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Mouse cytomegalovirus (MCMV) encodes two potential seven-transmembrane-spanning proteins with ho-
mologies to cellular chemokine receptors, M33 and M78. While these virus-encoded chemokine receptors are
necessary for the in vivo pathogenesis of MCMV, the function of these proteins is unknown. Since vascular
smooth muscle cell (SMC) migration is of critical importance for the development of atherosclerosis and other
vascular diseases, the ability of M33 to promote SMC motility was assessed. Similar to human CMV, MCMV
induced the migration of mouse aortic SMCs but not mouse fibroblasts. To demonstrate whether M33 was
required for MCMV-induced SMC migration, we employed interfering-RNA technology to specifically knock
down M33 expression in the context of viral infection. The knockdown of M33 resulted in the specific reduction
of M33 protein expression and ablation of MCMV-mediated SMC migration but failed to reduce viral growth
in cultured cells. Adenovirus vector expression of M33 was sufficient to promote SMC migration, which was
enhanced in the presence of recombinant mouse RANTES (mRANTES). In addition, M33 promoted the
activation of Rac1 and extracellular signal-related kinase 1/2 upon stimulation with mRANTES. These findings
demonstrate that mRANTES is a ligand for this chemokine receptor and that the activation of M33 occurs in
a ligand-dependent manner. Thus, M33 is a functional homologue of US28 that is required for MCMV-induced
vascular SMC migration.

Human cytomegalovirus (HCMV) is a ubiquitous betaher-
pesvirus that establishes a lifelong latent/persistent infection
after primary infection. Although antiviral therapy has signif-
icantly reduced HCMV-related disease in individuals suffering
from AIDS, HCMV infection remains a significant problem in
congenital disease and transplant patients (27). HCMV infec-
tion has been associated with a number of vascular diseases,
including atherosclerosis, restenosis following angioplasty,
chronic rejection associated with solid organ transplantation,
and, more recently, malignancies (7). However, the mecha-
nisms involved in CMV-associated development of vascular
disease are unknown (20, 21, 29).

The most-convincing evidence demonstrating that herpesvi-
rus infections exacerbate vascular disease is exemplified in
animal models. Marek’s disease virus (MDV), a herpesvirus
that infects fowl, was the first etiologic agent found to induce
atherosclerosis (9, 10). MDV-infected chickens develop ath-
erosclerotic lesions with histological features comparable to
those of human vascular disease, which includes the finding of
MDV antigens early in vascular lesions and late in smooth
muscle cells (SMCs) at the periphery of the plaque. The advent
of mouse models of atherosclerosis has dramatically improved
the ability to study the effects of CMV infection on vascular
lesion development. While wild-type (WT) mice appear to be

resistant to the development of atherosclerosis, ApoE�/� mice
are prone to develop the disease when fed a high-fat diet (25).
Murine CMV (MCMV) infection of ApoE�/� mice acceler-
ates the development of atherosclerosis by increasing the fre-
quency of lesion formation and the severity of the atheroscle-
rotic plaques (5, 14, 34). The crossing of ApoE�/� mice with
other genetically altered mice has been employed to study the
effects of host proteins in lesion formation. For example,
MCP-1 and the receptor for this chemokine, CCR2, are im-
portant regulators of the monocyte infiltration involved in the
formation of atherosclerotic plaques (3, 12). In a rat heart
transplantation model, rat CMV (RCMV)-induced accelera-
tion of chronic rejection is associated with increased infiltra-
tion of immune cells and enhanced chemokine expression (31).
These and other similar findings suggest an important role for
CMVs, chemokines, and chemokine receptors in the develop-
ment of vascular disease.

All betaherpesviruses encode proteins with homologies to
chemokines and/or chemokine receptors. For example,
HCMV encodes four putative chemokine receptors: UL33,
US27, US28, and UL78, with US28 being the most character-
ized (6). US28 is necessary and sufficient to induce the ligand-
dependent migration of vascular SMCs (32), which involves the
activation of the small G protein RhoA (22) and the protein
tyrosine kinases focal adhesion kinase and Src (33). US28 was
the first viral G protein-coupled receptor (GPCR) shown to
mediate cellular motility, which is cell-type specific and pro-
vides a molecular basis for the correlative evidence that links
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HCMV to the acceleration of vascular disease. RCMV and
MCMV encode two putative chemokine receptor homologues,
R33 and R78 and M33 and M78, respectively. Disruption of
either M33 or M78 results in reduced viral titers in salivary
glands (8, 26). These findings and the conservation of virus-
encoded chemokine receptors among betaherpesviruses sug-
gest an important role for these molecules in the biology of
these viruses.

