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ABSTRACT 
 
Adenylyl cyclases are a ubiquitous family of enzymes and are critical regulators of metabolic 

and cardiovascular function.   Multiple isoforms of the enzyme are expressed in a range of 

tissues.  However, for many processes the adenylyl cyclase isoforms have been thought of as 

essentially interchangeable, with their impact more dependent on their common actions to 

increase intracellular cAMP content regardless of the isoform involved.  It has long been 

appreciated that each subfamily of isoforms demonstrate a specific pattern of  “upstream” 

regulation, i.e., specific patterns of ion dependence (e.g., calcium-dependence) and specific 

patterns of regulation by kinases (PKA, PKC, raf).  However, more recent studies have suggested 

that adenylyl cyclase isoform-selective patterns of signaling are a wide-spread phenomenon.  

The determinants of these selective signaling patterns relate to a number of factors, including: i) 

selective coupling of specific adenylyl cyclase isoforms with specific GPCRs, ii) localization of 

specific adenylyl cyclase isoforms in defined structural domains (AKAP complexes, 

caveolin/lipid rafts) and iii) selective coupling of adenylyl cyclase isoforms with specific 

downstream signaling cascades important in regulation of cell growth and contractility.  The 

importance of isoform-specific regulation has now been demonstrated both in mouse models as 

well as in humans. 

Adenylyl cyclase has not been viewed as a useful target for therapeutic regulation, given 

the ubiquitous expression of the enzyme and the perceived high risk of off-target effects.  

Understanding which isoforms of adenylyl cyclase mediate distinct cellular effects would bring 

new significance  to the development of  isoform-specific ligands to regulate discrete cellular 

actions.  
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INTRODUCTION 

The adenylyl cyclases are a ubiquitously expressed family of enzymes that catalyze the 

generation of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP).  

Adenylyl cyclases regulate a broad range of cellular functions (Cooper et al., 1995, Hanoune and 

Defer, 2001, Patel et al., 2001).  These enzymes are critical effectors for a number of G protein–

coupled receptors (GPCRs).  Adenylyl cyclase activation has been suggested to be the rate-

limiting step in the GPCR signaling cascade (Ostrom et al., 2000).  

The adenylyl cyclases have been extensively and perhaps even exhaustively studied.  

Since their initial descriptions in the 1960’s more than 20,000 papers have been published that 

include the search terms adenylyl/adenylate cyclase or cyclic AMP, including almost 700 reviews.  

Further, the field of adenylyl cyclases/cAMP biology has been the basis of 3 Nobel Prize awards 

include those of Earl Sutherland (1971), Ed Fischer/Ed Krebs (1992) and Al Gilman/Marty 

Rodbell (1994).  Thus, in 2011 it might be reasonable to ask whether there is anything new that a 

reader could expect to glean from yet another review in this very well-tilled field of research.  In 

this short review we would like to focus on two aspects of cAMP/adenylyl cyclase biology that 

are perhaps less appreciated but critical for the understanding of this crucial second messenger 

system. 

The basis of this brief review will be to discuss and dispel a widely held but probably 

untenable belief about the basic workings of this system, viz. that because of the ubiquity of 

adenylyl cyclases and the very common effects of all isoforms of the family, the development of 

therapeutic strategies based on isoform-selective regulation is a “fool’s errand”.  In contrast to this 

widely-held belief, the major focus of this review will be to highlight that: 
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1) The effects mediated by adenylyl cyclase isoforms are critically dependent on the isoform-

selective “signalosomes” in which they are situated, and 

2) Regulation of specific isoforms would be expected (and do) have significant impact on 

cardiovascular and respiratory regulation 

 

ADENYLYL CYCLASE ISOFORMS AND ISOFORM-SPECIFIC REGULATION 

Adenylyl cyclases comprise a family of nine membrane-bound isoforms grouped into 3 

major subfamilies, comprising: Group 1: AC1, AC3, AC8, Group 2: AC2, AC4, AC7 and Group 

