
Chapman University
Chapman University Digital Commons
Mathematics, Physics, and Computer Science
Faculty Articles and Research

Science and Technology Faculty Articles and
Research

1-20-2016

On the Equivalence of Probability Spaces
Daniel Alpay
Chapman University, alpay@chapman.edu

Palle Jorgensen
University of Iowa

David Levanony
Ben Gurion University of the Negev

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles

Part of the Algebra Commons, and the Other Mathematics Commons

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital
Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized
administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
Alpay, D., Jorgensen, P., Levanony, D., 2016. On the Equivalence of Probability Spaces. Journal of Theoretical Probability. doi:10.1007/
s10959-016-0667-7

http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


On the Equivalence of Probability Spaces

Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Theoretical
Probability in 2016 following peer review. The final publication is available at Springer via http://dx.doi.org/
10.1007/s10959-016-0667-7

Copyright
Springer

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/499

http://dx.doi.org/10.1007/s10959-016-0667-7
http://dx.doi.org/10.1007/s10959-016-0667-7
http://digitalcommons.chapman.edu/scs_articles/499?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages


ar
X

iv
:1

60
1.

00
63

9v
1 

 [
m

at
h.

PR
] 

 4
 J

an
 2

01
6

ON THE EQUIVALENCE OF PROBABILITY SPACES

DANIEL ALPAY, PALLE JORGENSEN, AND DAVID LEVANONY

Abstract. For a general class of Gaussian processes W , indexed by a sigma-algebra F of a
general measure space (M,F , σ), we give necessary and sufficient conditions for the validity
of a quadratic variation representation for such Gaussian processes, thus recovering σ(A),
for A ∈ F , as a quadratic variation of W over A. We further provide a harmonic analysis
representation for this general class of processes. We apply these two results to: (i) a com-
putation of generalized Ito-integrals; and (ii) a proof of an explicit, and measure-theoretic
equivalence formula, realizing an equivalence between the two approaches to Gaussian pro-
cesses, one where the choice of sample space is the traditional path-space, and the other
where it is Schwartz’ space of tempered distributions.
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1. Introduction

Any stochastic process must be realized in a probability space, a triple made up of a sample
space Ω, a sigma-algebra B, and a choice of probability measure P defined on (Ω,B). In
research papers so far, covering a general family of stationary-increment processes, the choice
of sample space Ω has typically been S ′ (the space of tempered distributions in the sense
of Laurent Schwartz). However for applications, a better choice for Ω (the sample space) is
clearly the continuous functions, C(R) if the process is indexed by time (sample paths for
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2 D. ALPAY, P. JORGENSEN, AND D. LEVANONY

the process.) In a setting more general than S ′ versus C(R) we present an explicit measure-
isomorphism between the two choices. It will be given by an explicit formula, will be well
suited for computations; and our formulas are new even in the case of S ′ versus C(R). In
addition to this isomorphism, we offer a number of applications to stochastic integration.

In our discussion below and in our proofs, we will be making use of the following earlier
papers [39, 40, 3]. The literature on families of Gaussian processes is vast, both in pure and
in applied areas each with a different viewpoint. Our present motivation stems from a certain
harmonic analysis, from spectral theoretic computations, and from applications in quantum
theory. In our analysis, we study a particular family of Gaussian processes (see sections 2 and
4) and, in our proofs, we utilize of tools from a host of areas. Specifically, we utilize families
of operators in Hilbert spaces, with emphasis on explicit reproducing kernel Hilbert spaces.
To refer the reader to useful references, we mention the following papers/books whose theme
is close to that adopted here: [2, 3, 5, 21, 17, 29, 30, 48], and for papers/books stressing the
Hilbert space, see e.g., [25, 44, 10, 22, 26, 15, 42, 4, 38, 34, 43], and the papers cited therein.
We make use of basic tools from harmonic analysis, and Gaussian processes in Hilbert space;
for background references, see e.g., [20, 31, 32, 8, 7, 6].

The paper is organized as follows: In the first half of the paper (sections 2-4), we introduce a
general class of Gaussian processes indexed by a sigma-algebra of a general but fixed measure
space. This material will aid us in two ways, in the second half of the paper, sections 5-6.
First it will unify our approach to generalized Ito-integrals, subsequently studied. Secondly,
our general theory will be used in the proofs of our results covering our main theme, i.e.,
setting up a measure-theoretic equivalence between the two approaches to the formulation of
Gaussian processes outlined above. This thread culminates with Theorem 6.4.

2. Preliminaries

Below we briefly sketch the framework for the particular class of Gaussian processes to be
studied in detail. We first gather some notations and definitions needed in the sequel. We
already mentioned the Schwartz space S and its dual S ′. The duality between the two spaces
will be denoted as

(2.1) 〈ξ, ϕ〉, ϕ ∈ S and ξ ∈ S ′, the distribution ξ applied to ϕ.

Definition 2.1. Let M = R and let F = B(R) denote the Borel sigma-algebra. A measure
σ on B(R) is called tempered if it satisfies

(2.2)

∫

R

dσ(u)

(u2 + 1)p
<∞

for some p ∈ N0.
The measure σ will be called symmetric if

(2.3) σ(A) = σ(−A), ∀A ∈ B.

Definition 2.2. A cylinder set in S ′ is a subset of S ′ of the form

(2.4)
{
ξ ∈ S ′ ; (〈ξ, ϕ1〉, . . . , 〈ξ, ϕn〉) ∈ A

}

where ϕ1, . . . , ϕn are preassigned in the Schwartz space S, and A ⊂ Rn is an open subset of
Rn.

