6 16.5 12.9 15.3 16.5 20.0 22.4 

< 40% 0.0 4.6 3.5 2.4 2.4 3.5 3.5 2.4 1.2 2.4 5.9 5.9 

Ahead 5 

> 60% 0.5 6.6 8.2 11.8 3.5 9.4 15.3 7.1 11.8 10.6 13.9 11.8 

> 55% 9.1 22.3 34.1 28.2 12.9 31.8 28.2 28.2 37.6 17.6 37.6 36.5 

> 50% 47.2 49.2 56.5 54.1 47.1 56.5 47.1 54.1 54.1 48.2 64.7 75.3 

< 45% 11.2 20.8 23.5 16.5 18.8 22.4 16.5 8.2 12.9 9.4 10.6 7.1 

< 40% 1.0 5.6 3.5 4.7 2.4 3.5 1.2 0.0 5.9 2.4 3.5 2.4 

Confidence 
Interval Coverage             

Ahead 1 92.5 90.8 91.1 90.9 83.3 82.9 91.0 91.4 92.1 85.0 86.0 79.3 

Ahead 5 92.8 92.1 96.5 95.8 83.8 83.8 96.8 95.9 96.9 85.5 85.8 79.0 

Note:  S1, S2, and S3 refer to Stock 1, Stock 2, and Stock 3, respectively. 
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4. BIVARIATE FORECASTING WITH ALTERNATE COMPONENTS 

“The most important function of statistics is to produce evidence showing the 

relation of one group of phenomena to another” 

– Arthur Lyon Bowley (1869-1957), in the book “Elements of Statistics,” 1937 

 

 

This chapter reports on an investigation of time series forecasting based on a bivariate 

structure incorporating alternate second components.  While bivariate analyses in previous 

chapters included a primary stock and a highly-correlated secondary stock as the auxiliary 

component in the series, this bivariate study evaluates forecasting with three distinctive 

secondary components:  1) trading volume, 2) first principal component (from PCA), and 

3) volatility.  These elements are detailed in the following sections.   

 

In contrast to the 85 pairs studied in the prior two chapters, all 197 members of the stock 

data list (see Appendix 8.1) outlined in Chapter 1 are examined to determine forecast 

accuracies and 95% confidence intervals.*  Forecasting methods described in the previous 

chapters on ARIMA-based statistical estimation and singular spectrum analysis (SSA) are 

applied with each of these secondary components to investigate the hypothesis of improved 

out-of-sample forecasting with secondary alternatives.   

 

                                                
*  Limiting the number of bivariate pairs is unnecessary due to the disassociated nature of 

the specified secondary components. 
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4.1 Trading Volume 

In this study, volume refers to the quantity of shares that are traded between buyers and 

sellers during a sampling interval, i.e., one day.  Many traders/investors use volume as a 

measure of participation and an aid to identify market strength or weakness.*  John 

Bollinger, creator of the Bollinger bands technical indicator, argues that “volume is 

everything,” particularly when combined with another trading indicator.  Moreover, he 

points to volume as “the crux of analysis.” [38]  Daily trading volume was included in the 

input data download as mentioned in §1.1.  Bivariate analyses were conducted for each of 

the 197 stocks to assess possible forecast improvements by applying each stock’s 

associated daily volume as a second variate in the ARIMA and SSA models.   

 

4.1.1 ARIMA-Volume Model Results 

As described previously in §2.4, bivariate ARIMA modeling was implemented with an 

ARMA model preceded by differencing for stationarizng† the data.  Volume data was 

preconditioned by normalizing to 1 million to bring it into the range of stock prices, mean 

centered (by subtracting the [windowed] mean), and stationarized by differencing using 

the ndiffs function from the R-Package ‘forecast’ version 6.2 (verified with a KPSS test).   

 

Unlike the results for univariate ARIMA modeling, the frequency of occurrence of random-

walk models in the bivariate-volume analyses showed an order of magnitude lower average 

                                                
*  Beyond the scope of this report, there are numerous strategic approaches that active 

traders have taken to utilize volume to enhance trading outcomes.   
†  In the field of time series analysis, the word stationarize means “to make stationary.” 
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of 5.6% (compared to the univariate 63%) and six times lower than the bivariate stock 

average of 34.7%.  The distribution of random-walk models is shown in Figure 4-1.  As 

previously stated, a lower occurrence of random-walk models indicates a higher probability 

of predictability.   

 
 

 
 

Figure 4-1.  Frequency of Bivariate (Volume) Random-Walk Models 

 

Results of serial correlation tests seen in Figure 4-2 show the percentage of p-values falling 

below 0.05 for the Ljung-Box and spectral density tests of bivariate-volume model 

residuals.  While the Ljung-Box results showed only five stocks with p-value percentages 

above 5%, the spectral density outputs yielded 35 stocks exceeding 5% frequency, with the 

maximum at 12.5%.  The spectral density test was performed using identical parameters as 

specified for the bivariate-stock models in §2.5, except that a Bartlett smoothing kernel 

was used for increased computational speed.*  Assuming that the spectral density test is a 

                                                
*  Test evaluations showed output p-values very close to those obtained with the Daniell 

kernel.  At least an order of magnitude in speed was gained by using the Bartlett kernel. 
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more powerful measurement as demonstrated in [23] and [24], greater numbers of stocks 

exceeding 0.05 indicated more information retained in the model residuals.  Nevertheless, 

the bivariate-volume results yielded significant improvements over the univariate models 

in the directional forecast accuracy evaluations. 

 

 

 

 
 

Figure 4-2.  Serial Correlation for Bivariate (Volume) Model Residuals 
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Results of volume-augmented directional forecast accuracy are shown in Figure 4-3 and 

summarized in Table 4-1.  Overall, frequency of bivariate-volume accurate directional one- 

and five-step forecasts were substantially higher than for the univariate ARIMA models.  

As seen in Figure 4-3, the highest one-step directional forecast accuracy was 67.2% (one 

occurrence) and the highest five-step accuracy was 65.6% (four occurrences).  Clearly, 

incorporation of a stock’s trading volume generated a significant enhancement to 

forecasting directional movement. 

 

 

 
 

Figure 4-3.  ARIMA Bivariate (Volume) Directional Forecast Accuracy 
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Table 4-1.  ARIMA Univariate-Bivariate (Volume) Directional Accuracy 

Forecast Interval Accuracy 
Frequency (Out of 197) 

Univariate Bivariate 

Ahead 1 

> 60% 2 14 

> 55% 24 56 

> 50% 93 102 

< 45% 8 35 

< 40% 0 6 

Ahead 5 

> 60% 1 13 

> 55% 18 51 

> 50% 93 106 

< 45% 22 30 

< 40% 2 9 

Ahead 1 & Ahead 5 Same Direction 111 99 

 

Results of coverage analyses are given in Figure 4-4.  It is evident that five-step forecast 

coverage displays a higher mean than the one-step coverage.  This may be partially 

explained by wider confidence intervals at the farther forecast range; however, this was 

also revealed in the bivariate-stock ARIMA coverage results of §2.5.  A comparison of 

univariate-bivariate (volume) coverage is provided in Table 4-2.   
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Figure 4-4.  ARIMA Bivariate (Volume) Forecast Coverage within 95% CI 

 

Table 4-2.  ARIMA Univariate-Bivariate (Volume) Mean Coverage 

 Univariate (%) Bivariate (%) 

Ahead 1 92.5 90.6  

Ahead 5 92.8 95.8 

 

Confidence interval shrinkage is graphed in Figure 4-5 and summarized in Table 4-3.  

While the frequency of shrinkage for the bivariate-volume model was high for both one-

step and five-step forecasts (averaging greater than 75% of windows), the five-step CI 

mean percent change actually achieved a growth at -1.7%.  The figure clearly shows a 

consistent percent shrinkage for the one-step forecast, but the five-step forecast had more 

variation. 

 

75%

80%

85%

90%

95%

100%

0 20 40 60 80 100 120 140 160 180 200

C
ov

er
ag

e

Stock Number

Ahead 1 Ahead 5



 

113 

 

 

 
 

Figure 4-5.  ARIMA Univariate-Bivariate (Volume) Confidence Intervals 

 

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

A
R

IM
A 

C
I S

hr
in

ka
ge

 F
re

qe
un

cy

Stock Number

Ahead 1 Ahead 5

-15

-10

-5

0

5

10

0 20 40 60 80 100 120 140 160 180 200

M
ea

n 
C

on
fid

en
ce

 I
nt

er
va

l S
hr

in
ka

ge
 (

%
)

Stock Number

Ahead 1 Ahead 5

Bivariate-Volume Growth 

Bivariate-Volume Shrinkage 

Bivariate-Volume Growth 

Bivariate-Volume Shrinkage 



 

114 

Table 4-3.  ARIMA Univariate-Bivariate (Volume) CI Statistics 

Bivariate Shrinkage Ahead 1 (%) Ahead 5 (%) 

Frequency 93.1 75.2 

Mean Shrinkage 4.7 -1.7 

 

 

4.1.2 SSA-Volume Model Results 

Bivariate modeling with singular spectrum analysis (SSA) was performed by substituting 

the associated stock trading volume for the second variate.  Unlike the ARIMA process, no 

differencing, for either stock or volume, was required for SSA.  As in the previous bivariate 

ARIMA modeling, volume data was preprocessed by normalizing to 1 million to bring it 

into the range of stock prices* and mean centered (by subtracting the [windowed] mean).   