3: AC5, AC6 (Patel et al., 2001).  Additionally, AC9 has been characterized as a distinct (and 

atypical) isoform(Premont et al., 1996)(Sunahara and Taussig, 2002) with restricted expression, 

and a soluble adenylyl cyclase has been characterized that is the predominant form in mammalian 

sperm (Wuttke et al., 2001). Each isoform has a specific pattern of tissue/organ distribution and a 

specific pattern of regulation by G proteins, calcium/calmodulin, and protein kinases (Thomas and 

Hoffman, 1996, Harry et al., 1997, Wang and Brown, 2004). For example, Raf kinases regulate 

AC2, AC5 and AC6, whereas they do not regulate AC1 (Ding et al., 2004) (Table 1). 

      The distribution of adenylyl cyclase isoforms varies between tissues (Cooper, 2003).  

Further, the effects of adenylyl cyclase activation in regulating several cellular functions, 

including cell growth, qualitatively differ between tissues (Lee et al., 2001, Wong et al., 2001).   

Although there are multiple G protein-dependent mechanisms regulating the function of 

adenylyl cyclase, it has been believed that the consequence of activation of any of the isoforms is 

singular (i.e., that cAMP generation mediates the same effect regardless of the isoform involved in 

the process).  However, recent studies have suggested that there are many important examples of 

isoform-specific signaling especially in regulation of cardiovascular and respiratory function.  
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These relate in part, to the organization of specific adenylyl cyclase isoforms in distinct cellular 

compartments and (perhaps consequently) association of specific adenylyl cyclase isoforms with 

specific G protein coupled receptor/G protein complexes as well as with particular downstream 

effectors. 

 

ADENYLYL CYCLASE COMPARTMENTATION MODELS 

Adenylyl cyclase isoforms have been localized in several structural cellular compartments.  

The best characterized are their association with caveolar and lipid raft microdomains and in 

complexes with A-kinase anchoring proteins (AKAPs)(Dessauer, 2009). 

Specific receptors, adenylyl cyclase isoforms and downstream effectors are targeted to 

lipid rafts and/or caveolae, creating discrete signaling compartments that allow common signaling 

pathways to generate a variety of situation-specific responses.  A number of studies have 

demonstrated AC isoform-specific coupling to specific GPCR’s, and this coupling reflects the co-

localization of receptors and given AC isoforms in lipid rafts.  Overexpression of AC6 in rat 

neonatal myocytes enhances cAMP production in response to the ß-adrenergic receptor (ßAR) 

agonist isoproterenol without affecting response to stimulation of other Gαs-coupled receptors 

such as adenosine A2, histamine H2 and glucagon receptors (Ostrom et al., 2000). This selective 

coupling is seemingly explained by the observation that AC6 colocalizes with ßAR in 

caveolae/lipid rafts in rat neonatal ventricular myocytes but other GPCR are excluded from these 

domains. AC6 more efficiently couples to ß1AR than ß2AR in these cells, likely due to 4-fold 

higher expression of ß1AR and movement of ß2AR out of caveolae following activation (Ostrom 

et al., 2001). 
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In human bronchial smooth muscle cells, ßAR preferentially signals via activation of AC6, 

which coexists with ß2AR in lipid rafts (Bogard et al., 2011). In these same cells EP2R act through 

ßγ-stimulable, and calcium insensitive, cyclases (AC2 and AC4) that are expressed exclusinvely 

in non-raft fractions of the plasma membrane.  Thus, ACs appear to have isoform-specific 

localization with respect tor lipid rafts and non-raft domains and this feature is consistent across 

many cell types (Fagan et al., 2000, Ostrom et al., 2000, Ostrom et al., 2002, Smith et al., 2002, 

Ostrom and Insel, 2004).   Such compartmentation in plasma membrane microdomains appears 

responsible, in part, for the observed selective coupling between GPCR and specific adenylyl 

cyclase isoforms. 