Since vascular SMC migration is crucial for the development
of atherosclerosis, and an animal model is unavailable for the
study of HCMV, the ability of MCMV to induce the migration
of vascular SMCs was determined. In this report, we demon-
strate that although MCMV encodes two chemokine receptors
(28), the putative CC chemokine receptor M33 is both neces-
sary and sufficient in MCMV-induced SMC migration. While
M33 has been shown to constitutively signal through phospho-
lipase C-� and NF-�B (36), we report that recombinant mouse
RANTES (mRANTES) enhanced M33-induced SMC migra-
tion and triggered the activation of the small G protein Rac1,
as well as extracellular signal-related kinase 1/2 (ERK-1/2),
demonstrating for the first time that mRANTES is a ligand of
M33. Therefore, both MCMV and HCMV encode chemokine
receptors that share similar abilities to induce the ligand-de-
pendent migration of SMCs.

MATERIALS AND METHODS

Cells and viruses. NIH 3T3 fibroblasts and primary rat aortic SMCs
(AoSMCs) were isolated from rat aortas (22). Due to the short life span in tissue
culture of SMCs isolated from WT BALB/c mice, we isolated mouse AoSMCs
from aortas of p53�/� mice that were subsequently cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal calf serum and penicil-
lin–streptomycin–L-glutamine (22). NIH 3T3 cells were used to prepare and
determine the titers of stocks of the Smith strain of MCMV (ATCC) and
MCMV-M33FlagGFP. MCMV-M33FlagGFP was constructed using the �-de-
rived linear recombination system in combination with the pSM3fr MCMV
bacterial artificial chromosome in the Escherichia coli strain DY380 (provided by
U. Koszinowski) (35). MCMV-M33FlagGFP contains a green fluorescent pro-
tein (GFP) expression cassette under the control of the EF1-� promoter, which
was cloned into the IE2 promoter region, and a C-terminal Flag epitope (Flag)
was cloned in frame with M33. MCMV-�M33 (MCMV with M33 deleted) was
constructed using the �-derived linear recombination system by placing multiple
stop codons in frame with the M33 start codon. MCMV-M33Rev (MCMV with
revertant M33) was constructed by replacing the �M33 stop codons with WT
M33 sequences by linear recombination. The recombinant viruses have been
checked for insertion by restriction analysis, Southern blotting, and sequencing.
All of the recombinant viruses grew to levels similar to that of WT MCMV Smith
in mouse fibroblasts. NIH 3T3 cells were used to prepare and determine the
titers of MCMV stocks.

M33 adenovirus construction. The adenovirus (Ad) vector expressing M33
containing a C-terminal Flag epitope tag was constructed as previously described
(13, 32). Briefly, M33 containing a C-terminal Flag epitope tag was constructed
by subcloning the cDNA fragment into pAdTet7 (13), which contains the tet-
responsive enhancer within a minimal CMV promoter followed by the simian
virus 40 late poly(A) cassette. Recombinant adenoviruses were produced by
cotransfection of pAdTet7-M33C-Flag and Ad5-�5 DNA into 293-Cre cells (13).
Recombinant adenoviruses were expanded on 293-Cre cells, and their titers were
determined by limiting dilution. Expression of M33 was driven by coinfection
with Ad-trans expressing the “Tet-off” transactivator as previously described
(32).

siRNA. The M33-specific silencing inhibitory RNAs (siRNAs) (M33-345-365,
AACCGCAUCUAUCGCAGCUCG and M33-387-409, AACCUGUACUUUG
CGAACCUG) and lamin A/C-specific siRNA (AACUGGACUUCCAGAAGA
ACA) were obtained ready to use from Dharmacon (Lafayette, CO) as option
A4 (5	-end deprotected, annealed, and desalted). Selected sequences were
searched using BLAST to ensure that the siRNAs were specific for their target
sequences.