 

Frequency of occurrence for the “simple”† SSA model was incrementally higher for the 

bivariate-volume scenario with a mean value of 4.5%, compared to the bivariate-stock 

models at 3.1% and the univariate structures at 1.9%.  This was likely an indication of 

increased difficulty separating the structural components (in eigenvector space).  The 

distribution for frequency of occurrence of simple models is shown in Figure 4-6. 

 

                                                
*  Normalizing into a similar numerical range avoids any potential matrix singularities due 

to widely disparate values.   
†  Recall that the “simple” SSA model is merely a classification defined as a one-group 

composition (for each sequential pass), devised as a comparison for the random-walk 
model. 
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Figure 4-6.  Frequency of Bivariate (Volume) SSA Simple Models 

 
Results of forecasting directional accuracy for SSA bivariate-volume are shown in the plot 

of Figure 4-7.  Maximum accuracy was reached at 70.3% for a one-step forecast and 68% 

for a five-step forecast.  Table 4-4 summarizes the SSA bivariate-volume prediction 

accuracies.  Examination of the table revealed results very similar between the bivariate-

volume and univariate systems.   

 
 

 
 

Figure 4-7.  SSA Bivariate (Volume) Directional Forecast Accuracy 
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Table 4-4.  SSA Univariate-Bivariate (Volume) Directional Accuracy 

Forecast Interval Accuracy 
Frequency (Out of 197) 

Univariate Bivariate 

Ahead 1 

> 60% 13 13 

> 55% 47 37 

> 50% 102 98 

< 45% 40 36 

< 40% 9 8 

Ahead 5 

> 60% 13 13 

> 55% 44 36 

> 50% 97 98 

< 45% 41 37 

< 40% 11 6 

Ahead 1 & Ahead 5 Same Direction 88 109 

 

Coverage of the 95% confidence intervals had mean values of 76.3% and 76.5% for one-

step and five-step forecasts, respectively.  A distributional plot is provided in Figure 4-8.  

As seen in the comparison with univariate SSA coverage given in Table 4-5, the SSA 

bivariate-volume coverage was significantly lower, but as mentioned earlier, Table 4-4 

shows similar accuracies. 
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Figure 4-8.  SSA Bivariate (Volume) Forecast Coverage within 95% CI 

 

Table 4-5.  SSA Univariate-Bivariate (Volume) Mean Coverage 

 Univariate (%) Bivariate (%) 

Ahead 1 90.8 76.3 

Ahead 5 92.1 76.5 

 

As seen in Figure 4-9 and Table 4-6, the SSA bivariate-volume models produced a 

significant amount of confidence interval shrinkage in both frequency and percent 

reduction, with a few exceptions.  With a consistent forecast accuracy compared to the 

univariate models, it was clear that inclusion of volume as a second variate was remarkable. 
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Figure 4-9.  SSA Univariate-Bivariate (Volume) Confidence Intervals 
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Table 4-6.  SSA Univariate-Bivariate (Volume) CI Statistics 

Bivariate Shrinkage Ahead 1 (%) Ahead 5 (%) 

Frequency 92.8 93.9 

Mean Shrinkage 34.5 36.4 

 

4.2 Principal Component Analysis (PCA) 

The objective of principal component analysis (PCA) on a set of variables is to elucidate 

the variance-covariance structure through linear combinations of the variables.  The 

general goals of PCA are 1) data reduction, and 2) interpretation.  If p components (of 

length n) are required to account for total variability of a system, frequently a smaller 

number of principal components, k, can efficiently describe much of the variability.  These 

k principal components may then supplant the original p n  data with a reduced set of size 

k n .  Principal component analysis frequently exposes previously hidden relationships, 

allowing possibly unexpected interpretations, but usually serves as an intermediate step, 

rather than an end of analysis.  In this study, application of PCA is focused only on data 

reduction to produce a single variate most representative of the entire set of 197 stocks in 

the stock list.  The largest principal component was used as the second variate in a bivariate 

forecast analysis of each stock.   

 

The essence of principal component analysis is to find another basis that is a linear 

combination of the original basis, to best describe the data set [39].  If X is the original data 

matrix of size m n , where m is the number of variables (e.g., stocks) and each column is 
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a time sample of all m members, then another matrix Y of size m n  can re-express X by 

a linear transformation P, effecting a change of basis:   

PX Y  (4-1) 

Defining ip  as the rows of P, ix as the columns of X, and iy  as the columns of Y, yields  

 
1 1 1 1

1

1

n

n

m m m n

   
        
      

p p x p x
PX x x Y

p p x p x

  
    

  
 , (4-2) 

where the columns of Y are  

1 i

i

m i

 
   
  

p x
y

p x





 . (4-3) 

Since the coefficients of iy  are dot products of ix  with the rows of P, the j-th coefficient 

of iy  is a projection onto the j-th row of P, thus forming a projection onto the  1, , mp p  

basis.  These  1, , mp p  row vectors are the principal components of X.   

 

Two important assumptions of principal component analysis are:  1) the basis vectors 

 1, , mp p  are orthonormal, and 2) the magnitude of signal variance relates importance 

such that larger variance indicates more importance.  Moreover, “principal components 

depend solely on the covariance matrix  ” of X, and PCA does not require multivariate 

normality [40].   
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The PCA method consists of:  1) finding the matrix P such that the covariance of PX is 

diagonal, and 2) putting the diagonal elements (i.e., eigenvalues) in descending order.  

Using results of linear algebra, is can be shown (see [40]) that the eigenvectors of the 

covariance matrix* TΣ X X  comprise the columns of matrix P, and corresponding 

eigenvalues constitute the associated variances.  For this study, the first principal 

component was selected as the second variate for bivariate forecast analyses and PCA was 

performed using the prcomp function in the R-package ‘stats’ in the R core software.   

 

4.2.1 ARIMA-PCA Model Results 

For bivariate ARIMA models, the largest component was found by applying PCA to 

stationarized stock-price data.  The proportion of total variance due to this principal 

component is shown in Figure 4-10, where the calculation is based on the contribution of 

all 197 stocks in each 100-sample window.  The mean proportion of variance was 27.7%. 

 
 

 
 

Figure 4-10.  Proportion of Variance due to First Principal Component (ARIMA) 

                                                
*  Notation:  TA  is the transpose of matrix A. 
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The frequency of occurrence for random-walk models resulting from bivariate-PCA 

ARIMA modeling is shown in Figure 4-11.  The mean was 32.1%, very close to the 34.7% 

mean of the bivariate-stock models, but still indicating a substantial proportion of 

unpredictable models.   

 

 

 
 

Figure 4-11.  Frequency of Bivariate (PCA) Random-Walk Models 
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Figure 4-12.  Serial Correlation for Bivariate (PCA) Model Residuals 

 

Directional accuracy results for the bivariate-PCA models, given in Figure 4-13 and 

summarized in Table 4-7, showed significant improvements over the univariate ARIMA 

models.  The best one-step forecast accuracies were 73.4% and 69.5% with 20 stocks 

performing better than 60%.  For the five-step forecasts, there were 23 stocks with accuracy 

rates from 60–65%, but none greater than 64.1%.  Augmenting the univariate with PCA 

yielded significant results to directional movement forecast accuracy. 
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Figure 4-13.  ARIMA Bivariate (PCA) Directional Forecast Accuracy 
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Ahead 1 
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> 50% 93 120 

< 45% 8 20 
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Ahead 5 
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< 45% 22 30 

< 40% 2 7 

Ahead 1 & Ahead 5 Same Direction 111 113 
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Bivariate-PCA confidence interval coverage provided 1% lower coverage compared with 

the univariate one-step forecasts, but showed an increase of 3.3% for the five-step intervals.  

Refer to Figure 4-14 and Table 4-8.  Visually, there appeared to be a generally greater 

variation of the one-step coverage.  These results are similar to the bivariate-volume 

outcomes. 