We denote the Fourier transform by

(2.5) f̂(λ) =

∫

R

e−iλxf(x)dx, for f ∈ L2(R).
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Theorem 2.3. Let σ be fixed. There is a real-valued Gaussian process X(σ) indexed by
the space of Schwartz functions S and realized on a probability space (S ′,C , P (σ)), where C

denotes the cylinder algebra, such that, with E(σ)[u] =
∫
S′ udP

(σ) and with the notation (2.1),

X(σ)
ϕ (ξ) = 〈ξ, ϕ〉,

we have

(1)

E(σ)
[
X(σ)

ϕ

]
= 0, ∀ϕ ∈ S.

and

(2)

(2.6) E(σ)
[
eiX

(σ)
ϕ

]
= e−

1
2

∫
R
|ϕ̂(u)|2dσ(u).

We will return to a detailed construction of this process in Sections 4-6, but we first need
some technical preparation.

Proof of Theorem 2.3. In the construction of the Gaussian process

(2.7) (X(σ)
ϕ )ϕ∈S on (S ′,C , P (σ))

in Theorem 2.3, we ”invert” a transform. Specifically, we consider the right hand side in (2.6)
as a continuous and positive definite function on S, and we apply Minlos’ theorem to verify
the existence of the Gaussian process (2.7). �

Remark 2.4. By this approach, we do not get explicit formulas for (2.7) that can be com-
puted on sample-paths. This situation is remedied in Theorems 5.1 and 6.4 below; see
especially formulas (5.3)–(5.6).

3. Gaussian processes

This section is divided into four parts. In the first, our starting point is a given sigma-finite
measure space (M,F , σ), and we outline properties of a Gaussian process W (σ) which is
indexed canonically by the sets from the sigma-algebra of M . In subsection 3.2, we prove
an inversion-formula: We show that if σ is refinable (Definition 3.20), then this measure σ

may be recovered as a quadratic variation computed from W (σ) . Moreover, with this, we
formulate and prove a generalized Ito-lemma for W (σ). And, as a result, we obtain a general
stochastic integration. We use this in the subsequent Section 3.3 to introduce a coordinate
system (Theorem 3.34) on the probability space Ω carrying the process. Moreover, we obtain
(Corollary 3.38) a generalized Fourier transform in L2(Ω, P ). We write the proofs in the case
of real valued functions, and real valued random variables, but the arguments apply mutatis
mutandis for the complex case as well.

3.1. Measure space associated Gaussian processes.

Definition 3.1. Let (M,F , σ) be a sigma-finite measure space, meaning that there exists
an increasing sequence A1 ⊂ A2 ⊂ · · · of elements of F , such that ∪∞

n=1An = M and

σ(An) < ∞ for all n ∈ N. We say that the Gaussian process W = (W
(σ)
A )A∈F is associated

with (M,F , σ) if there is a probability space (Ω,B, P ) such that the following two conditions
hold:
(i) Setting E[X] =

∫
ΩX(ω)dP (ω), we have

E[WA] = 0, ∀A ∈ F ,(3.1)

E[WAWB ] = σ(A ∩B), ∀A,B ∈ F .(3.2)



4 D. ALPAY, P. JORGENSEN, AND D. LEVANONY

(ii) For every finite sequence A1, A2, . . . , An of elements of F , the collection of random
variables

WA1 ,WA2 , . . . ,WAn

is jointly Gaussian with covariance

(3.3) E[WAi
WAj

] = σ(Ai ∩Aj), i, j = 1, . . . , n.

Lemma 3.2. For every sigma-finite measure space (M,F , σ), an associated Gaussian process
exists.

Proof. The function K(A,B) = σ(A∩B) is positive definite on F ; and so it is the covariance
function of a zero-mean Gaussian process with covariance function σ(A∩B), as follows from
[33, pp. 466-467]. �

We note that in the present setting, reference [39] is also helpful for a general discussion of
positive definite kernels and Gaussian processes.

Example 3.3. The Cameron-Martin space revisited: Let (M,F , σ) = (R+,B, λ), where R+

is the half-line [0,∞), B denotes the Borel subsets, and λ is the restriction of the Lebesgue
measure to [0,∞). Then the reproducing kernel Hilbert space associated with the positive
definite function

K(A,B) = λ(A ∩B), A,B ∈ B,

is the Cameron-Martin Hilbert space H(λ)
1 where

H(λ)
1 =

{
f ∈ L2(R+) | f ′ ∈ L2(R+), and f(0) = 0

}

and

‖f‖2H(λ)
1

=

∫ 1

0
|f ′(x)|2dx, f ∈ H(λ)

1 .

Discussion of Example 3.3: For s, t ∈ [0,∞) set A = [0, s] and B = [0, t]. Then

λ(A ∩B) = s ∧ t = k(s, t) = ks(t),

and

〈f, ks〉H(λ)
1

= f(s), ∀f ∈ H(λ)
1 and s ∈ [0,∞)

�

Remark 3.4. The conclusion in the example above is still valid if the measure σ for
(R+,B, σ) is tempered; see Definition 2.1. The modifications are as follows:

(i) With σ given, we get W (σ) and its covariance kernel. The corresponding reproducing
kernel Hilbert space RK(σ) is described as follows:

RK(σ) =

{
F : F (t) =

∫ t

0
f(x)dσ(x) for some f ∈ L2(σ)

}

with norm

‖F‖2RK(σ) =

∫ ∞

0
|f(x)|2dσ(x),

and
(ii) the reproducing kernel for RK(σ) is

k(σ)(t, s) = σ([0, t ∧ s]).
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Lemma 3.5. If (M,F , σ) is a sigma-finite measure space, and (W
(σ)
A )A∈F is an associated

Gaussian process on the probability space (Ω,B, P ), then the Ito integral
∫

M
f(x)dW (σ)(x) ∈ L2(Ω,B, P )

exits for all f ∈ L2(M,F , σ), and the isometry

(3.4) E

[∣∣
∫

M
f(x)dW (σ)(x)

∣∣2
]
=

∫

M
|f(x)|2dσ(x)

holds.