The methods of siRNA transfection were the same whether used in assays for

monitoring virus replication, protein expression, or SMC migration. Briefly,
mouse AoSMCs were cultured on 12-well dishes (or T75 flasks for SMC migra-
tion assays). Prior to transfection, the cells were washed twice with Opti-MEM.
Various concentrations (1 to 50 nm) of siRNA M33-345, M33-387, or lamin A/C
along with 2 
l of oligofectamine (GibcoBRL) were diluted in Opti-MEM (200

l). The solution was incubated for 20 min and then added to the cells for 4 h,
at which time they were supplemented with 10% fetal calf serum-Dulbecco’s
modified Eagle’s medium. Sixteen hours posttransfection, cells were infected
with MCMV-M33FlagGFP at a multiplicity of infection (MOI) of 1. To assess
the effects of siRNA on MCMV entry, MCMV-M33FlagGFP-infected, GFP-
positive cells were visualized using a Nikon TE300 microscope (magnification,
�20) and enumerated by counting multiple fields. Multistep growth curves were
examined to determine the effects of siRNA on virus replication. Culture super-
natants were harvested daily, and limiting dilution plaque assays were used to
quantitate infectious viruses in each sample. For protein expression experiments,
the cells were lysed 24 h postinfection (hpi) in 2� Laemmli’s sample buffer and
analyzed by Western blotting as described below. For SMC migration experi-
ments, siRNA-transfected SMCs were transferred to transwells and infected with
MCMV at an MOI of 1. Migration assays were then performed as described
below.

SMC migration assays. Cell migration assays were performed as previously
described (22, 32, 33). Briefly, 1 � 105 cells were added to the upper well of a
transwell (3.0-
m pore size; Costar Corning, Cambridge, MA). Cells were serum
starved and infected with MCMV (MOI � 1). Infection inserts were washed and
transferred to new 12-well tissue culture plates. Cells migrating to the lower
chamber were counted at 48 to 72 hpi by using a Nikon TE300 microscope at a
magnification of �10. Experiments were done in at least triplicate wells, and 10
random fields were read from each well.

Immunofluorescent microscopy. For immunofluorescent analysis, samples
were washed with phosphate-buffered saline (PBS) and fixed with 2% foscarnet
in PBS. For intracellular staining, the samples were permeabilized and blocked
in intracellular staining buffer (ISB) (1 g bovine serum albumin, sodium azide,
0.5% Triton X-100, and 500 ml PBS) with 10% normal goat serum for 20 min.
The primary antibody (diluted in ISB) was incubated for 2 h. Anti-Flag antibod-
ies (M2; Sigma) were used to visualize M33Flag-tagged proteins. Samples were
washed with ISB and incubated with fluorescein isothiocyanate or L-rhodamine-
conjugated secondary anti-mouse or anti-rabbit antibodies (BioSource Interna-
tional, Camarillo, CA), diluted in ISB for 1 h. Samples were washed with ISB,
mounted, and visualized using a Nikon TE300 microscope. Mouse AoSMCs were
stained with either anti-�-SMC actin (1:250) or M2 anti-Flag monoclonal anti-
body (1:500) diluted according to the manufacturer’s instructions. SMCs were
then incubated with secondary fluorescence-conjugated antibodies, and pho-
tomicrographs were obtained at �60 magnification (Nikon; TE300).

Western blot analysis. Western blotting of cellular lysates for viral and cellular
proteins was accomplished as previously described (22, 33). Briefly, mock-in-
fected or MCMV-M33FlagGFP-infected NIH 3T3 cells (5 � 105) were lysed in
2� Laemmli’s sample buffer (17). Samples were analyzed by 10% sodium do-
decyl sulfate (SDS)-polyacrylamide gel electrophoresis, and proteins were trans-
ferred to Immobilon-P membranes (Millipore). The blots were blocked with 3%
milk in Tris-buffered saline–T buffer (100 mM Tris-Cl, pH 7.5, 150 mM NaCl,
and 0.1% Tween 20) for 1 h. The M2 anti-Flag antibody (diluted to 1:2,000 in
Tris-buffered saline–Tween 20) was used for primary detection of M33-Flag
proteins with a secondary anti-mouse antibody conjugated to horseradish per-
oxidase (Amersham Pharmacia Biotech, Piscataway, NJ). Anti-MCMV antibod-
ies recognizing the MCMV immediate early protein 1 (IE1) or the early protein
pp50 (M44) were used to determine the extent of viral protein expression.
Chemiluminescence and autoradiography were used for final protein detection
on Kodak MR or Biomax light film.