Notably, preferential coupling of specific adenylyl cyclase isoforms with specific receptors 

may be regulatable- adding an additional level of complexity.  In uterine smooth muscle, α2 

adrenoceptors switch from being adenylyl cyclase inhibitory to stimulatory during mid-term 

pregnancy (Zhou et al., 2000).  Subsequent studies demonstrated that upregulation of AC2 and the 

consequent switch in α2 adrenoceptors effects on adenylyl cyclase activity being predominantly 

mediated through this isoform being the most likely responsible mechanism (Zhou et al., 2007). 

Whether this shift  parallels a change in compartmentation of either receptor or adenylyl cyclase 

isoforms remains to be determined. 

In addition to placing specific AC isoforms and receptors in close proximity, lipid rafts 

appear to play a role in cyclase regulation by capacitative calcium entry (CCE).  AC6 is inhibited 

by CCE but not calcium from intracellular stores or ionophore-mediated entry (Cooper et al., 

1995).   The fast Ca2+ chelator BAPTA is able to block CCE impact on cyclase activity, but 

EGTA, a chelator with similar affinity but slower binding rate, has no effect on cAMP production 

(Fagan et al., 1998).  The lack of EGTA effect suggests AC is located near sites of CCE.   
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Disrupting lipid rafts removes CCE regulation of AC6 without affecting CCE itself, and these 

features return upon lipid raft restoration (Fagan et al., 2000).  Lipid rafts seem important for 

association of calcium–sensitive cyclases and sites of CCE, while the cytoskeleton does not 

appear to play a role since disruption of the cytoskeleton by a number of compounds does not 

affect the ability of CCE to inhibit Ca-sensitive AC (Fagan et al., 1998). 

Studies of numerous cell types make clear that AC isoforms are stratified as either lipid 

raft localized or non-raft localized (Ostrom and Insel, 2004).  One then wonders how ACs are 

localized in these respective lipid domains. Protein-lipid interactions, protein-protein interactions 

and post-translational modifications are all likely mechanisms. This question has been examined 

using a number of different approaches. Two separate studies have revealed the importance of the 

intracellular C1 and C2 domains in targeting adenylyl cyclase to lipid rafts.  Crossthwaite et al. 

made several chimeric proteins combining various portions of raft localized AC5 and non-raft 

AC7 and found that the intracellular, and not transmembrane domains, direct localization to lipid 

rafts (Crossthwaite et al., 2005).  Thangavel et al. created a series of AC6 fragments and truncated 

proteins (Thangavel et al., 2009).  C1 and C2 fragments of AC6 localize to bouyant fractions and 

co-immunoprecipitate with caveolin-1  (Thangavel et al., 2009).  These studies indicate that the 

transmembrane domains do not play a role in targeting cyclase to lipid rafts, implying that 

interactions with membrane lipids are probably not as important as protein-protein interactions for 

raft localization of these isoforms. 

One protein that is known to localize to caveolae and act as a scaffolding molecule for 

various signaling proteins is caveolin.  Caveolin-1 does not appear to be responsible for anchoring 

cyclases in lipid rafts, since cardiac fibroblasts isolated from cav-1 knockout mice displayed the 

same expression and localization of cyclases (Thangavel et al., 2009).  In addition, HEK-293 cell 
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lines that do not express caveolin proteins still target overexpressed AC6 to lipid rafts (Thangavel 

et al., 2009).     

Although it has been demonstrated that the intracellular domains are enough to target 

cyclase fragments or chimeric proteins to lipid rafts, preventing glycosylation on extracellular 

loops also stops AC8 from localizing to lipid rafts (Pagano et al., 2009). It is possible that 

glycosylation facilitates interaction with proteins that are involved in targeting molecules to lipid 

rafts.  Interestingly, the non-raft localized form of AC8 is still regulated by CCE, and (as with 

native AC8) this regulation is eliminated by MßCD-mediated cholesterol depletion in a reversible 

manner.  Thus, intact lipid rafts are required for CCE regulation of AC activity even when the 

cyclase is not located in them.  