Proof. Let fs be a generic simple function, that is

(3.5) fs(x) =

n∑

k=1

ckχAk
(x), n ∈ N, A1, . . . , An ∈ F and c1, . . . , cn ∈ R,

where χAk
denotes the appropriate indicator function with the sets A1, . . . , An being such

that Aj ∩Ak = ∅ for j 6= k, and c1, . . . , cn ∈ R. Set

(3.6)

∫

M
fs(x)dW

(σ)(x) =

n∑

k=1

ckW
(σ)
Ak
.

We claim that (3.4) holds. The desired conclusion (3.4) follows for all f ∈ L2(M,F , σ)
as the simple functions are dense in this latter space and since (3.4) is a densely defined
isometry between Hilbert spaces, and thus has a unique everywhere and continuous isometric
extension. Indeed (and with the limit meaning approximation by simple functions),

E

[∣∣
∫

M
f(x)dW (σ)(x)

∣∣2
)

= lim

n∑

j,k=1

cjckE
[
W

(σ)
Aj
W

(σ)
Ak

]

= lim

n∑

j,k=1

cjckσ(Aj ∩Ak)

= lim

n∑

k=1

c2kσ(Ak)

=

∫

M
|f(x)|2dσ(x)

as claimed. �

Remark 3.6. A refinement of the proof of Lemma 3.5, for deterministic functions, also yields
the case of Ito-integral and Ito-isometry, for stochastic adapted process. The purpose of the
extension is to set the stage for the Ito lemma (Corollary 3.25) where the reasoning relies on
the generality of stochastic adapted processes, indexed by a given measure space. But for
pedagogical reasons, we have chosen to first state the result in the easier special case of the
Wiener integration for deterministic functions. Below we now point out how the proof of this
case carries over, with suitable modifications, to the case of Ito-integration, and we establish
the Ito-isometry for the case of a family of processes which we call F-adapted. See Definition
3.23 and Lemma 3.24.

Corollary 3.7. Let
(
W

(σ)
A

)
A∈F

be a Gaussian process defined on the probability space

(Ω,B, P ), and let I = (a, b] be a finite interval. Take an A ∈ F such that 0 < σ(A) < ∞.
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Then

P
({
ω ∈ Ω |W (σ)

A (ω) ∈ I
})

= P
({
a < W

(σ)
A ≤ b

})
=

1√
2π

∫ b√
σ(A)

a√
σ(A)

e−
x2

2 dx.

Corollary 3.8. Let W (σ)(f), f ∈ L2(σ) be as in (3.7). Then,

EPσ

[
W (σ)(f1)W

(σ)(f2)
]
= 〈f1, f2〉σ

(
=

∫

M
f1(u)f2(u)dσ(u)

)
, ∀f1, f2 ∈ L2(σ).

Proof. This is the polarization of

EPσ

[(
W (σ)(f)

)2]
= ‖f‖2σ.

�

Notation 3.9. (The Wiener integral) With (M,F , σ) and (W
(σ)
A )A∈F as above, we set for

f ∈ L2(M,F , σ)

(3.7) W (σ)(f) =

∫

M
fdW (σ).

Let (M,F , σ) be as above with W (σ) being the associated Gaussian process. Let H0,H1, . . .

denote the Hermite polynomials, defined by the generating function

(3.8) ezx−
z2

2 =
∞∑

n=0

zn

n!
Hn(x).

Let ψ ∈ S be a (real-valued) Schwartz function, with Hermite expansion

(3.9) ψ(x) =

∞∑

n=0

cnHn(x), x ∈ R,

and set

(3.10) [ψ](x)
def.
=

∞∑

n=0

n!c2nx
n, x ∈ R.

With these notations we can now state:

Corollary 3.10. With W (σ), ψ and [ψ] as above we have the following: Let f1, f2 6= 0 be in
L2(σ). Then,

(3.11) EPσ

[
ψ

(
1

‖f1‖σ
W (σ)(f1)

)(
ψ

(
1

‖f2‖σ
W (σ)(f2)

))]
= [ψ]

( 〈f1, f2〉σ
‖f1‖σ‖f2‖σ

)
.

Proof. By Lemma 3.5 applied to theN (0, 1) random variables 1
‖f1‖σW

(σ)(f1) and
1

‖f2‖σW
(σ)(f2)

we have

(3.12) EPσ

[(
Hn

(
1

‖f1‖σ
W (σ)(f1)

))(
Hk

(
1

‖f2‖σ
W (σ)(f2)

))]
= n!δk,n

( 〈f1, f2〉σ
‖f1‖σ‖f2‖σ

)n

.

Consider now the left hand side of (3.11), and replace ψ by its expansion (3.9). Taking into
account (3.12) we get the right hand side of (3.11). �

In the computation of (3.12), we use the following fact about Gaussian vectors in R2.
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Lemma 3.11. Let c ∈ R, |c| < 1, and let γ
(c)
2 be the R2-Gaussian joint density with covari-

ance matrix

(
1 c

c 1

)
, then for the Hermite functions Hn and Hk we have:

(3.13)

∫∫

R2

Hn(x)Hk(y)dγ
(c)
2 (x, y) = δn,kn!c

n, n, k ∈ N0.

The proof is by direct computation, making use of the Ornstein-Uhlenbeck semigroup Pt

given by

(3.14) (Pth)(x) =

∫

R

h(e−tx+
√

1− e−2ty)dγ1(y), h ∈ L2(R, dγ1).