Rac activation assay. The CDC42/Rac-interactive binding domain (CRIB) of
Pak1 (amino acids 67 to 150) was expressed as a glutathione S-transferase (GST)
fusion (GST-CRIB; J. Scott, OHSU) in the E. coli strain BL21 as previously
described (16, 19). Upon our obtaining an optical density of 0.6 to 0.8, bacteria
were induced overnight with IPTG (isopropyl-�-D-thiogalactopyranoside; 1
mM), and clarified supernatants were bound to glutathione-linked 4B-CL Sepha-
rose (Amersham). The beads were washed in PBS, followed by three washes in
Rac wash buffer (50 mM Tris, pH 7.2, 1% Triton X-100, 150 mM NaCl, and 10
mM MgCl2), with a final equilibration wash using Rac1 lysis buffer (50 mM Tris,
pH 7.2, 1% Triton X-100, 500 mM NaCl, 10 mM MgCl2, 0.5% sodium deoxy-
cholate, and 0.1% SDS). For Rac activation assays, rat AoSMCs were cultured
on 15-cm dishes and upon achieving 75% confluence were serum starved for 18 h
prior to being infected with Ad-M33CFlag and/or Ad-trans at an MOI of 1,000.
The cells were stimulated with mRANTES (10 ng/ml) at 16 h postinfection and
harvested in Rac lysis buffer at 0 (unstimulated), 5, 10, or 30 min. Prior to
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administration of GST-CRIB beads, a sample of each cell lysate was analyzed for
total input Rac1 and for ERK-1/2 activation by Western blotting for Rac1,
phospho-ERK-1/2 (Thr202/Tyr204), and total ERK-1/2 (Cell Signaling Technol-
ogies). Cell lysates were incubated with GST-CRIB beads (80 
l of a 1:1 slurry)
for 45 min at 4°C and then washed four times with 1 ml of Rac1 wash buffer. The
final pellet was resuspended in 60 
l of 2� Laemmli’s sample buffer, subjected
to 12% SDS-polyacrylamide gel electrophoresis, transferred to Immobilon-P
membranes, and probed for Rac1.

RESULTS

MCMV-M33 mediates mouse SMC migration. We have pre-
viously demonstrated that the HCMV-encoded chemokine re-
ceptor US28 is capable of inducing SMC migration, thus pro-
viding a molecular link between HCMV and the acceleration
of vascular disease (32). Since SMC migration is a fundamental
process in the development of vascular diseases, we deter-
mined whether MCMV infection of SMCs resulted in cellular
migration similar to SMC motility induced by HCMV (32). To
accomplish this, AoSMCs were isolated from p53�/� mice, and
to confirm their phenotypes, cells were stained with antibodies
directed against �-SMC actin (Fig. 1A). Although the isolated
SMCs stained �-SMC actin, staining for the endothelial cell
marker von Willebrand’s factor yielded negative results, indi-
cating that the SMC population was not contaminated with
endothelial cells. Subsequently, AoSMCs were cultured in
transwell dishes for migration assays, and infection with
MCMV induced their migration (Fig. 1D). MCMV encodes
two chemokine receptors, M33 and M78, and M33 is similar to
the HCMV-encoded chemokine receptor US28 (28). Similar
to US28 and U12 (M33 positional homologue in human her-
pesvirus 6 [HHV-6] and HHV-7), M33 is predicted to bind CC
chemokines, including RANTES. Thus, an adenovirus vector
expressing a C-terminal Flag-tagged version of M33 (Ad-
M33Flag) was generated to determine whether M33 was re-
sponsible for MCMV-induced AoSMC migration. When ex-
pressed in mouse SMCs, M33 localized to intracellular vesicles,
similar to US28 (Fig. 1B) (32, 33). Ad-M33CFlag expression in
mouse SMCs resulted in cellular migration comparable to that
of MCMV-infected cells (Fig. 1C). These results indicate that
M33 is sufficient for SMC migration and that this chemokine
receptor is a functional homologue of US28 (Fig. 1D). The
induction of SMC migration by M33 was independent of an
exogenous source of chemokine ligands, suggesting that this
chemokine receptor is either constitutively active or that SMCs
produce ligands for M33. Previous experimental evidence sup-
ports the latter hypothesis, as in vitro-cultured human SMCs
constitutively produce the US28 ligand MCP-1, which is capa-
ble of promoting migration in the absence of exogenously
added chemokines. The addition of neutralizing MCP-1 anti-
bodies abrogates US28-mediated SMC migration, and the
migration phenotype can be rescued upon the addition of
RANTES (32). Similarly, a consistent dose-dependent in-
crease in the migration of M33-expressing mouse AoSMCs was
observed with the addition of recombinant mRANTES to the
lower chamber, indicating that M33 responds to ligand stimu-
lation to promote cellular motility.