The balance of data indicate that lipid rafts bring together a subset of signaling molecules 

and may facilitate coupling of specific AC isoforms with certain GPCR’s and other signaling 

proteins, helping to direct specific responses.   

Another way cells can bring signaling molecules together for specific pathways and 

regulation is through A Kinase Anchoring Proteins (AKAPs). All AKAPs have a protein kinase A 

(PKA) binding motif that binds the regulatory subunit of PKA, but otherwise they are quite 

variable (Dessauer, 2009). They can be targeted to the plasma membrane or membranes of 

organelles such as golgi, mitochondria or nucleus.  AKAPs act as scaffolds and bring together 

specific combinations of kinases and their substrates as well as other components involved in a 

wide array of signaling pathways. Such scaffolding is important for rapid signal transduction as 

well as rapid termination of signaling. 

AKAPs have recently been shown to interact with cyclases in an isoform-specific 

manner.  The first isoform-specific AC-AKAP interactions were determined only a few years 
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ago (Bauman et al., 2006).  Current research is focused on further uncovering specific AC-

AKAP associations and investigating how participation in AKAP complexes contributes to the 

regulation of AC. 

So far a conserved AC-binding domain has not been found across AKAPs.  Of the sites 

determined to bind AC, there is little similarity among AKAPs, even when they bind the same 

AC isoform (Piggott et al., 2008, Kapiloff et al., 2009).  Different AC isoforms can bind different 

locations on the same AKAP.  The N terminus of AC2 interacts directly with amino acids 808-

957 of the AKAP Yotiao, but AC1, AC3 and AC9 do not interact with this site although they are 

bound by Yotiao (Piggott et al., 2008).  Known AKAP-AC interactions include mAKAP with 

AC2 and AC5 (Kapiloff et al., 2009),  AKAP79/150 with AC2, 3, 5, 6, 8, and 9 (Efendiev et al., 

2010), and AKAP9/Yotiao with AC1, 2, 3, and 9 (Piggott et al., 2008).  

AKAPs can mediate regulation of cAMP-PKA signaling in a number of ways either 

through direct interaction or bringing various components together in a complex.  Interaction of 

AC8 with AKAP 79/150 appears to decrease the cyclase’s sensitivity to Ca2+ (Willoughby et al., 

2010).   Yotiao acts only as a scaffold with no effect on activity of AC1 and AC9 but has an 

inhibitory effect on AC2 and AC3 (Piggott et al., 2008).  The scaffolding of cyclases and PDEs, 

kinases and phosphatases, and kinase-sensitive receptors/cyclases allows tight regulation of 

signaling cascades.   For example, AKAP79/150 interacts with PKA,  ß2AR, and several 

isoforms of AC including AC5 and AC6 (Bauman et al., 2006). Once activated, PKA can 

phosphorylate a number of substrates including ßAR (causing desensitization, G protein 

switching, receptor translocation) and AC (PKA phosphorylation inhibits AC5 and AC6), 

preventing further signaling via feedback inhibition.  Other kinases such as PKC can also be 
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anchored by AKAPs and regulate cyclases in an isoform-specific manner.  PKC phoshorylation 

enhances activity of AC1, 2, 3, 5, and 7, but inhibits AC6 (Table 2).      

The specifc AKAP-AC interactions that are defined and the role they play in 

cardiovascular physiology and pathophysiology has recently been reviewed (Efendiev and 

Dessauer, 2011).  Yotiao is one AKAP whose importance in the heart has been recognized due to 

complications associated with mutations of the KCNQ1 subunit of the slow outward potassium 

channel that prevents its interaction with Yotiao.  When Yotiao with its associated proteins is 

unable to bind the potassium channel, the normal PKA and PP1 phosphorylation and 

dephosphorylation of the channel is disrupted and the duration of the action potential is altered 

(Marx et al., 2002).  The resulting arrhythmias can be lethal.  