For details see for instance [37, pp. 9-28].

Corollary 3.12. Let W (σ), ψ and [ψ] as above, and let A,B ∈ F be such that 0 < σ(A) <∞
and 0 < σ(B) <∞. Then,

(3.15) EPσ

[(
ψ

(
1√
σ(A)

W
(σ)
A

))(
ψ

(
1√
σ(B)

W
(σ)
B

))]
= [ψ]

(
σ(A ∩B)√
σ(A)σ(B)

)
.

Definition 3.13. Let (M,F , σ) and (W
(σ)
A )A∈F be as in Definition 3.1. We say that a (finite

or) countable family A1, A2, . . . ∈ F is a partition of A if A = ∪k∈NAk, and Ak ∩An = ∅ for
k 6= n.

Corollary 3.14. Let σ be a tempered Borel measure on R, and let (X
(σ)
ϕ )ϕ∈S be the corre-

sponding Gaussian process, namely X
(σ)
ϕ (ξ) = 〈ξ, ϕ〉. Then,

(3.16) X(σ)
ϕ =

∫

R

ϕ̂(u)dW (σ)
u ,

where W (σ) in (3.16) is the process in Definition 3.1, and the integral is the generalized Ito
integral of Lemma 3.5.

Proof. Pick a finite partition {xj} of R such that the integral in (3.16) is approximated by

∑

j

ϕ̂(xj)W
(σ)
[xj ,xj+1)

.

The approximation is in the L2 norm in L2(S ′, Pσ). Using

∏

j

EPσ

[
e
iϕ̂(xj)W

(σ)
[xj,xj+1)

]
= e−

1
2

∑
j |ϕ̂(xj)|2σ([xj ,xj+1)),

we conclude, upon passing to the limit of refinements, that

(3.17) Eσ

[
eiX

(σ)
ϕ

]
= e−

1
2

∫
R
|ϕ̂(u)|2dσ(u).

Equivalently, the Gaussian process defined in (3.16), satisfies equation (2) of Theorem 2.3.
By Minlos’ theorem, the process in (2) is uniquely determined by the characteristic function

e−
1
2

∫
R
|ϕ̂(u)|2dσ(u). �
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3.2. Quadratic variation.

Lemma 3.15. Let (M,F , σ) be a measure space with σ being sigma-finite, and let (W
(σ)
A )A∈F

be the Gaussian process of Definition 3.1. Then for its moments we have:
(1) The odd moments vanish,

EPσ

[
(W

(σ)
A )2k+1

]
= 0, k ∈ N0,

and
(2) the even moments are given by:

EPσ

[
(W

(σ)
A )2k

]
= (2k − 1)!!(σ(A))k , k ∈ N,

for all A ∈ F such that σ(A) <∞ where,

(2k − 1)!! =
(2k)!

2kk!
.

We note that in particular we have:

EPσ [W
(σ)
A ] = 0,

EPσ [(W
(σ)
A )2] = σ(A),

EPσ [(W
(σ)
A )4] = 3(σ(A))2.

Proof of Lemma 3.15. The asserted moment expressions in the lemma follow from comparing
powers in the moment generating function

EPσ

[
eitW

(σ)
A

]
= e−

t2σ(A)
2 ,

valid for all A ∈ F such that σ(A) <∞. �

Proposition 3.16. Let the process (W
(σ)
A )A∈F be realized on L2(Ω,B, P ) as outlined in

Lemma 3.5, and let E be the expectation operator defined by P . Then for any A ∈ F and
every partition (Ak)k∈N of A, the following identity holds:

(3.18) E

[
|σ(A)−

∑

k

(
W

(σ)
Ak

)2
|2
]
= 2

∑

k

(σ(Ak))
2 = 2

∑

k

(
E
[
(W

(σ)
Ak

)2
])2

.

Proof. We compute the left hand side in (3.18) with the use of Lemma 3.5 as follows: We first

note that the random variables W
(σ)
Ak

and W
(σ)
An

are independent when k 6= n. This follows

from (3.3) together with the fact that they are Gaussian; see Corollary 3.7. Set s = σ(A)
and sk = σ(Ak) (so that s =

∑∞
k=1 sk). When k 6= n we have (using independence)

E

[(
W

(σ)
Ak

)2 (
W

(σ)
An

)2]
= sksn,

This is utilized so as to compute the right hand side of (3.18). We get

E

[
|σ(A) −

∞∑

k=1

(
W

(σ)
Ak

)2
|2
]
= s2 − 2s2 +

∞∑

k=1

E

[(
W

(σ)
Ak

)4]
+ 2

∑

k<n

sksn

= −s2 + 3
∞∑

k=1

s2k + 2
∑

k<n

sksn

= 2

∞∑

k=1

s2k,
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which is the desired right hand side of (3.18). �

Definition 3.17. Let (M,F , σ) and (W
(σ)
A )A∈F be as above. For A ∈ F , we denote by

PAR(A) the set of all F -partition of A, and we denote by

(3.19) Var
(σ)
− (A) = inf

(Ak)k∈N∈PAR(A)

∞∑

k=1

(σ(Ak))
2

the lower variation of sum of squares.

Corollary 3.18. Let A ∈ F , and consider the sum of random variables squares
∞∑

k=1

(
W

(σ)
Ak

)2

on Ω for all partitions of A. It is χ2-distributed on the probability space (Ω,B, P ) of Lemma
3.5. Then the following two conditions are equivalent. Given ε > 0,

(i) (Ak) ∈ PAR(A) satisfies Var
(σ)
− (A) = 0 and

∑
k(σ(Ak))

2 ≤ ǫ,
and

(ii) E

[
|σ(A) −∑k

(
W

(σ)
Ak

)2
|2
]
≤ 2ε.