As an alternative approach to demonstrating that M33 is the
only MCMV gene involved in promoting SMC migration, we
used siRNA technology to block expression of M33 in the
context of full virus replication. Two different siRNA mole-

cules were designed against MCMV-M33 sequences and des-
ignated M33-345 and M33-387 based on their relative positions
in the M33 gene. In order to optimize siRNA transfection
procedures, we also obtained a fluorescent (fluorescein iso-
thiocyanate)-tagged control oligonucleotide to the cellular
protein lamin A/C, which was transfected into 90% of the
cells (data not shown).

Use of inhibitors, including siRNA, can have deleterious
effects on viral gene expression and replication. To test
whether siRNA transfection negatively impacted MCMV in-
fection, cells were transfected with either the lamin A/C con-
trol siRNA or one of the two siRNAs directed against M33 and
then infected with MCMV-GFP at an MOI of 1. As assessed by
fluorescence, the siRNA molecules did not affect the ability of
MCMV to infect mouse fibroblasts (data not shown). These
findings were confirmed by determining MCMV replication in
the presence of each of the siRNAs by using multistep growth
analysis (Fig. 2). MCMV replicated to levels in mouse fibro-
blasts treated with any of the siRNA reagents equivalent to
those of mock-transfected cells, thus providing a means of
specifically knocking down genes during viral infection, with-
out affecting in vitro MCMV replication.

Currently, antibodies directed against M33 are not available.
Thus, in order to monitor M33 protein expression during MCMV
infection, a recombinant version of the Smith strain of MCMV
containing a Flag-tagged version of M33 and expressing GFP
under the control of the constitutive EF1� promoter was con-
structed (MCMV-M33FlagGFP). MCMV-M33FlagGFP displays
replication characteristics that parallel those of MCMV-GFP
(data not shown). To determine the kinetics of M33 protein
expression, NIH 3T3 cells were infected with MCMV-
M33FlagGFP at an MOI of 1. Cells were harvested in sample
buffer at the times indicated in Fig. 3A, and expression of IE1,
the early protein M44 (pp50), and M33 (Flag) was assessed by
Western blot analysis (Fig. 3). As expected, robust IE1 expres-
sion commenced by 4 hpi and was sustained for the duration of
the experiment. The DNA processivity factors M44 and M33
were expressed with similar early kinetics (detectable by 12
hpi).

The efficacy of siRNA as a means of reducing protein ex-
pression varies depending on the target gene, cell type, and
individual siRNA. To determine whether siRNAs directed
against M33 blocked protein expression, mouse fibroblasts
were transfected with various concentrations (0, 5, 10, or 25
nM) of the three siRNAs. Cells were then infected with
MCMV-M33FlagGFP for 24 h. As shown in Fig. 4A and B,
Western blotting for M33 Flag protein expression was quanti-
tated and normalized to the protein levels of M44 (pp50,
MCMV early protein). In accordance with our findings that
MCMV replication was not affected by siRNA transfection,
the levels of pp50 in the siRNA-treated samples were un-
changed compared to those of mock-transfected and MCMV-
infected cells. Interestingly, the two oligonucleotides specific
for M33 differed in their abilities to block M33 protein expres-
sion. The M33-387 oligonucleotide was more effective in block-
ing M33 protein expression than was the M33-345 oligonucle-
otide, reducing M33 expression levels to 40% versus 100% of
the lamin control (Fig. 4B). To confirm our findings that M33
was responsible for SMC migration induced by MCMV,
siRNA molecules were tested in SMC migration assays.
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AoSMCs were transfected in triplicate with either control
lamin A, M33-345, or M33-387 siRNAs as described above.
Cells were then infected with MCMV-M33FlagGFP, and 16
hpi, the cells were divided and transferred into 12-well trans-
well dishes. Treatment with the M33-387, but not the M33-345

or lamin control, siRNA abrogated MCMV-M33-mediated
SMC migration (Fig. 4C). The effects of M33-387 on MCMV-
M33-mediated SMC migration were consistent with our find-
ings that this oligonucleotide effectively blocks M33 protein
expression. To confirm the requirement of M33 in MCMV-