 

 

 
 

Figure 4-14.  ARIMA Bivariate (PCA) Forecast Coverage within 95% CI 

 

Table 4-8.  ARIMA Univariate-Bivariate (PCA) Mean Coverage 

 Univariate (%) Bivariate (%) 

Ahead 1 92.5 91.5 

Ahead 5 92.8 96.1 
 

Bivariate-PCA confidence interval shrinkage is shown in Figure 4-15, with Table 4-9 

providing the mean values.  Results are very similar to ARIMA bivariate-volume analyses. 
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Figure 4-15.  ARIMA Univariate-Bivariate (PCA) Confidence Intervals 
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Table 4-9.  ARIMA Univariate-Bivariate (PCA) CI Statistics 

Bivariate Shrinkage Ahead 1 (%) Ahead 5 (%) 

Frequency 89.5 76.2 

Mean Shrinkage 4.0 -1.9 

 

As a final comment on the bivariate ARIMA-PCA investigation, all analyses (except for 

shrinkage) were repeated with data stationarizing of the greatest principal component after 

performing PCA on the non-stationary stock data.  This was done to determine if any 

improvement was possible.  (This sequence was in direct contrast to the preprocessing 

described heretofore in the chapter where PCA was performed on previously-stationarized 

data.)  Associated results returned similar outcomes for all statistics, except forecasting 

accuracies, which were worse than those for PCA on the stationarized series. 

 

4.2.2 SSA-PCA Model Results 

One advantage of singular spectrum analysis is that there is no requirement for processed 

data to be stationary.  Consequently, principal component analysis was applied to the stock-

price data directly and the first principal component was found.  Figure 4-16 shows the 

proportion of variance in each of the 64 independent windows.  The mean proportion of 

variance was 65.4%, significantly greater than the comparable ARIMA statistic at 27.7%.   
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Figure 4-16.  Proportion of Variance due to First Principal Component (SSA) 

 

Applying PCA yielded a frequency of occurrence for the SSA simple bivariate model as 

depicted in Figure 4-17.  The mean was 4.6%, compared to the SSA bivariate-stock models 

at 3.1% and SSA univariate models at 1.9%.   

 
 

 
 

Figure 4-17.  Frequency of Bivariate (PCA) SSA Simple Models 
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Directional forecast accuracy results, given in Figure 4-18 and summarized in Table 4-10, 

showed mixed results.  One-day forecasts were better for the univariate models, while five-

day forecasts were better for the bivariate-PCA models.  Bivariate-PCA one-step 

predictions were as high as 64.1%, and five-day forecasts topped out at 68.8%.   

 

 

 
 

Figure 4-18.  SSA Bivariate (PCA) Directional Forecast Accuracy 
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Table 4-10.  SSA Univariate-Bivariate (PCA) Directional Accuracy 

Forecast Interval Accuracy 
Frequency (Out of 197) 

Univariate Bivariate 

Ahead 1 

> 60% 13 5 

> 55% 47 21 

> 50% 102 69 

< 45% 40 49 

< 40% 9 11 

Ahead 5 

> 60% 13 27 

> 55% 44 75 

> 50% 97 126 

< 45% 41 14 

< 40% 11 2 

Ahead 1 & Ahead 5 Same Direction 88 85 
 

Figure 4-19 and Table 4-11 provide the 95% confidence interval coverage results for SSA 

bivariate-PCA.  The bivariate-PCA results were 3.4% and 4.3% lower for one- and five-

step confidence intervals, respectively.  Coverage results appeared to have no correlation 

with forecast accuracy. 
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Figure 4-19.  SSA Bivariate (PCA) Forecast Coverage within 95% CI 

 

Table 4-11.  SSA Univariate-Bivariate (PCA) Mean Coverage 

 Univariate (%) Bivariate (%) 

Ahead 1 90.8 87.4 

Ahead 5 92.1 87.8 

 

Confidence interval shrinkage outcomes are shown in Figure 4-20 and Table 4-12.  SSA 

bivariate-PCA revealed a mixed set of CI shrinkage.  The frequency of shrinkage was just 

above 50% in frequency and between -20% and -25% in amount.  These results showed 

that only a small percentage of the stocks produced a CI shrinkage, counting 18 and 25, for 

one- and five-step forecasts, respectively.  For these stocks displaying CI reductions, the 

mean percent shrinkage was 6.3% and 7.9%, respectively. 
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Figure 4-20.  SSA Univariate-Bivariate (PCA) Confidence Intervals 
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Table 4-12.  SSA Univariate-Bivariate (PCA) CI Statistics 

Bivariate Shrinkage Ahead 1 (%) Ahead 5 (%) 

Frequency 51.7 54.1 

Mean Shrinkage -25.3 -20.7 

 

4.3 Volatility 

In economic and finance literature, volatility is most often defined as a statistical measure 

of variation of logarithmic returns for a security (or index).  Volatility is determined 

mathematically as either the standard deviation ( )  or the variance 2( ) , creating a source 

of confusion.  In this study, volatility is defined as the standard deviation, since this is the 

predominant representation.  A higher volatility signals a higher risk regarding a security’s 

value, as the price can change substantially (up or down) over a short period of time, 

whereas a lower volatility indicates smaller short-term fluctuations without restricting 

longer term movement in either direction.   

 

Volatility is not directly observable, but exhibits some notable characteristics.  Values may 

appear in clusters, but mostly evolve continuously over time (jumps are unusual).  

Volatility fluctuates within some positive range, never diverging to infinity.  Volatility 

displays a “leverage” effect, meaning that it reacts to a large price increase differently than 

to a large price reduction [41].  Economic and finance literature almost exclusively cites 

and applies volatility to assess risk.  In stark contrast, this investigation simply employed 

volatility as a second variate to evaluate its effect on forecasting performance. 
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Volatility estimation may be established with either parametric or non-parametric models.  

Models supporting generalized autoregressive conditional heteroscedasticity (GARCH) 

were introduced by T. Bollerslev in 1986 [42] as an enhancement of the autoregressive 

conditional heteroscedasticity (ARCH) model advanced by R. Engle in 1982 [43].  Both 

are parametric models that address the issue of non-constant volatility.  In this study, initial 

attempts to compute volatility using a GARCH model yielded unusable results for 100-

sample windows.  Outputs produced negative eigenvalues* and minimum AIC† identified 

questionable volatility profiles.  Subsequent experiments with windows of length as large 

as 1500 samples also showed similarly unusable results.   

 

As an alternate to GARCH, a non-parametric approach for estimating volatility was 

conducted using one of the so-called “extreme-value” variance estimators [44].  To derive 

daily volatility, these estimators utilize an asset’s open, high, low, and close (O,H,L,C) 

price values.  The effectiveness of the extreme-value volatility estimators was investigated 

and validated in [44] by comparing extreme-value variance estimates with high-frequency 

intraday data.  A high-level summary of characteristics for extreme-value estimators is 

provided in Table 4-13 (in chronological order of development).   

 

                                                
*  Valid eigenvalues are non-negative. 
†  Akaike Information Criterion (AIC) was used to find the best model fit from a search 

over 300 possible models for each window.  Models consisted of both a GARCH(α,β) 
order for volatility and an ARMA(p,q) order for the mean model.  Refer to R-Package 
‘rugarch’ version 1.3-6 and [51] for details. 
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Table 4-13.  Extreme-Value Variance Estimators 

Estimator Name Drift 
Independent 

Considers 
Opening 
Jumps 

Special 
Features 

Close-to-Close ( 2
CC ) No No Traditional 

Mean-Adjusted  
Close-to-Close No No Adjustment for mean  

Parkinson ( 2
P  ) No No ≈5X improved efficiency* 

Garman-Klass ( 2
GK )  No No 

Minimum variance; 

≤ 7.4X more efficient 

Rogers-Satchell ( 2
RS ) Yes No 

Drift independence;  

efficiency comparable to  2
GK  [45] 

Yang-Zhang ( 2
YZ ) Yes Yes 

Minimum variance;  
considers overnight jumps; 

efficiency ≤ 14X [46] 

 

The Yang-Zhang estimator was selected and applied to estimate volatility because it 

included utilities for handling drift and close-to-open jumps, and demonstrated high 

efficiency.  The Yang-Zhang estimator is defined as  

2 2
2 2

11 1

1 1ln ( ) o ln ( ) (1 ) , 1,
1 1

N N
t t

YZ RS
t tt t

O Ck c k n
N C N O

 
 

   
             

   (4-4) 

 

                                                
*  Efficiency is defined for estimation variance relative to the traditional Close-to-Close 

estimator  2
CC . 
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where the Rogers-Satchell variance is given as 

2

1

1 ln ( ) ln ( ) ln ( ) ln ( ) , 1,
N

t t t t
RS

t t t tt

H H L L n
N C O C O




 
   

 
  (4-5) 

with 1
1

1o ln ( )N t
t t

O
N C


  , 1

1 ln ( )N t
t t

Cc
N O  , 10.34 (1.34 )

1
Nk
N


 


, and N is the 

number of samples over which to average.*  Volatility estimation was computed with 

N = 2, wherein highest efficiency is reached [46].   

 

4.3.1 ARIMA-Volatility Model Results 

Volatility estimates were computed for each window of each stock using the function 

volatility in the R-Package ‘TTR’ version 0.23-1.  Subsequent to computing values, 

differencing was applied with the ndiffs function (verified with a KPSS test) to stationarize 

the resultant volatility vector for compatibility with ARIMA processing.†  Bivariate 

ARIMA computations were performed using the same method described in §2.4.   

 

                                                
*  Note also that tX  refers to the value of X at time sample t. 