Remark 3.19.

(a) The meaning of (ii) is the assertion that, when Var
(σ)
− = 0, the random variable

∞∑

k=1

(
W

(σ)
Ak

)2

is constant P -a.e. on Ω. (It is called the quadratic variation of W
(σ)
A ).

(b) The conditions in the Corollary are satisfied if (M,F , σ) is taken to be the real line with
the Borel sets and the Lebesgue measure. For example if A = [0, T ] we consider a sequence
of partitions consisting of dyadic intervals and

Var
(σ)
− ([0, T ]) ≤ T 2

2n∑

k=1

(
1

2n

)2

=
T 2

2n
→ 0

as n→ ∞.
(c) More generally, consider (M,F , σ) as above, and let A ∈ F be such that 0 < σ(A) <∞.
Suppose that for all n ∈ N there is a partition {A1, . . . , An} such that

(3.20) σ(Ak) =
1

n
σ(A), k = 1, . . . , n.

Then

(3.21) Var
(σ)
− (A) = 0.

Indeed, if (3.20) holds, then
n∑

k=1

σ(Ak)
2 =

σ(A)2

n
→ 0,

so (3.21) follows.

Definition 3.20. Let (M,F , σ) be specified as above. We say that it is refinable if for every
A ∈ F and every ε > 0 there exists (Ak) ∈ PAR(A) such that

(3.22) |(Ak)| = sup
k
σ(Ak) < ε.
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Corollary 3.21. Let (M,F , σ) and (W
(σ)
A )A∈F be as above, and assume that (M,F , σ) is

refinable. Then for every A ∈ F and every (A
(n)
k ) ∈ PAR(A) such that

lim
n→∞

|A(n)
k | = 0,

we have

(3.23) lim
n→∞

∑

k

(
W

(σ)

A
(n)
k

)2

= σ(A), P a.e.

namely, in the limit, the left hand side random variable reduces to the constant σ(A).

Proof. Using Proposition 3.16 and Corollary 3.18 we only need to show that

(3.24) lim
n→∞

∑

k

(
σ(A

(n)
k )
)2

= 0.

But the following holds for the left hand side of (3.24):

∑

k

(
σ(A

(n)
k )
)2

≤ |A(n)
k |
∑

k

σ(A
(n)
k ).

We now use that, by assumption,

lim
n→∞

|A(n)
k | = 0,

and that
∑

k σ(A
(n)
k ) = σ(A) < ∞ since (A

(n)
k ) ∈ PAR(A) for all n ∈ N. The conclusion

(3.24) now follows. �

Remark 3.22. It is obvious that if (M,F , σ) is refinable, it has to be non-atomic.

Definition 3.23. The stochastic process Y defined on M with values in L2(Ω,B, P ) is called
F-adapted if the following condition holds for every A,B ∈ F be such that A ∩ B = ∅. Set

FB to be the sigma-algebra generated by the random variables W
(σ)
C , where C runs through

all subsets of B which belong to F . For all x ∈ A, Yx is FA-measurable, and, in addition, is
independent of FB.

Lemma 3.24. Let Y be a F-adapted process such that the function x 7→ E
(
|Y (x)|2

)
is

measurable and
∫
M E

(
|Y (x)|2

)
dσ(x) <∞. Then the random variables

n∑

k=1

Y (xk)W
(σ)
Ak

where {Ak}nk=1 is a covering of M by pairwise disjoint measurable sets and xk ∈ Ak, k =

1, . . . , n, converges to an element in L2(Ω,B, P ), which we denote
∫
M Y (x)dW

(σ)
x . Further-

more, we have the Ito-isometry property

(3.25) E

(∣∣
∫

M
Y (x)dW (σ)

x

∣∣2
)

=

∫

M
E
(
|Y (x)|2

)
dσ(x).

Proof. When computing the difference between two such sums, say {Ak}nk=1 (with points
{xk}nk=1) and {Bk}mk=1 (with points {yk}mk=1) we build a covering of pairwise disjoint mea-
surable sets from the two given covering, say {Ck}pk=1 (with points {zk}pk=1) The integral

E

(
∣∣

n∑

k=1

Y (xk)W
(σ)
Ak

−
m∑

k=1

Y (yk)W
(σ)
Bk

∣∣2
)
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can then be divided into two groups of terms: The sum

E

(
∣∣

m∑

k=1

(Y (zik)− Y (zjk)W
(σ)
Ck

∣∣2
)

=

p∑

k=1

E
(
|Y (zik)− Y (zjk)|2

)
σ(Ck)

which goes to 0 since
∫
M

(
E
(
|Y (x)|2

))
dσ(x) <∞ and the cross-products

p∑

k,ℓ=1

E
(
Y (zk)W

(σ)
Ck
Y (zℓ)W

(σ)
Cℓ

)
=
∣∣E
(

p∑

k=1

Y (zk)W
(σ)
Ck

)
∣∣2

which goes to 0 since σ is refinable, and hence non-atomic. �

Corollary 3.25. Let (M,F , σ) be a sigma-finite measure space and assume it is refinable

(see Definition 3.20). Let (W
(σ)
A )A∈F be the corresponding Gaussian process (see Definition

3.1). Let f : R −→ R be a given C2-function. Then for all A ∈ F such that 0 < σ(A) <∞
we have:

(3.26) f(W
(σ)
A )− f(0) =

∫

A
f ′(W (σ)

x )dW (σ)
x +

1

2

∫

A
f ′′(W (σ)

x )dσ(x).