Thus, ACs are permanent residents of specialized lipid microdomains where receptors 

may selectively and dynamically participate in assembled singaling complexes. AKAPs are key 

members of such signaling complexes based on their interaction with specific AC isoforms, and 

bring with them PKA as well as a number of other scaffolded signaling partners.  Paralleling 

these structural studies, there is increasing evidence of “functional” consequences of adenylyl 

cyclase compartmentation into isoform-specific adenylyl cyclase “signalosomes” linking these 

enzymes with either specific GPCR/G protein complexes and/or specific adenylyl 

cyclase/downstream effector complexes.  However, it should be emphasized that the link 

between the evidence for these “structural” compartments with any specific functional adenylyl 

cyclase signalosome remains to be established. 
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ADENYLYL CYCLASE ISOFORM-SPECIFIC ASSOCIATION WITH DOWNSTREAM 

EFFECTORS  

Although, it has become increasingly clear that there is adenylyl cyclase isoform-specific 

linkage with “upstream” regulators of enzyme function, the consequence of adenylyl cyclase 

activation was seen as singular, i.e., an increase in intracellular cyclic AMP concentrations and 

activation of its downstream effectors, Exchange Protein Activated by cAMP (Epac) and PKA 

(Cooper et al., 1995, Hanoune and Defer, 2001, Patel et al., 2001).  However, more recent 

evidence has suggested that the linkages between adenylyl cyclase and its proximate effectors 

(Epac and PKA) and more distal responses (growth and contractility) might also be isoform-

specific (Gros et al., 2006). This has perhaps been most clearly demonstrated in vascular smooth 

muscle cells and with the use of adenoviral constructs expressing representative isoforms from the 

subfamilies of adenylyl cyclase, i.e., AC1 and AC3, AC2, AC5, and AC6.  Following expression 

of the isoforms to equivalent levels of both protein content and stimulated catalytic activity (at 

least as assessed in absence of phosphodiesterase activity, see below), isoform-specific 

differences in both growth regulatory and cytoskeletal reorganization processes could be 

demonstrated (Gros et al., 2006).  

 AC6 has been shown to have an isoform-specific effect in regulation of cellular contractile 

responses.  Assessing adenylyl cyclase-mediated cytoskeletal reorganization in vascular smooth 

muscle cells, only expression of AC6 was associated with an enhanced response. This paralleled 

the observation that only AC6 gene transfer enhanced adenylyl cyclase-mediated PKA activation 

as assessed by Vasodilator Stimulated Phosphoprotein (VASP) phosphorylation.  Further, in the 

presence of uninhibited endogenous phosphodiesterase activity, only AC6 expression enhanced 

cAMP accumulation.  Because the AC6 effect on cytoskeletal reorganization was paralleled by an 

AC6-selective uncoupling of cAMP synthesis and breakdown and an AC6-selective effect on 
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phosphorylation of the PKA substrate, VASP, we hypothesized that the AC6 isoform may 

participate in molecular complexes devoid of phosphodiesterase but enriched in PKA/VASP as 

well as in intermediates in cytoskeletal rearrangements (Gros et al., 2006).  Thus differential 

coupling of adenylyl cyclase isoforms with specific cell functions in this setting appeared to be 

best explained by cellular compartmentation of AC6 in a domain distinct from phosphodiesterase 

effects (at least relative to the other isoforms tested). 