FIG. 1. MCMV-M33 induces vascular smooth muscle cell migration. (A) Mouse vascular smooth muscle cells isolated from the aorta of p53�/�

mice were stained for the SMC marker �-SMC actin (red).(B) To examine M33 protein expression, mouse AoSMCs were coinfected with an
adenovirus vector expressing M33Flag (Ad-M33Flag) and the “Tet-off” tetracycline transactivator (Ad-trans). At 24 hpi, cells were fixed and then
stained using an antibody directed against the Flag epitope (green). Nuclei were stained with the Hoescht DNA stain (blue). (C) AoSMCs were
infected with various concentrations of Ad-M33Flag in order to determine the optimal levels of protein expression. Cell lysates from Ad-M33Flag-
infected cells were harvested at 24 hpi and probed for M33 by Western blotting by using an antibody directed against the Flag epitope. (D) For
the SMC migration assay, mouse aortic SMCs or NIH 3T3 cells (105 cells per well) were plated onto transwells and infected with either MCMV
or Ad-M33Flag. Ad-M33Flag-infected cells were treated with increasing concentrations of RANTES in the lower well. Migrating cells were
enumerated by microscopy 48 to 72 hpi.
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induced SMC migration, we performed SMC migration assays
in p53�/� SMCs that were either mock infected, infected with
MCMV deleted for M33 (MCMV-�M33), or infected with the
recombinant M33 revertant strain of MCMV (MCMV-
M33Rev) (Fig. 4D). MCMV-�M33-infected SMCs displayed
reduced cellular migration compared to MCMV-M33Rev-in-
fected SMCs. In addition, the levels of reduction, while not
complete, are consistent with our siRNA M33 depletion ex-
periments described above. Therefore, we conclude that M33
mediates SMC migration and is a functional homologue of
US28 in MCMV.

M33 activation of Rac1 and ERK-1/2. Although we have
demonstrated a function for M33, the signaling pathways ac-
tivated by M33 and the ligands that bind this viral GPCR are
unknown. We have recently demonstrated that US28 signaling
through RhoA is critical for the ability of US28 to induce SMC
migration (22). Rac1, an additional member of the Rho-like G

protein family, is a key mediator of cellular migration (11). To
assess the ability of M33 to activate Rac1, active Rac pull-down
assays were performed using glutathione-linked Sepharose
beads bound with GST-CRIB. This fusion protein binds only to
Rac1 in the active GTP-bound state (16, 19). Serum-starved rat
AoSMCs expressing M33 and/or the tet transactivator were
stimulated with 10 ng/ml of recombinant mRANTES for 0
(unstimulated), 5, 10, or 30 min. GST-CRIB was administered
to precleared cell lysates, and active Rac1 associated with
GST-CRIB was determined by Western blotting for Rac1. To
ensure that equivalent amounts of cellular proteins were used
in each assay, precleared lysates were analyzed by Western
blotting for the presence of Rac1 prior to the addition of
GST-CRIB. SMCs expressing M33 and treated with recombi-
nant mRANTES demonstrated a kinetic activation of Rac1,
with peak activation occurring 10 min after ligand stimulation
(Fig. 5). Similarly, the addition of RANTES to M33-expressing

FIG. 2. siRNA transfection does not interfere with MCMV replication. MCMV multistep growth curves were performed on mouse fibroblasts
transfected with M33-345, M33-387, or lamin siRNA and then infected with MCMV-GFP at 24 h posttransfection. Cell supernatants were analyzed
by plaque assays for the presence of infectious MCMV.

FIG. 3. M33 protein is expressed with early kinetics during MCMV infection. Mouse fibroblasts were infected with MCMV or MCMV-
M33FlagGFP at an MOI of 1. To determine the timing of M33 expression, cell lysates were probed by Western blotting for M33Flag, IE1, or the
early protein pp50 (M44) at the times indicated above the blot.
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cells, but not control AoSMCs, induced the phosphorylation/
activation of ERK-1/2, as determined by Western blotting for
ERK-1/2 using phosphospecific antibodies. Therefore, similar
to US28, M33 activates ERK-1/2, as well as small G proteins
that are known to be important in cellular migration in a
ligand-dependent manner.