A sketch of the proof. First note that all the terms in (3.26) are random variables. Given

W
(σ)
A , by f(W

(σ)
A ) we mean the composition of the function W

(σ)
A from Ω to R with f , and

similarly for the terms under the integrals on the right hand side of (3.26). Further, we

stress that the first term
∫
A f

′(W (σ)
x )dW

(σ)
x is an Ito integral in the sense of Lemma 3.24 and

Remark 3.19, but now with the random process f ′(W (σ)
x ) occuring under the integral. By

the arguments of Lemma 3.5, we have

EPσ

[∣∣
∫

A
f ′(W (σ)

x )dW (σ)
x

∣∣2
]
=

∫

A
EPσ

[
|f ′(W (σ)

x )|2
]
dσ(x).

With that we note that the proof of (3.26) is concluded through the use of the same arguments
utilized in the proof of the classical Ito formula, see e.g. [41]. Specifically, these include (i)
integration by parts; (ii) a stopping/truncation argument, enabling to prove the result for
WA restricted to compacts; (iii) then, on compacts, any C2 function may be written as a
limit of polynomial functions; and, finally, (iv) the use of standard convergence together
with Proposition 3.16 and a probabilistic Dominated Convergence allows to complete the
proof. �

Remark 3.26. We refer to [3, Theorem 8.2] for a Ito formula where the stochastic term is
computed as a Wick product integral, in the setting of an associated Gelfand triple.

Remark 3.27. We note that Ito integration is done with stochastic integrands, say Zt, being
adapted with respect to an underlying filtration, namely, an increasing sequence of sub-sigma
algebras Ft. This is to say that for all t ≥ 0, Zt is Ft-measurable. Given the fact that no
natural order may be invoked in the present general setting, such terminology obviously
becomes irrelevant here. This is where Definition 3.23 is called for.

3.3. Independent standard Gaussian summands.

Example 3.28. Take M = R and let F = B(R) denote the Borel sigma-algebra. Let σ be a
tempered measure, that is, subject to (2.2), so that we have the Gelfand triple with continuous
inclusions

(3.27) S →֒ L2(σ) →֒ S ′
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where S denotes the Schwartz functions and S ′ denotes the tempered Schwartz distributions.
Let C be the S − S ′ cylinder sigma-algebra of subsets of S ′. We then take

(Ω,C ) = (S ′,C ),

and we note that the corresponding Gaussian process (W (σ)) on (S ′,C , P ), determined by

(3.28) E
[
eiW

(σ)(ϕ)
]
= e−

1
2

∫
R
|ϕ̂(u)|2dσ(u), ϕ ∈ S,

satisfies the conditions in Definition 3.1 (and of Lemmas 3.2-3.5).

Definition 3.29. Let γ1 denote the standard N (0, 1) Gaussian density,

dγ1(x) =
1√
2π
e−

x2

2 dx on R,

and set

(3.29) Ωγ = ×NR = R× R× · · · ,
the infinite Cartesian product, with product measure

(3.30) Q
def
= ×Nγ1 = γ1 × γ1 × · · ·

(see [16, 24]), defined on the cylinder sigma-algebra Cγ in Ωγ
def
= ×NR.

Specifically, for fn a measurable function on Rn, then on Ωγ set x = (x1, x2, . . .) with xk ∈ R

(k ∈ N),

(3.31) F (x) = fn(x1, . . . , xn),

Then, with this function fn we set:
∫

Ωγ

FdQ =

∫

Rn

fn(x1, . . . , xn)dγ1(x1) · · · dγ1(xn)

=
1

(2π)n/2

∫

Rn

fn(x1, . . . , xn)e
− 1

2

∑n
k=1 x

2
kdx1 · · · dxn.

(3.32)

Remark 3.30. The functions F in (3.31) are called cylinder functions. If the conditions in
(3.32) hold for all n, then Q is uniquely determined.

Theorem 3.31.

(i) Every associated Gaussian process (W
(σ)
A )A∈F (see Definition 3.1), corresponding to a

fixed sigma-finite measure space (M,F , σ) may be realized on (Ωγ ,Cγ , Q), i.e. in the canon-
ical infinite Cartesian product measure space of Definition 3.29.
(ii) Given (M,F , σ) and W (σ), (Ω,C , P ) as in Definition 3.1, the realization may be ”sim-
ulated” by a system of independent, identically distributed (i.i.d.) N (0, 1) random variables
Z1, Z2, . . .. If (ϕk)k∈N is an orthonormal basis of real-valued functions in L2(M,F , σ) then

a realization of W (σ) in (Ωγ ,Cγ , Q) may be written as

(3.33) W
(σ)
A (·) =

∞∑

k=1

(∫

A
ϕk(x)dσ(x)

)
Zk(·),

for all A ∈ F , where Zk((xi)i∈N)
def
= xk and (xi)i∈N ∈ ×NR.

Proof. We first note that equation (3.33) is a generalized Karhunen-Loève formula. We
proceed to prove that the expression in (3.33) satisfies the condition in Definition 3.1. To
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make sense of (3.33) we shall use the Parseval formula in L2(M,F , σ). In particular for
A ∈ F we have

(3.34) σ(A) =

∫

M
χA(x)dσ(x) =

∑

k∈N
|〈χA, ϕk〉σ|2 =

∑

k∈N
|
∫

A
ϕk(x)dσ(x)|2.

It follows that the sum in (3.33) is convergent in L2(Ωγ ,Cγ , Q), and in fact is convergent
pointwise a.e. with respect to Q. With the use of the dominated convergence theorem we
obtain:

EQ

[
|
∑

k∈N

∫

A
ϕk(x)dσ(x)Zk(·)|2

]
=
∑

k∈N
|
∫

A
ϕk(x)dσ(x)|2

︸ ︷︷ ︸
(by (3.34))

= σ(A),

where we have used

(3.35) EQ[ZnZm] = δn,m ∀n,m ∈ N.