†  Additionally, a distinctive aspect of the volatility function in ‘TTR’ is that it returns 
NaN (not a number) values for the first N samples in the vector.  To accommodate as 
many as two orders of differencing, the second value in the volatility vector was 
computed with the Rogers-Satchell two-sample estimate and the first value was 
computed with the Rogers-Satchell one-sample estimate.  Moreover, under limited 
conditions, e.g., when a stock’s price is constant for one or more samples, a small 
negative variance can ensue, resulting in a NaN output value.  To manage this infrequent 
but problematic occurrence, a NaN volatility value was replaced with a small but non-
zero value of 10-8.   
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The frequency of random-walk models seen in the graph of Figure 4-21 showed another 

order of magnitude reduction from the bivariate volume results (two orders of magnitude 

below the univariate models).  The mean was 0.5%, with a maximum of three random-

walk models detected in any stock-volatility pair.   

 

 

 
 

Figure 4-21.  Frequency of Bivariate (Volatility) Random-Walk Models 

 

Serial correlation results (Figure 4-22) for the Ljung-Box test showed only seven stocks 

with p-values above 0.05.  Here, similar to the bivariate-volume outcome, the more 

powerful spectral density test produced a larger number above 5%, with a count of 35 and 

a maximum of 10.9%.  The spectral density test was performed with the same parameters 

as specified in §2.5, with a Bartlett smoothing kernel as mentioned previously.  While these 

results indicated the possibility of additional useful information contained in the model 

residuals, the directional accuracy results showed significant increases compared to the 

univariate evaluations. 
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Figure 4-22.  Serial Correlation p-Values for Bivariate (Volatility) Residuals 

 

Figure 4-23 and Table 4-14 show directional accuracy results for the bivariate-volatility 

investigation.  Four stocks showed five-step forecast accuracy of 68% or better, with two 

stocks performing above 70%.  Overall effects were significantly better than the univariate 

products as seen in the summary table.  These results demonstrated that working only with 

volatility estimates yielded a strong enhancement to directional forecasting. 
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Figure 4-23.  ARIMA Bivariate (Volatility) Directional Forecast Accuracy 

 

Table 4-14.  ARIMA Univariate-Bivariate (Volatility) Directional Accuracy 

Forecast Interval Accuracy 
Frequency (Out of 197) 

Univariate Bivariate 

Ahead 1 

> 60% 2 10 

> 55% 24 55 

> 50% 93 109 

< 45% 8 30 

< 40% 0 5 

Ahead 5 

> 60% 1 18 

> 55% 18 45 

> 50% 93 98 

< 45% 22 42 

< 40% 2 10 

Ahead 1 & Ahead 5 Same Direction 111 101 
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Coverage analysis results, shown in Figure 4-24 and Table 4-15, revealed that five-step 

forecast coverage was better than one-step coverage; however, both were above 90%.  

Values were comparable to univariate coverage as the table revealed.  The distributional 

plot was similar to bivariate-volume and bivariate-PCA coverage plots (respectively, 

Figure 4-4 and Figure 4-14). 

 

 

 
 

Figure 4-24.  ARIMA Bivariate (Volatility) Forecast Coverage within 95% CI 

 

Table 4-15.  ARIMA Univariate-Bivariate (Volatility) Mean Coverage 

 Univariate (%) Bivariate (%) 

Ahead 1 92.5 90.2  

Ahead 5 92.8 95.8 

 

Results of confidence interval shrinkage, seen in Figure 4-25 and Table 4-16 yielded 

consistent reduction of one-step forecast intervals in both frequency and mean value.   
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Figure 4-25.  ARIMA Univariate-Bivariate (Volatility) Confidence Intervals 
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Five-step confidence intervals were also dominated by shrinkage as seen in the figure, but 

the mean value of reduction was -1.5% which equates to growth, not shrinkage.  There 

were, however, 64 stocks with positive mean shrinkage, yielding a mean of +1.5%. 

 

Table 4-16.  ARIMA Univariate-Bivariate (Volatility) CI Statistics 

Bivariate Shrinkage Ahead 1 (%) Ahead 5 (%) 

Frequency 94.6 72.5 

Mean Shrinkage 5.4 -1.5 

 

4.3.2 SSA-Volatility Model Results 

For singular spectrum analysis, volatility was computed using the Yang-Zhang variance 

estimator defined in §4.3.  According to the SSA process, no differencing was needed for 

either stock price or volatility values.  Frequency of occurrence for simple SSA models 

seen in Figure 4-26 yielded a mean of 1.8%, slightly better than the 1.9% for univariate 

models.  Using volatility as a second variate appeared to avoid any confounding factors 

regarding separating structures in SSA eigenvector space. 
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Figure 4-26.  Frequency of Bivariate (Volatility) SSA Simple Models 

 

Directional accuracy results for SSA bivariate-volatility are provided in Figure 4-27.  

Maximum accuracy was attained for a five-step forecast at 69.5%, with three others above 

65%.  The maximum for one-step forecasts reached 64.8%.  The summary displayed in 

Table 4-17 shows similar results between bivariate-volatility and univariate models. 

 
 

 
 

Figure 4-27.  SSA Bivariate (Volatility) Directional Forecast Accuracy 
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Table 4-17.  SSA Univariate-Bivariate (Volatility) Directional Accuracy 

Forecast Interval Accuracy 
Frequency (Out of 197) 

Univariate Bivariate 

Ahead 1 

> 60% 13 9 

> 55% 47 49 

> 50% 102 96 

< 45% 40 43 

< 40% 9 10 

Ahead 5 

> 60% 13 12 

> 55% 44 45 

> 50% 97 98 

< 45% 41 35 

< 40% 11 9 

Ahead 1 & Ahead 5 Same Direction 88 91 
 

Confidence interval coverage for SSA bivariate-volatility showed mean values proximate 

to 76% for both one- and five-step forecasts.  A plot is given in Figure 4-28.  While the 

coverage was substantially lower compared to the univariate models as summarized in 

Table 4-18, accuracies were similar as seen in Table 4-17. 
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Figure 4-28.  SSA Bivariate (Volatility) Forecast Coverage within 95% CI 

 

Table 4-18.  SSA Univariate-Bivariate (Volatility) Mean Coverage 

 Univariate (%) Bivariate (%) 

Ahead 1 90.8 76.8 

Ahead 5 92.1 76.1 

 

Confidence interval shrinkage for SSA bivariate-volatility was consistent and significant 

across all stocks, without exception.  Frequency of shrinkage averaged near 98% and 

amount of shrinkage averaged approximately 38%.  Coverage was better than that for SSA 

bivariate-volume.  SSA bivariate-volatility displayed exceptionally strong characteristics.   
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Figure 4-29.  SSA Univariate-Bivariate (Volatility) Confidence Intervals 
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Table 4-19.  SSA Univariate-Bivariate (Volatility) CI Statistics 

Bivariate Shrinkage Ahead 1 (%) Ahead 5 (%) 

Frequency 97.9 98.2 

Mean Shrinkage 37.3 39.7 

 

4.4 Summary of Alternate Bivariate Components 

This chapter comprised a study of hypothesized time-series forecasting performance 

improvements utilizing bivariate models with covariates other than stock.  Volume, 

greatest principal component from PCA, and volatility were processed as the second 

variate.  Overall results pointed toward the method of principal component analysis to 

produce the highest forecasting accuracies.  Table 4-20 provides a compendium of study 

outcomes.   

 

Bivariate ARIMA models consistently outperformed their univariate counterpart, but such 

regularity was not found for bivariate SSA.  Univariate SSA-based one-step forecasts 

generally surpassed any of the bivariate-SSA alternatives, but for five-step projections, 

SSA-based bivariate-PCA performed best in the entire field of both SSA and ARIMA 

trials.  The highest performers are bolded in Table 4-20; these included bivariate ARIMA-

PCA one-step- and SSA-PCA five-step forecast accuracies for > 55% and > 60% 

categories.   