DISCUSSION

In this report, we demonstrate that similar to our findings
with HCMV and the HCMV-encoded chemokine receptor
US28, MCMV infection of vascular SMCs induces their mi-
gration (32). We used siRNA to knock down M33 expression,
which had no effect on viral growth kinetics, representing a
viable technique for specific gene knockdown in the presence
of viral replication. While M33-siRNA treatment blocked
AoSMC migration in MCMV-infected cells, expression of M33
was sufficient to induce migration to levels similar to MCMV
infection. The addition of RANTES to M33-expressing SMCs
enhanced migration, resulting in the activation of Rac1. To our
knowledge, this is the first demonstration of a ligand for M33.
Furthermore, these findings also demonstrate that this viral
GPCR signals in a ligand-dependent manner. Together, these
findings suggest that M33 is a functional homologue of US28
and that M33 is required for MCMV-induced SMC migration.

SMC migration from the media into the neointimal space is
a hallmark of vascular lesion formation, suggesting that patho-
gen-mediated acceleration of vascular disease involves en-
hanced accumulation of SMCs in the lesion. A reduction in
apoptosis caused by HCMV infection of SMCs could lead to an
accumulation of these cells at sites of vascular injury. CMV
infection of HeLa cells inhibits tumor necrosis factor alpha-
induced apoptosis (37). An explanation for this block in apo-
ptosis is the finding that the HCMV IE1 binds and inactivates
the tumor suppressor gene p53 (29). Another mechanism of
cellular accumulation occurs through SMC proliferation at the
site of vascular injury. CMV infection of endothelial cells in-
duces the release of growth factors and cytokines, including
fibroblast growth factor and platelet-derived growth factor BB,
which are potent stimuli of SMC proliferation (30). Further-
more, HCMV infection up-regulates expression of the CC
chemokine RANTES in SMCs and fibroblasts (23, 32). We
have previously demonstrated that infection of human SMCs
with HCMV induces migration, which is dependent upon ex-
pression of the virus-encoded chemokine receptor US28, and
binding of the CC chemokines RANTES or MCP-1 (32). Sim-
ilarly, in the current report, we have shown that MCMV-M33
induces mouse SMC migration. We hypothesize that HCMV
infection enhances SMC migration preferentially towards sites
of vascular injury due to expression of virus-encoded chemo-
kine receptors. The resultant SMC accumulation in the vessel
intima leads to neointimal hyperplasia and vessel narrowing.
siRNA-mediated ablation of M33 protein expression during
MCMV infection confirmed the requirement of this chemo-
kine receptor in MCMV-induced SMC migration.

�-Chemokine receptors in betaherpesviruses. While others
have demonstrated that M33 can signal independently of ex-
ogenous ligands (36), we demonstrate that RANTES binding
to M33 enhances SMC migration and activates Rac1 and
ERK-1/2. These findings indicate that RANTES is a potent

ligand for M33. The ligands for HCMV UL33, the M33 posi-
tional homologue, are unknown. Deletion of US27 and US28
is required to prevent RANTES binding in HCMV-infected
fibroblasts, suggesting that UL33 does not bind RANTES (2).
Interestingly, the presence of a �-chemokine receptor is com-
mon for all betaherpesviruses, as HHV-6 and HHV-7 also
encode �-chemokine receptors (15, 24). Additionally, a recent
finding indicates that the gene carrying HCMV also encodes a

FIG. 4. M33-specific siRNA blocks protein production and vascu-
lar SMC migration. (A) Inhibition of M33 protein synthesis in MCMV-
M33FlagGFP-infected mouse fibroblasts transfected with 5, 10, or 25
ng siRNA (lamina, M33-345, or M33-387). M33 protein (y axis) was
measured relative to pp50. (B) Quantitation of M33 protein inhibition.
M33 protein was measured relative to the MCMV early protein pp50.
(C) MCMV-infected AoSMCs were treated with siRNA (lamina, M33-
345, or M33-387) and subjected to migration assays. Percent migration
was determined by comparing M33 siRNA-treated cells to the lamin
control. Migrating cells were enumerated by microscopy at 48 to 72
hpi. (D) For the SMC migration assay, mouse aortic SMCs (1 � 105

cells per well) were plated onto transwells and infected with either
MCMV-�M33 or MCMV-M33Rev. Migrating cells were enumerated
by microscopy 48 to 72 hpi.
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soluble RANTES binding protein (4). The transcript for this
gene is packaged in the virion, and the protein is expressed
immediately following infection.