Hence the sum representation of W (σ) in (3.33) is a well defined random variable belonging
to L2(Ωγ ,Cγ , Q). For A,B ∈ F we have

EQ

[
W

(σ)
A W

(σ)
B

]
=
∑

k∈N

(∫

A
ϕk(x)dσ(x)

)(∫

B
ϕk(x)dσ(x)

)

=
∑

k∈N
〈χA, ϕk〉σ〈χB , ϕk〉σ

= 〈χA, χB〉σ (by Parseval’s identity)

= σ(A ∩B),

as required in part (2) of Definition 3.1. Verifying the remaining properties in Definition 3.1
is immediate. �

Remark 3.32. Note in particular that in representation (3.33) of the random variable W
(σ)
A

is independent of the given choice of an orthonormal basis in L2(σ). If (M,F , σ) = (R,B, λ),
with λ being the Lebesgue measure on R, then one can take as the underlying orthonormal
basis a standard wavelet, for instance the Haar wavelets in L2(R).

Lemma 3.33. Let (M,F , σ) be a sigma-finite measure space, and let W (σ) and (Ω,C , P ) be
an associated Gaussian process, see Definition 3.1 above. Then for every orthonormal basis
(ϕk)k∈N in L2(M,F , σ) the random variables

(3.36) X
(σ)
k =W (σ)(ϕk), k ∈ N

are a collection of i.i.d. N (0, 1) random variables and

(3.37) W
(σ)
A (·) =

∞∑

k=1

(∫

A
ϕk(x)dσ(x)

)
X

(σ)
k (·).

Proof. Note that the right side of (3.36) is the Ito integral (see (3.7) in Notation 3.9). Since

W (σ) is an associated Gaussian process, it follows that X
(σ)
k in (3.36) is Gaussian for all

k ∈ N, with EP [X
(σ)
k ] = 0. Moreover, by (3.4) in Lemma 3.5 we have

EP

[
X

(σ)
k X(σ)

n

]
=

∫

M
ϕk(x)ϕn(x)dσ(x) = 〈ϕk, ϕn〉σ = δm.n(3.38)

since (ϕk)k∈N is an orthonormal basis in L2(σ). We have already proved that the (X
(σ)
k )k∈N

are Gaussian, so it follows from (3.38) that it is an N (0, 1) i.i.d. collection on (Ω,C , P ).
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Moreover, by the argument in the proof of Theorem 3.31, we may conclude that representation
(3.37) holds, with convergence in L2(Ω,C , P ) as well as pointwise P a.e. �

Theorem 3.34. Let (M,F , σ) be a sigma-finite measure space and let
(
W

(σ)
A

)
A∈F

be an

associated Gaussian process on some probability space (Ω,C , P ). Let
(
X

(σ)
k

)
k∈N

be the i.i.d.

N (0, 1) collection from Lemma 3.33. Set

Γ : Ω −→ Ωγ = ×NR,

defined by

(3.39) Γ(ω) =
(
X

(σ)
k (ω)

)
k∈N

∈ ×NR, ω ∈ Ω.

Then Γ is measurable and

(3.40) P (Γ−1(C)) = Q(C)

holds for all C ∈ Cγ, i.e. the sigma-algebra of subsets in ×NR generated by the cylinder sets.

Remark 3.35. For (3.40), we will use the notation

(3.41) P ◦ Γ−1 = Q,

with
Γ−1(C) = {ω ∈ Ω |Γ(ω) ∈ C} .

Proof of Theorem 3.34. Fix m ∈ N, and let Ik = (ak, bk], 1 ≤ k ≤ m be a series of finite
intervals. It follows from (3.39) that if

C = Cm = {(xk)k∈N |xk ∈ Ik, 1 ≤ k ≤ m}
then

Γ−1(C) =
{
ω ∈ Ω | ak ≤ X

(σ)
k (ω) < bk

}

and so Γ, defined by (3.39), is measurable. But we know that (X
(σ)
k )k∈N is an N (0, 1) i.i.d.

collection in (Ω,C , P ), and (Zk)k∈N is an N (0, 1) i.i.d. collection in (Ωγ ,Cγ , Q). Hence

(3.42) P (Γ−1(C)) = Q(Cm) =

m∏

k=1

γ1(Ik).

Thus the desired conclusion (3.40) holds for cylinders in the respective probability spaces.
On the other hand, the subset of all sets C ⊂ Ωγ for which (3.40) holds is a sigma-algebra. It
follows that (3.40) is valid on the respective sigma-algebras generated by the cylinder sets. �

3.4. Generalized Fourier transform.

Corollary 3.36. Let (M,F , σ) be a sigma-finite measure space, and let
(
W

(σ)
A

)
A∈F

be an

associated Gaussian process on the probability space (Ω,B, P ). Then the closed linear span
in L2(Ω,B, P ) of the functions {

eiW
(σ)
A

(·) |A ∈ F

}

is L2(Ω,B, P ).

Proof. By Theorem 3.34 we may assume that
(
W

(σ)
A

)
A∈F

is realized in L2(×NR,Cγ , Q), with

Q = ×Nγ1 being the infinite dimensional measure on Ωγ = ×NR; see also Theorem 3.31. But
in this infinite-product space the conclusion is clear. If F ∈ L2(×NR,Cγ , Q) satisfies

∫

×NR

FeiWAdQ = 0, ∀A ∈ F ,
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then a direct computation, using (3.33), shows that F = 0 a.e. Q. �

Definition 3.37. Let (M,F , σ) be a sigma-finite measure space, and consider the positive
definite function

(3.43) K(σ)(A,B) = e−
σ(A)+σ(B)

2 eσ(A∩B) = e−
1
2
‖χA−χB‖2σ , A,B ∈ F .