 

 



 

Table 4-20.  Bivariate Performance Comparison 

Parameter 
ARIMA* SSA* 

Univ S1 | S2 Vlm PCA Vty Univ S1 | S2 Vlm PCA Vty 

Random-Walk | Simple Model 63.0 34.7 5.6 32.1 0.5 1.9 3.1 4.5 4.6 1.8 

D
ir

ec
tio

na
l A

cc
ur

ac
y Ahead 1 

> 65% 0 2.4 | 3.5 0.5 1.0 0 0.5 1.2 | 0 1.0 0 0 

> 60% 1.0 9.4 | 9.4 7.1 10.2 5.1 6.6 3.5 | 4.7 6.6 2.5 4.6 

> 55% 12.2 29.4 | 35.3 28.4 29.9 27.9 23.9 20.2 | 23.5 18.8 10.7 24.9 

> 50% 47.2 58.8 | 67.1 51.8 60.9 55.3 51.8 55.3 | 49.4 49.7 35.0 48.7 

< 45% 4.1 14.1 | 8.2 17.8 10.2 15.2 20.3 12.9 | 17.6 18.3 24.9 21.8 

Ahead 5 

> 65% 0 1.2 | 1.2 2.0 0 2.0 1.0 0 | 1.2 1.0 2.5 2.0 

> 60% 0.5 8.2 | 11.8 6.6 11.7 9.1 6.6 3.5 | 9.4 6.6 13.7 6.1 

> 55% 9.1 34.1 | 28.2 25.9 35.0 22.8 22.3 12.9 | 31.8 18.3 38.1 22.8 

> 50% 47.2 56.5 | 54.1 53.8 57.9 49.7 49.2 47.1 | 56.5 49.7 64.0 49.7 

< 45% 11.2 23.5 | 16.5 15.2 15.2 21.3 20.8 18.8 | 22.4 18.8 7.1 17.8 

CI Coverage – Ahead 1 92.5 91.1 | 90.9 90.6 91.5 90.2 90.8 83.3 | 82.9 76.3 87.4 76.8 

CI Coverage – Ahead 5 92.8 96.5 | 95.8 95.8 96.1 95.8 92.1 83.8 | 83.8 76.5 87.8 76.1 

CI Mean Shrinkage – Ahead 1 – 4.1 | 4.2 4.7 4.0 5.4 – 22.9 | 22.7 34.5 -25.3 37.3 

CI Mean Shrinkage – Ahead 5 – -2.1 | -1.3 -1.7 -1.9 -1.5 – 25.8 | 25.9 36.4 -20.7 39.7 
*  All values in percent 
    Notation:  Univ = Univariate; Bivariate:  S1 | S2 = Stock 1 & Stock 2, Vlm = Volume, Vty = Volatility 
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An extra accuracy category of > 65% was incorporated in an attempt to isolate the best 

performers.  While this helped solidify the five-step forecasts for SSA-PCA, it revealed the 

bivariate-stock model with the highest accuracy percentage for the one-step predictions.  It 

should be recalled, however, that there were 85 stock pairs considered versus 197 PCA-

related stocks; each model category showed only two forecasts > 65%.   

 

Table 4-20 summarizes the most significant findings of the forecasting investigations 

contained in this dissertation.  In conclusion, it was evident that accuracy results for one- 

and five-steps-ahead imply that no single analysis method dominated forecasting in both 

time horizons.*   

 

  

                                                
*  Although disappointing, this ambiguity is not altogether surprising, especially 

considering the amount of continuing research conducted on the topic of forecasting. 
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5. ECONOMIC SIGNIFICANCE & ROBUSTNESS – BACKTESTING 

“The only relevant test of the validity of a hypothesis is comparison of prediction 

with experience.” 

– Milton Friedman (1912-2006), in the book “Essays in Positive Economics,” 1953 

 

 

This penultimate chapter reports on an investigation of economic significance and 

robustness within a limited configuration for the two ostensibly-best techniques identified 

in the previous chapter, i.e., bivariate ARIMA-PCA and bivariate SSA-PCA.  These two 

methods demonstrated the best performance potential based on results from all previous 

studies.  The meaning of economic significance implies real-world consequences, 

connoting a change in value of an asset (after some passing of time), and considers both 

magnitude and sign.  Robustness refers to the ability of a method to perform well under 

various market conditions such as up-trends, down-trends, and sideways (also called range-

bound) patterns.*   

 

As in previous chapters, all tests were conducted using out-of-sample forecasts.  Economic 

significance was evaluated by “back-testing” the above-mentioned methods using 

historical data to determine gain and loss in simulated trading accounts.  To establish a 

meaningful back-testing scenario, all initial account sizes were set at $10,000 to allow a 

realistic number of shares to be traded and create a feasible starting setup for most traders.  

                                                
*  Robustness could also concern modifications of model parameters, but these were not 

included in this investigation, hence a “limited configuration.” 
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Robustness was assessed by applying the forecasting techniques to five recent historical 

market conditions highlighted in Figure 5-1.  Each of these five time periods spanned 254 

daily samples (approximately one calendar year) and is specified in Table 5-1.  As seen in 

Figure 5-1, various trend patterns were explored. 

 
 

 
 

Figure 5-1.  Study Intervals 

 

Table 5-1.  Back-Testing Intervals 

Color Interval Name Start Date End Date 

Blue 2015 3-10-2015 3-10-2016 

Red 2014 3-6-2014 3-9-2015 

Violet 2010 1-6-2010 1-6-2011 

Green 2009 1-2-2009 1-5-2010 

Yellow 2008 12-31-2007 12-31-2008 
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5.1 Test Specifications 

Back-testing evaluations were constructed as follows.  For each of the specified test 

intervals defined in Table 5-1, one- and five-step out-of-sample-forecast models were 

computed for each day in the interval for each stock in the stock list (see Appendix 8.1).  

Forecast models were used to compute forecast directions and associated magnitudes.  

Based on the available account balance, a maximum-integer number of shares for each 

transaction was determined.  A net change was computed as the number of shares 

multiplied by the change in value between the closing price on the forecast reference day t 

and the actual closing price on day t + 1, or in the case of a five-step forecast, the closing 

price on day t + 5.  Account balance was updated by the net change multiplied by the sign 

of the forecast direction.  Trade entries for positive forecasts were long (buy) while trade 

entries for negative forecasts were short (sell).  Of course, trade exits were opposite to 

entries.  Account balances were maintained for one- and five step forecast intervals, with 

and without transaction fees.  Transaction fees, i.e., commissions, were instituted at $4.95 

for trade entry and the same for exit, totaling $9.90 for each complete transaction.*  For 

the five-step tests, the subsequent trade was delayed one day in an attempt to avoid any 

day-of-the-week bias.  In a second configuration of tests, the five-step forecasts were 

repeated daily for five steps ahead, producing a set of shifted-overlapping intervals every 

five samples, to determine if there were any noteworthy findings through periodicity.†  An 

additional test arrangement was included in which a threshold was invoked whereby a trade 

                                                
*  These amounts were found to be reasonable and readily available from multiple brokers. 
†  Naturally, day-of-the-week repetition only held until a non-trading day (i.e., a market 

holiday) occurred during a normal five-day week.  No attempt was made to track or 
correct for such atypical occurrences. 



 

153 

entry would only proceed if the threshold was exceeded.  This was evaluated to determine 

if a higher rate of return was attainable. 

 

5.2 Individual Stock Tracking Results 

Results of testing all stocks independently with bivariate models for ARIMA-PCA and 

SSA-PCA yielded distributions of accuracies similar to those found in previous chapters.  

As seen in the examples of Figure 5-2, no consistent, repeated, performance was observable 

in sequential years.  Similarly inconsistent results were obtained from the other three year-

long test intervals.  These results contrasted sharply with the methodology that assumed 

that accurate predictability was of paramount importance to achieving positive economic 

significance, i.e., profit.  A brief summary of outcomes follows. 

 

Results of tracking account balances for interval 2015 are provided in Figure 5-3.  The top 

plot shows final balances without including transaction fees and the middle chart shows 

terminal balances including fees.  The bottom graph shows the results of including 

thresholding in deciding whether to enter a trade. Clearly, including fees substantially 

impacted any profits, especially for the one-step forecasts because there were five times 

the number of fees incurred for the five-step profiles.  Other years showed similarly random 

results, some with higher ending balances for a few stocks, but no consistency.  Deciding 

to enter a trade based on whether the forecast value exceeded a threshold (several were 

tested) yielded degraded performance at all trials compared to the no-threshold scenario.  

In an effort to understand these results, a correlation was compiled for account balance vs. 
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accuracy.  As seen in Figure 5-4, there was somewhat of a correlation exposed, but there 

remained sufficient ambiguity to be of little use in clarifying apparently random results. 

 

 

 

 
 

Figure 5-2.  ARIMA-PCA Directional Forecast Accuracy 
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Figure 5-3.  ARIMA-PCA Account Balance Totals (2015) 
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Figure 5-4.  ARIMA-PCA Account Balance-Accuracy Correlation (2015) 
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SSA-PCA results compared to those for ARIMA-PCA and therefore were also omitted.   

 

5.3 Optimized Tracking Results 
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of averaging accuracies over different-length time windows were investigated, all yielding 

poor account returns.  Based on these observed outcomes, it was concluded that a measure 

of past accuracy was neither robust nor an adequate indicator of future performance.   

 

With the goal of positive economic significance unreached, an additional approach was 

developed using accuracy as an analytical enhancement as opposed to a central focus as 

administered in the previous methods.  The improved algorithm consisted of trading a 

single stock that exhibited the largest normalized, absolute value, forecasted change (Δ) in 

price for the succeeding step, hence an optimal tracking of expected performance of the 

stock pool at any given sampling time.  Moreover, each trade was augmented with a stop-

loss exit to mitigate effects of forecast inaccuracies.  This scheme operated on the same 

forecasting models previously computed, but administered a different post-processing 

algorithm, saving a significant amount of computational time.*  Application of this post-

processing technique yielded remarkable results described hereinafter. 