 In regards to growth regulatory effects, expression of AC1 resulted in significantly greater 

inhibition of growth vs. both control cells as well as those expressing the other representative 

adenylyl cyclase isoforms.  These isoform-selective growth regulatory effects paralleled the 

selective actions of AC1 expression to increase adenylyl cyclase-stimulated ERK activation vs. 

the effects seen with expression of the other isoforms tested.  Further, a direct association between 

ERK and AC1 (and AC3) could be shown, suggesting that these proteins were part of a structural 

signalosome complex resulting in more efficient isoform-selective regulation of cell growth.  The 

details of this structural complex are yet to be determined.  Notably, in these studies, gene transfer 

of AC1/AC3 was NOT associated with any detectable increase in cAMP concentrations when 

assessed in the presence of uninhibited endogenous phosphodiesterase activity. (Gros et al., 2006)  

These finding could be explained by the efficient compartment-specific channeling of the product 

of adenylyl cyclase activity (i.e., cAMP) in these AC1/3 domains, not detectable in whole cell 

cAMP assays.  However, these data might also suggest that the actions of AC1 and AC3 were a 

consequence of their association with ERK and were cAMP-independent. 

 Recent studies by Gao et al. support the hypothesis that adenylyl cyclase isoforms can 

have physiological effects independent of their cAMP generating function (Gao et al., 2011).  

Expressing a catalytically inactive AC6 mutant in cardiac myocytes, Gao et al. found these cells 

had reduced cellular hypertrophy and apoptosis when challenged with phenylephrine.  These 

responses were similar to those observed when wild type AC6 was overexpressed.  It was 



13	
	

hypothesized that in this model, AC6 facilitates formation of a signalasome between discreet 

signaling proteins regulating cell growth.  Whether these effects are AC6 isoform-specific in this 

cell model, analogous to the AC1/3-specific effects on cell growth demonstrated in vascular 

smooth muscle cells, remains to be determined.  However, in aggregate, these studies highlight 

the need to further understand the signaling complexes formed with specific AC isoforms. 

 

ISOFORM-SPECIFIC REGULATION OF ADENYLYL CYCLASE FUNCTION: 

GENETIC APPROACHES 

As noted above, isoform-specific regulation of adenylyl cyclase has been shown in 

several contexts.  However, the functional consequences of such isoform-specific regulation 

have only been more recently appreciated.  Based on knockout mouse models, genetic disruption 

of specific AC isoforms has been associated with specific phenotypical defects.  AC5 disruption 

is associated with increased longevity and protection against stress (Yan et al., 2007) but 

Parkinson-like motor dysfunction (Iwamoto et al., 2003).  Genetic disruption of AC3 impairs 

male fertility and spermatozoon function (Livera et al., 2005) and anosmia (Wong et al., 2000).  

However, whether any of these phenotypes was truly isoform-specific or more generally related 

to the decrease in stimulated adenylyl cyclase activity in the tissues in which these specific 

isoforms predominated could not be determined.  Further, the significance in humans of the 

isoform-specific phenotypes seen in animal models has only begun to be explored. 

Perhaps the most illustrative approach in examining the impact of isoform-specific 

regulation of adenylyl cyclases in humans has utilized missense human genetic AC6 variants.  

The A674S variant of AC6 has been shown to be expressed in whites with an allelic frequency of 

approximately 6% (Gros et al., 2005).  In cell systems, expression of the variant results in 

enhanced adenylyl cyclase activity and adenylyl cyclase-mediated cytoskeletal reorganization 
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(Gros et al., 2007). Further, mononuclear leukocytes from subjects expressing the A674S variant 

possessed increased adenylyl cyclase activity and adenylyl cyclase mediated cellular retraction.  

These cellular indices of enhanced adenylyl cyclase function based on expression of this variant 

paralleled increased potency of ß-adrenergic receptor-mediated vasodilation (Gros et al., 2007). 

Hemodynamically, younger healthy subjects expressing the variant demonstrated increased 

systolic blood pressure, heart rate, cardiac output and increased plasma rennin activity (Hodges 

et al.).  This phenotype supports the hypothesis that physiological regulation of a specific 

isoform (AC6) results in the expression of a hyperkinetic hemodynamic phenotype.  Whether 

those subjects demonstrating genetic variants of other AC isoforms, such as those of the 

AC1/AC3, will display alterations in regulation of cellular growth remains to be determined. 