What is the function of M33 in MCMV pathogenesis? While
we have demonstrated a role for M33 in the induction of
vascular SMC migration, this finding does not preclude M33
from having other functions. Deletion of either MCMV-M33
or RCMV-R33 has deleterious effects on virus replication in
salivary glands, suggesting that both are important for viral
persistence in the host (1, 8). Similarly, deletion of mouse
HV-68 viral GPCR does not affect acute-phase viral replica-
tion but prevents reactivation from latency (18). Whether viral
chemokine receptors are utilized as sensors to monitor the host
inflammatory response to ensure that the extracellular envi-
ronment is amenable for replication is unclear. In support of
this hypothesis, HCMV reactivates in times of immune stress
when chemokine ligands are induced, promoting monocyte
differentiation into HCMV infection competent macrophages.

SMC migration induced by CMV-encoded chemokine re-
ceptors has important implications for several inflammatory
vascular diseases, including restenosis, transplant vascular scle-
rosis, and atherosclerosis, which involve endothelial cell dam-
age and inflammatory cell infiltration, followed by SMC accu-
mulation resulting in stenosis of the vessel. Although HCMV
has been linked to these vascular diseases, the pathogenic
features of these disease processes are complex and multifac-
torial. The accumulation of SMCs in the intima is hypothesized
to involve both migratory and proliferative events. Our studies
suggest a novel mechanism for the accumulation of SMCs in
vascular lesions, whereby virus-encoded chemokine receptors
might induce SMC migration to sites of atherogenesis. Further
investigation of the signaling pathways involved in CMV-in-
duced SMC migration is warranted in order to develop strat-
egies to prevent and treat CMV-associated vascular diseases.
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32. Streblow, D. N., C. Söderberg-Nauclér, J. Vieira, P. Smith, E. Wakabayashi,
F. Rutchi, K. Mattison, Y. Altschuler, and J. A. Nelson. 1999. The human
cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle
cell migration. Cell 99:511–520.

33. Streblow, D. N., J. Vomaske, P. Smith, R. Melnychuk, L. A. Hall, D. Pan-
cheva, M. Smit, P. Casarosa, D. D. Schlaepfer, and J. A. Nelson. 2003.
Human cytomegalovirus chemokine US28 induced SMC migration is medi-
ated by focal adhesion kinase and Src. J. Biol. Chem. 278:50456–50465.

34. Vliegen, I., F. Stassen, G. Grauls, R. Blok, and C. Bruggeman. 2002. MCMV
infection increases early T-lymphocyte influx in atherosclerotic lesions in
apoE knockout mice. J. Clin. Virol. 25(Suppl. 2):S159–S171.

35. Wagner, M., S. Jonjic, U. H. Koszinowski, and M. Messerle. 1999. Systematic
excision of vector sequences from the BAC-cloned herpesvirus genome
during virus reconstitution. J. Virol. 73:7056–7060.

36. Waldhoer, M., T. N. Kledal, H. Farrell, and T. W. Schwartz. 2002. Murine
cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit sim-
ilar constitutive signaling activities. J. Virol. 76:8161–8168.

37. Zhu, H., Y. Shen, and T. Shenk 1995. Human cytomegalovirus IE1 and IE2
proteins block apoptosis. J. Virol. 69:7960–7970.

VOL. 79, 2005 MCMV M33 MEDIATES VASCULAR SMC MIGRATION 10795

 on July 31, 2017 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/

	Chapman University
	Chapman University Digital Commons
	2005

	Mouse Cytomegalovirus M33 is Necessary and Sufficient in Virus-Induced Vascular Smooth Muscle Cell Migration
	Ryan Melnychuk
	Patsy Smith
	Craig N. Kreklywich
	Franziska Ruchti
	Jennifer Totonchy
	See next page for additional authors
	Recommended Citation

	Mouse Cytomegalovirus M33 is Necessary and Sufficient in Virus-Induced Vascular Smooth Muscle Cell Migration
	Comments
	Copyright
	Authors


	tmp.1501605399.pdf.6mCVV