 

Model forecast results of the maximum changes for ARIMA-PCA in test interval 2015 are 

given in Figure 5-5.†  While this plot was generally representative of forecasted maximum 

changes for most of the test intervals, Table 5-2 provides specific statistics for all test cases.  

Mean and dispersion (i.e., standard deviation) varied noticeably between intervals.  

                                                
*  Note that model generation/estimations consumed > 98% of the required processing 

time. 
†  Delta, Δ, is defined as the normalized change in price, and |Δ| is its absolute value. 
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Positive-negative symmetry was typically present, but not always, probably a consequence 

of the accuracy results discussed next. 

 

 
 

Figure 5-5.  ARIMA-PCA Forecasts of Maximum-Change (2015) 

 

Table 5-2.  One-Step-Forecast-Change Statistics 

Test Interval 
ARIMA-PCA (%) SSA-PCA (%) 

│Mean│ Std Dev │Mean│ Std Dev 

2015 2.6 2.0 3.9 2.6 

2014 1.6 0.8 2.6 1.7 

2010 2.7 3.0 3.5 3.3 

2009 5.3 5.4 5.6 4.6 

2008 11.9 19.8 12.2 21.9 

Note:  │Mean│ is defined as the mean of the absolute changes |Δ|. 

 

A graph of forecasting accuracy results for test interval 2015 is shown in Figure 5-6.  At 
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forecast while a zero signifies an incorrect prediction.  A summary of mean forecast 

accuracies for the other test intervals is provided in Table 5-3.  Although the range varied 

from 47.1 to 57.3%, forecast accuracy appeared to have significantly-reduced impact to 

trading results with the use of the stop-loss.   
 

 

 
 

Figure 5-6.  ARIMA-PCA Forecast Accuracy (2015) 

 

Table 5-3.  One-Step Mean Forecast Accuracies 

Test Interval ARIMA-PCA (%) SSA-PCA (%) 

2015 50.7 51.1 

2014 57.3 54.2 

2010 47.1 48.9 

2009 52.9 50.2 

2008 49.8 50.2 
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as time progressed.  Examination of the other four year-long test intervals exposed similar 

irregular oscillatory motions of predicted directions for both ARIMA and SSA models.  

There did not seem to be a bias toward either direction regardless of general market trend. 

 

 

 
 

Figure 5-7.  ARIMA-PCA Forecast Direction (2015) 

 

Separate tracking was maintained for the one-step account and the five shifted (i.e., 

overlapped) five-step accounts.  An example of the dynamics of daily returns for the 2015 

test interval is shown in Figure 5-8.*  A summary of the average daily returns is presented 

in Table 5-4.†  Results showed that ARIMA-PCA models typically performed better than 

or comparable to the SSA-PCA models for the one-step accounts.  In contrast, the five-step 

accounts yielded mostly superior performance for SSA models, whereas only interval 2014 

                                                
*  Ahead 5-4 refers to the fourth of the five-step-forecast-overlapped intervals; it was a 

representative selection, falling in the middle of the five shifted test cases.  Note also 
that the five-step returns are simply held at the previous level until the subsequent step 
is completed.  No additional gain/loss should be implied during these hold periods. 

†  For purposes of comparison, resultant five-step-forecast returns were divided by 5 to 
reflect equivalent average daily returns. 
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showed better returns with ARIMA-PCA.  In summary, one-step daily returns were always 

greater than the five-step (average daily) returns with the ARIMA models outperforming 

the SSA implementations.   

 

 

 
 

Figure 5-8.  ARIMA-PCA Daily Returns (2015) 

 

Table 5-4.  Mean Daily Return without Fees 
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ARIMA-PCA ($) SSA-PCA ($) 
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2015 63.9 18.3 35.4 19.5 

2014 36.4 8.7 13.7 4.2 

2010 27.0 6.9 36.5 11.4 

2009 631.1 17.2 194.7 60.5 

2008 1066.0 17.7 1301.7 42.5 

Note:  Ahead 5 is the mean of five overlapped forecast periods. 
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Figure 5-9 shows a typical example of stock selection dynamics.  (Refer to Appendix 8.1 

for the stock number-name association.)  While no organized pattern was apparent (or 

expected), there were a few stocks that appeared to be chosen repeatedly by the decision 

algorithm.  Evidence showed that any particular stock would fall into and out of favor over 

the year-long interval.  A histogram of the frequency of occurrence for the same test 

interval is provided in Figure 5-10.  While the distribution was spread across the field of 

stocks, there were two stocks identified for trading more than ten times during the interval 

and some that were never traded at any time.  Similar dynamics were observed in the other 

four test intervals and for SSA-PCA models, as well. 

 

 

 
 

Figure 5-9.  ARIMA-PCA Stock Selection Dynamics (2015) 
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Figure 5-10.  ARIMA-PCA Stock Selection Distribution (2015) 
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Figure 5-11.  ARIMA-PCA Account Balance (2015) 

 
 

 
 

Figure 5-12.  ARIMA-PCA Performance Comparison (2015) 
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Table 5-5.  Terminal Account Balances 

Test 
Interval 

ARIMA-PCA ($) SSA-PCA ($) 

Ahead 1 Ahead 5 
(Lowest) 

Ahead 5 
(Highest) Ahead 1 Ahead 5 

(Lowest) 
Ahead 5 
(Highest) 

Without Fees 

2015 24,373 11,974 17,045 17,962 12,102 17,919 

2014 18,199 10,972 13,860 13,088 9,526 13,003 

2010 16,065 8,706 17,336 18,218 10,498 15,275 

2009 151,991 9,969 17,229 53,799 10,702 68,255 

2008 249,853 8,896 16,104 302,878 10,223 39,113 

With Fees 

2015 20,321 11,512 16,440 14,853 11,820 17,437 

2014 14,897 10,510 13,321 10,710 9,271 12,633 

2010 13,219 8,299 16,767 15,234 10,195 14,930 

2009 143,932 9,529 16,734 48,758 10,411 67,737 

2008 221,659 8,490 15,692 264,442 9,939 38,232 

Notes: 1.  Values are rounded to the nearest dollar. 
 2.  Bold values indicate highest value in each test interval. 

 

Observing Table 5-5, the top performing model without fees also produced the best returns 

with fees, with the exception of 2010.  The best consistency appeared to emanate from the 

one-step ARIMA-PCA models.  On the other hand, no particular model dominated the 

field.  Five-step forecast results revealed fundamental challenges to utility in that there 

were multiple overlapping forecast periods from which to select the best (or at least avoid 

the worst) starting day.  Inasmuch as it was impossible to know ahead of time which 

starting day to select, results advanced the conclusion that the five-step forecast model was 
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generally less profitable.  The single redeeming aspect regarding consistency is that all one-

step models produced positive returns.  In contrast; five-step model results were usually 

significantly lower and losses at termination were not uncommon.  A comparison of the 

time progression of ARIMA-PCA and SSA-PCA account balances for all test intervals is 

shown in Figure 5-13, each referenced to its start day.   

 

 

 
 

Figure 5-13.  ARIMA-SSA Performance Comparison (including Fees) 
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Lastly, the optimized-tracking results for the one-step ARIMA-based model* were 

evaluated for risk vs. reward in a comparison with the performance of the S&P 500 Index 

during the same five test intervals.  A greater standard deviation, i.e., dispersion, reflects a 

greater risk of an investment, but the comparison of investments requires the same expected 

return.  To allow valid comparisons of different investments, the coefficient of variation 

(CoV) is a simple method that quantifies dispersion relative to the expected return of an 

investment.  This measure is defined as  

Standard DeviationCoV
Mean




   . (5-1) 

A summary of computed risk profiles is provided in Table 5-6.†  Computations exposed a 

lower CoV for the optimized algorithm, which reflected a lower risk than investing in the 

S&P 500 Index during the same period.  While the standard deviations produced by the 

optimal algorithm were larger, the mean daily returns of the S&P Index were close to zero, 

substantially increasing the quantified risk.  Moreover, negative means for the S&P 500 

reflected a net loss for the analyzed period, obviously an undesirable investment outcome. 

 

                                                
*  All other models were excluded due to their generally inferior performance. 
†  Annualized returns may be approximated by multiplying daily returns by 252.  Also 

note that the test intervals were not coincident with calendar years, but the S&P Index 
computations were configured to be coincident with the ranges of the test intervals. 
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Table 5-6.  Risk vs. Reward for Daily Returns 

Test 
Interval 

Mean, µ (%) Std Dev,   (%) CoV 

S&P 500 Optimized‡ S&P 500 Optimized‡ S&P 500 Optimized‡ 

2015 –0.005 0.46 1.05 3.04 –203.4 6.6 

2014 0.043 0.22 0.73 1.43 16.9 6.6 

2010 0.051 0.14 1.13 1.52 22.1 10.6 

2009 0.093 5.95 1.70 21.46 18.3 3.6 

2008 –0.16 9.41 2.58 41.03 –16.2 4.4 

‡  One-step ARIMA-PCA with fees 

 

 

5.4 Performance Factors 

A reader may question whether these results are credible since they demonstrated returns 

above those normally realized in reported financial literature.*  This is addressed by the 

following points.   