 

CHALLENGES TO PROGRESS IN THE ELUCIDATION OF ADENYLYL CYCLASE 

SIGNALASOMES. 

Efforts to define the signalosomes for each AC isoform are still in the early stages.  ACs 

are notoriously difficult genes and proteins to work with due to their size, complexity and 

resistance to purification.  ACs express at low levels in cells and the available tools for studying 

the proteins, such as antibodies, are of poor quality.  ACs have sensitive tertiary structures that 

are required for normal activity and regulation, yet they also have long half lives, making siRNA 

knockdown troublesome.  Methods for measuring AC activity have advanced in recent years 

with the development of Epac-based biosensors, including versions that can be targeted to 

subcellular domains.  However, these methods of measuring cAMP still lag the fast and accurate 

spatial detection of calcium fluorophores and suffer from the need to exogenously express the 
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sensor.  Overcoming one or more of these methodological shortcomings will be required for 

even incremental advances in our understanding of AC signalasomes. 

 

SUMMARY 

 Interest in adenylyl cyclase regulation has waned in recent years, perhaps in part related to 

the perspective that the enzyme might not be a useful target for therapeutic regulation given its 

ubiquitous expression and multifunctional importance.  However, recent studies have 

demonstrated that adenylyl cyclase isoforms are compartmentalized both structurally and 

functionally.  These findings raise the potential for development of isoform-specific adenylyl 

cyclase ligands which may have both tissue and functional specificity as therapeutic agents.  

Understanding which isoforms of adenylyl cyclase mediate which cellular effects is bringing new 

significance to the development of isoform-specific ligands to regulate discrete cellular actions. 
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Table 1: 
 
Isoform-specific Regulation of Adenylyl Cyclases 

 

    
Regulator Effect AC subtype References 
    

G protein    
Gs Stimulation All Isoforms (Iyengar, 1993) 
Gi Inhibition ACI, AC5, AC6; not AC2 (Taussig et al., 1993a) 

(Federman et al., 1992) 
(Chen and Iyengar, 1993) 
(Taussig et al., 1994) 

Gßγ  Inhibition AC1, AC5, AC6 (Taussig et al., 1993b) 
(Bayewitch et al., 1998) 

 Stimulation AC2, AC4  
 
Conditional AC5, AC6 

(Tang and Gilman, 1991) 
(Gao and Gilman, 1991) 
(Gao et al., 2007) 

    
Forskolin Stimulation All Isoforms (including AC9) (Onda et al., 2001) 
   (Premont et al., 1996) 

(Cumbay and Watts, 2004) 
Calcium/Calmodulin    

Ca2+/CaM Stimulation AC1, AC3, AC8 (Tang et al., 1991)  
(Choi et al., 1992)  
(Cali et al., 1994) 

Ca2+ Inhibition AC5, AC6 (Yoshimura and Cooper, 
1992) (Katsushika et al., 
1992) 

    
Kinase Regulation    

PKC Stimulation AC1, AC2, AC3, AC5, AC7 (Jacobowitz et al., 1993) 
(Jacobowitz and Iyengar, 
1994) (Bol et al., 1997) 
(Kawabe et al., 1994) 
(Watson et al., 1994) 

 Inhibition AC6 (Lai et al., 1997) 
PKA Inhibition AC5. AC6 (Iwami et al., 1995) 

(Chen et al., 1997) 
CaM Kinase Inhibition AC1. AC3 (Wayman et al., 1996) (Wei 

et al., 1996) 
Raf kinase Stimulation AC2, AC5, AC6      (Ding et al., 2004) 
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Figure:		Schema	of	paradigms	for	isoform-specific	adenylyl	cyclase	compartmentation
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