 

Statistics were computed to evaluate rates of return for all equites in the stock list for each 

forecast step in each test interval.  As shown in Table 5-7, the averages of the positive and 

negative maximum daily returns for all stocks across each test period resulted in 

magnitudes greater than 4.3%.  Furthermore, results revealed that the average number of 

stocks yielding (maximum) returns larger than ±1% was significant in each interval.  The 

                                                
*  For example, in 2016, Barron’s Penta top hedge fund posted a three-year (2013-2015) 

annualized return of 30%, with a 2015 return of 45% [52]. 
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outcomes seen in the bottom two rows of the table exposed a small number of daily samples 

in each test year where no returns exceeded ±1%.  Although detailed statistics are not 

included herein, it should be noted that analysis of mean daily return for each of the 197 

stocks was very close to zero (like the S&P 500 Index).  Key to achieving significant 

returns was identifying stocks with the largest daily changes. 

 

Table 5-7.  Test Interval Statistics for Stock List 

Statistic 
Test Interval 

2008 2009 2010 2014 2015 

M
ea

n 
V

al
ue

 

+ Maximum Daily Return (%) 7.0 12.9 6.1 4.7 5.2 

– Maximum Daily Return (%) -7.1 -12.0 -5.6 -4.3 -4.8 

Std Dev of Daily Returns (%) 1.7 3.0 1.4 1.0 1.2 

No. of Stocks with Returns > 1% 54 69 50 33 41 

No. of Stocks with Returns < –1% 57 71 46 30 39 

No. of Days with No Return > 1% 1 4 5 2 7 

No. of Days with No Return < –1% 0 1 2 3 1 
 

The efficient market hypothesis (EMH), known also as the random-walk theory [4], 

continues to be controversial to the present.  The frequency of occurrence displayed for 

ARIMA random-walk models in earlier chapters (and supported by forecast accuracy 

results in §5.3) indicated a combination of efficient markets and predictable markets, each 

surfacing at unknown and irregular points in time.  Additionally, forecasted maximum 

change was found to be independent of forecasted accuracy.  To maintain consistency, i.e., 

to avoid modifications of already-characterized forecast models, considering that forecast 
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accuracies occurred about the 50% range, some alternate method was required to achieve 

a positive trading return for any given test interval.  Inclusion of a stop-loss limit was found 

to reduce the impacts of incorrect forecasts by restraining negative excursions.  Stop-loss 

thresholds were set at 1% of account balance for all transactions and reduced to 0.075% 

for forecasts where the previous step accuracy was incorrect. 

 

When assessing the magnitudes of account terminal balances of each test interval, the effect 

of compounding is a factor to be considered.  Each test period included 225 (daily) samples 

wherein the available account balance at each step was applied toward the next forecast.  

The five-step models comprised 45 samples (225  5).  The effects of compounding for 

these two scenarios are displayed in Table 5-8 where the results of starting with $10,000 

are presented.  Hence, if a trading model can produce an average return rate of only 1% per 

day, a starting value of $10,000 will end near $93,000.  Based on these compounding 

effects, the results obtained from this analysis do not suggest unreasonable returns, 

assuming the aforementioned forecast accuracies.  Naturally, the 45-sample rate of return 

must be much higher to achieve similar results.  Thus, unless they project significantly 

better forecast accuracies, five-step models incorporate a disadvantage to producing returns 

as large as the one-step models.  This was evident in the test results. 

 

In a final word about general performance, the back-testing algorithms were simple and 

intentionally designed to be autonomous, avoiding any subjective, user decision-driving 

input.  These approaches were necessary for conducting the extensive evaluations for this 

project.  In a real-world application, an investor would apply the autonomous trading  
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Table 5-8.  Effects of Compounding 

Interest 
Rate 
(%) 

225-Sample 
Compounded  

Return ($) 

Interest 
Rate 
(%) 

45-Sample 
Compounded 

Return ($) 

0.1 12,522 0.2 10,941 

0.2 15,676 0.4 11,968 

0.3 19,620 0.6 13,089 

0.4 24,552 0.8 14,313 

0.5 30,716 1 15,648 

0.6 38,419 1.2 17,105 

0.7 48,043 1.4 18,694 

0.8 60,065 1.6 20,428 

0.9 75,078 1.8 22,318 

1.0 93,823 2 24,379 

1.1 117,222 2.2 26,625 

1.2 146,425 2.4 29,074 

1.3 182,863 2.6 31,742 

1.4 228,318 2.8 34,649 

1.5 285,010 3 37,816 

Note:  Initial Value = $10,000 

 

approach on a daily basis toward earning profits on the following day.  With knowledge of 

market conditions, other information such as earnings announcements, news, etc., in all 

probability a careful investor would evaluate the next forecast prior to configuring a trade, 

applying judgement regarding potential outcome, and possibly select an alternate stock or 
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decide not to trade at all.  In this manner, the input from a skilled investor/trader may be 

able to further improve on the algorithm’s nominal return results. 
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6. CONCLUSION 

“Far better an approximate answer to the right question, which is often vague, than 

an exact answer to the wrong question, which can always be made precise.” 

– John W. Tukey (1915-2000), in “The Future of Data Analysis,” 1962 [47] 

 

 

This research project focused on forecasting using two very different methods of time 

series analysis and compared performance results.  U.S. stock market equities were selected 

as the target data set due to perceived random-like characteristics, implied forecasting 

difficulty, and the general notion of a compelling interest to predict future prices for 

financial gain.  The market was screened for candidate data meeting minimum 

requirements for trading liquidity, and historical longevity to allow a sufficient number of 

independent samples to be evaluated.  Statistical analyses of the data found that the best 

stochastic fit was a (slightly-skewed) generalized t-distribution, definitely eliminating the 

historical, original working assumption of Gaussianity.  Probability tests for goodness-of-

fit were conducted to validate these findings. 

 

Each stock data set was segmented into independent segments of non-overlapping data to 

support unconditional statistical evaluation.  In order to perform coherent time series 

analyses of the data segments, preconditioning was applied to compensate for the 

occasional split inherent in equities.  Univariate and multivariate analyses were carried out, 

generating ARIMA and SSA models for all.  Model independence was evaluated.  Out-of-

sample forecasts were estimated and statistics were computed for every stock in every 



 

174 

independent segment.  Statistical confidence intervals for all results were determined.  

Results were compared for univariate, bivariate, and trivariate combinations of highly-

correlated stocks.  Multivariate-univariate confidence interval shrinkages were examined.   

 

Bivariate modeling and forecasting with three different covariates were performed.  

Examination of results with covariates of trading volume, PCA first principal component, 

and volatility, revealed that PCA exhibited the best overall forecasting accuracy in the 

entire field of investigated elements, including the univariate models.  The bivariate-PCA 

structures were applied at the next level to evaluate economic significance and robustness 

through a process known as back-testing.   

 

Initial results of back-testing via tracking the performance of individual stocks yielded 

forecasting results similar to those obtained in earlier analyses.  Unfortunately, the 

inconsistencies obtained over multiple testing intervals proved useless in attaining a sense 

of positive economic significance.  The results were simply too random to produce reliable 

economic forecasting outcomes.  A second back-testing setup using the best forecasting 

results across the field of stocks at each sample time yielded notable results and substantial 

economic significance.  Robustness of this method was validated through evaluation in 

multiple market-trend conditions.   

 



 

175 

There are several possible areas to evaluate for continuing and extending this investigation 

in future research efforts.  The main objective would be to improve economic returns by 

increasing forecast accuracies.  Areas to investigate include: 

1. Determining effects of various window lengths; 

2. Varying SSA model thresholds; 

3. Developing a better method to extract the optimal SSA groups; 

4. Evaluation with financial assets other than equites; 

5. Determining economic significance and robustness with alternate covariates; 

6. Evaluation and possible modifications to the back-testing method to function with 

a smaller field of data; 

7. Improving the computational speed of model generation. 

 

In conclusion, results indicated that this project successfully reached its goal of finding a 

rigorous, reliable, mathematically-based method to forecasting asset movements in a 

tradeable economic market. 

 

 

 

________________________________________________________________________ 

“The acquisition of any knowledge whatever is always useful to the intellect, because 

it will be able to banish the useless things and retain those which are good.  For nothing 

can be either loved or hated unless it is first known.” 

– Leonardo da Vinci (1452-1519), in “The Notebooks of Leonardo da Vinci,” vol. 1 
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8. APPENDICES 

8.1 Appendix 1 – Stock List 

No. Stock No. Stock No. Stock No. Stock 

1 AA 26 BEN 51 CTL 76 FDX 

2 AAPL 27 BHI 52 CVS 77 FISV 

3 ABT 28 BK 53 CVX 78 FITB 

4 ADBE 29 BMY 54 D 79 GD 

5 ADI 30 C 55 DD 80 GE 

6 ADM 31 CA 56 DE 81 GIS 

7 ADP 32 CAG 57 DHR 82 GLW 

8 ADSK 33 CAH 58 DIS 83 GPS 

9 AEP 34 CAT 59 DOV 84 HAL 

10 AET 35 CCE 60 DOW 85 HCP 

11 AFL 36 CCL 61 DTE 86 HD 

12 AIG 37 CELG 62 DUK 87 HES 

13 AMAT 38 CERN 63 EA 88 HON 

14 AME 39 CHD 64 ECL 89 HOT 

15 AMGN 40 CI 65 ED 90 HPQ 

16 APA 41 CL 66 EIX 91 HRL 

17 APC 42 CLX 67 EMC 92 HST 

18 APD 43 CMCSA 68 EMR 93 HSY 

19 AXP 44 CMI 69 EOG 94 IBM 

20 BA 45 CMS 70 EQT 95 INTC 

21 BAC 46 COP 71 ES 96 IP 

22 BAX 47 COST 72 ETR 97 ITW 

23 BBT 48 CPB 73 EXC 98 JCI 

24 BBY 49 CSCO 74 F 99 JNJ 

25 BDX 50 CSX 75 FAST 100 JPM 
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Stock List – continued 

No. Stock No. Stock No. Stock No. Stock 

101 K 126 MU 151 PPL 176 TXN 
102 KLAC 127 MYL 152 RF 177 UNH 
103 KMB 128 NBL 153 ROK 178 UNP 
104 KO 129 NEE 154 ROST 179 USB 
105 KR 130 NEM 155 RTN 180 UTX 
106 L 131 NKE 156 SCHW 181 VFC 
107 LB 132 NOC 157 SLB 182 VLO 
108 LLTC 133 NSC 158 SO 183 VMC 
109 LLY 134 NTRS 159 STI 184 VNO 
110 LMT 135 NUE 160 STJ 185 VZ 
111 LOW 136 NWL 161 STT 186 WBA 
112 LRCX 137 OMC 162 SWK 187 WDC 
113 LUV 138 ORCL 163 SWKS 188 WEC 
114 MAS 139 OXY 164 SYK 189 WFC 
115 MAT 140 PAYX 165 SYMC 190 WHR 
116 MCD 141 PCAR 166 SYY 191 WMB 
117 MDT 142 PCG 167 T 192 WMT 
118 MHFI 143 PEG 168 TAP 193 WY 
119 MMC 144 PEP 169 TGT 194 XEL 
120 MMM 145 PFE 170 TJX 195 XLNX 
121 MO 146 PG 171 TMO 196 XOM 
122 MOS 147 PGR 172 TROW 197 XRX 
123 MRK 148 PH 173 TRV   
124 MSFT 149 PNC 174 TSN   
125 MSI 150 PPG 175 TSO   
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8.2 Appendix 2 – Stock Pairs 

Tier 1 

Pair No. Stock 1 Stock 2 Pair No. Stock 1 Stock 2 

1 BHI NBL 26 ADM CLX 

2 COST GPS 27 AET MO 

3 LLTC SO 28 AMAT BAC 

4 LRCX TJX 29 AME CERN 

5 ABT CHD 30 BAC C 

6 BA TSO 31 BAX GIS 

7 CTL TROW 32 BHI OMC 

8 MAS PGR 33 CMCSA SWK 

9 NWL UNH 34 COST ROST 

10 OXY PEG 35 DOW HD 

11 AA OMC 36 DOW PNC 

12 AAPL ADSK 37 DUK FDX 

13 AFL MO 38 FITB HD 

14 BEN D 39 GD KR 

15 CPB D 40 NEE TROW 

16 ECL F 41 OXY RF 

17 FDX LB 42 PCAR WEC 

18 FISV PH 43 STI VMC 

19 FITB HOT 44 STI VNO 

20 LUV PPL 45 SWKS WBA 

21 PAYX SYMC    

22 SO TGT    

23 STI WDC    

24 STT WMB    

25 TROW WY    
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Tier 2 

Pair No. Stock 1 Stock 2 Pair No. Stock 1 Stock 2 

46 ABT C 71 FISV TSN 

47 ADSK TXN 72 FISV WHR 

48 AFL TSN 73 KLAC SWK 

49 AFL VZ 74 LLTC MYL 

50 AIG DE 75 LLTC PEP 

51 AMAT CAG 76 ORCL WMT 

52 AME IBM 77 PCAR SO 

53 AXP HSY 78 PCAR TJX 

54 BA ORCL 79 STT UNP 

55 BA PNC 80 STT WMT 

56 CAH CERN 81 SWK TROW 

57 CAH ECL 82 SYK WFC 

58 CCE HD 83 TJX VNO 

59 CI CVS 84 TMO VNO 

60 CMI LRCX 85 TSO XEL 

61 COP DTE    

62 COP FITB    

63 COST HAL    

64 COST IBM    

65 CPB JNJ    

66 DOW PCG    

67 DTE PGR    

68 EA XRX    

69 ES LRCX    

70 FDX WBA    
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8.3 Appendix 3 – Stock Triplets 

No. Stock 1 Stock 2 Stock 3 No. Stock 1 Stock 2 Stock 3 

1 BHI NBL OMC 26 TROW WY NEE 

2 COST GPS ROST 27 TROW WY SWK 

3 COST GPS HAL 28 CTL TROW NEE 

4 COST GPS IBM 29 CTL TROW SWK 

5 COST ROST HAL 30 NEE TROW SWK 

6 COST ROST IBM 31 MAS PGR DTE 

7 COST HAL IBM 32 OXY PEG RF 

8 LLTC SO MYL 33 AA OMC BHI 

9 LLTC SO PEP 34 ADSK TXN AAPL 

10 LLTC MYL PEP 35 AFL MO TSN 

11 SO TGT LLTC 36 AFL MO VZ 

12 SO TGT PCAR 37 AFL TSN VZ 

13 LLTC SO PCAR 38 AFL MO AET 

14 LRCX TJX CMI 39 BEN D CPB 

15 LRCX TJX ES 40 CPB D JNJ 

16 CMI LRCX ES 41 ECL F CAH 

17 TJX VNO LRCX 42 FDX LB WBA 

18 TJX VNO PCAR 43 FDX LB DUK 

19 LRCX TJX PCAR 44 FDX WBA DUK 

20 ABT CHD C 45 FISV PH TSN 

21 BA TSO ORCL 46 FISV PH WHR 

22 BA TSO PNC 47 FISV TSN WHR 

23 BA ORCL PNC 48 FITB HOT HD 

24 TSO XEL BA 49 FITB HOT COP 

25 TROW WY CTL 50 FITB HD COP 
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Stock Triplets – continued 

No. Stock 1 Stock 2 Stock 3 No. Stock 1 Stock 2 Stock 3 

51 STI WDC VMC 76 STI VNO TMO 

52 STI WDC VNO 77 TJX VNO TMO 

53 STI VMC VNO 78 SWKS WBA FDX 

54 STT WMB UNP 79 AFL TSN FISV 

55 STT WMB WMT 80 AME IBM COST 

56 STT UNP WMT 81 ORCL WMT BA 

57 AMAT BAC CAG 82 CAH CERN ECL 

58 BAC C AMAT 83 COP DTE FITB 

59 AME CERN IBM 34 DTE PGR COP 

60 AME CERN CAH 85 ORCL WMT STT 

61 BAC C ABT     

62 SWK TROW CMCSA     

63 SWK TROW KLAC     

64 CMCSA SWK KLAC     

65 DOW HD PNC     

66 DOW HD PCG     

67 DOW PNC PCG     

68 DOW HD FITB     

69 DOW HD CCE     

70 FITB HD CCE     

71 DOW PNC BA     

72 PCAR WEC SO     

73 PCAR WEC TJX     

74 PCAR SO TJX     

75 STI VNO TJX     
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8.4 Appendix 4 – Gauss Inequality 

According to [14] equation (9’), the Gauss Inequality states 
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 , (8-1) 

where X is a random variable having a density function with a single mode, 0 , with mean 

, variance 2 , and 0s  



 .  When the mode equals the mean, 0s   and (8-1) 

simplifies to  

  2
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X   


     , (8-2) 

providing a tighter bound than the more general Tchebycheff Inequality [14].  Using (8-2), 

probability bands, Table 8-1, similar to the Normal standard deviations (68.3–95.5–99.7%) 

may be calculated with  being the 

number of standard deviations, .  

Gaussian bands are provided for 

comparison.  Clearly, the fatter tails of 

the non-Gaussian distribution extend 

the probabilities of data occurring 

farther away from the distribution peak.   

 

 

 

 

 

Table 8-1.  Probability Bands 

 Non-Gaussian 
Probability (%) 

Gaussian 
Probability (%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

55.56 
88.89 
95.06 
97.22 
98.22 
98.77 
99.09 
99.31 
99.45 
99.56 

68.27 
95.45 
99.73 
99.99 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
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