We shall denote the corresponding reproducing kernel Hilbert space by H(σ).

Corollary 3.38. (The generalized Fourier transform.) Let
(
W

(σ)
A

)
A∈F

be a Gaussian pro-

cess associated with the sigma-finite measure space (M,F , σ), and let (Ω,B, P ) be the un-

derlying probability space. Let H(σ) be the reproducing kernel Hilbert space as in Definition
3.37. For F ∈ L2(Ω,B, P ), set

(3.44) F̂ (A) = EP

[
FeiWA

]
, A ∈ F .

Then the map F 7→ F̂ is unitary from L2(Ω,B, P ) onto H(σ).

Proof. Using Corollary 3.36, it is enough to prove that for all A,B ∈ F we have

(3.45) E
[
e−iWBeiWA

]
= K(σ)(A,B) = e

−
{

σ(A)+σ(B)
2

+σ(A∩B)
}

(see (3.43)). A direct computation yields

E
[
e−iWBeiWA

]
= E

[
ei(WA−WB)

]

= e−
1
2
‖χA−χB‖2σ (by Theorem 3.34)

= K(σ)(A,B) (by (3.43)),

for all A,B ∈ F . �

Corollary 3.39. Let
(
W

(σ)
A

)
A∈F

be a collection of Gaussian random variables associated

with a sigma-finite measure space (M,F , σ). Let (ϕk)k∈N be an orthonormal basis of L2(M,F , σ)

(we denote this space by L2(σ)), and let Γ : Ω −→ ×NR
def.
= Ωγ, with

(3.46) Γ(ω) = (X
(σ)
k (ω))k∈N.

being the corresponding coordinate system, i.e.

X
(σ)
k

def.
= W (σ)(ϕk) =

∫

M
ϕk(x)dW

(σ)(x)

being the Ito-integral representation of (3.7). Then

(3.47) Γ (L2(σ)) ⊂ ℓ2 ⊂ ×NR

Proof. Recall that we consider real-valued functions. Let 〈·, ·〉σ denote the standard inner
product in L2(σ). Then for all f ∈ L2(σ) we have

W (σ)(f) ∈ L2(Ω, P ),

and, by Lemma 3.5,

Γ(f) = (〈f, ϕk〉σ)k∈N ∈ ℓ2 ⊂ ×NR,

and

(3.48) EP

[(
W (σ)(f)

)2]
= ‖f‖2σ =

∑

k∈N
|〈f, ϕk〉|2,
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and

(3.49) W (σ)(f) =
∑

k∈N
〈f, ϕk〉kX(σ)

k

is well defined, Gaussian, and satisfies (3.48). �

Theorem 3.40. Let (M,F , σ),
(
W

(σ)
A

)
A∈F

and (Ω,B, P ) be as in Corollary 3.39. Then

the measure P is quasi-invariant with respect to the L2(σ) translations in Ω. More precisely,
we have

(3.50)

∫

Ω
F (·+ f)dP (·) =

∫

Ω
F (·)e− 1

2
‖f‖2σ+W (σ)(f)(·)dP (·)

for all F ∈ L2(Ω, P ) and all f ∈ L2(σ).

Proof. Note that in the formulation of (3.50) we make use of the coordinate system

Γ : Ω −→ ×NR

from Theorem 3.34 and Corollary 3.39. Hence the term e−
1
2
‖f‖2σ+W (σ)(f)(·) is the associated

Radon-Nikodym derivative. Using Theorem 3.34, and passing to cylinder functions, we note
that (3.50) follows from a computation of Rm-integrals for all m ∈ N. We check that if Fm is
L2 with respect to the standard Rm-Gaussian joint density

γm = γ1 × · · · × γ1︸ ︷︷ ︸
m times

,

then

∫∫

Rm

Fm(x1 + 〈f, ϕ1〉σ, . . . , xm + 〈f, ϕm〉σ)dγm(x1, . . . , xm) =

=

∫∫

Rm

Fm(x1, . . . , xm)e−
1
2

∑m
k=1〈f,ϕk〉2σe

∑m
k=1 xk〈f,ϕk〉σdγm(x1, . . . , xm).

(3.51)

From Theorem 3.34 and Corollary 3.39 we have that

(3.52) W (σ)(f)(·) =
∞∑

k=1

〈f, ϕk〉σX(σ)
k (·)

and

(3.53) Eσ

[(
W (σ)(f)

)2]
=

m∑

k=1

〈f, ϕk〉2σ = ‖f‖2
L2(σ)

.

Using again Theorem 3.34 and Kolmogorov’s induction limit construction, we finally note
that the desired formula (3.50) follows from (3.51)-(3.53) above. �

Our quadratic variation result in the first part of the present section is motivated by, and is
a generalization of a classical theorem for the Brownian motion, often called Lévy’s theorem,
see e.g. [9]. Similarly, our decomposition theorem (Theorem 3.31) is motivated by, and
extends a classical result often called a Kahrunen-Loève decomposition, see e.g. [11]. In the
above, we have made use of the theory of Ito-integration and its generalizations; see e.g.
[23, 46, 19, 18, 21, 17]

4. Gaussian stochastic calculus

In this section, a preparation for Section 5, we return to the Gaussian process of Section 2,
applying results of Section 3.
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4.1. Gaussian processes and tempered measures: The Minlos theorem. Let σ be a
tempered measure. The map

(4.1) ϕ 7→ e−
1
2

∫
R
|ϕ̂(u)|2dσ(u)

is continuous and positive definite on S (see [2, Proposition 3.3, p. 714]). An application of
Minlos’ theorem (see [13]) yields:

Theorem 4.1. For every tempered measure σ there exists a uniquely defined probability
measure Pσ on S ′, defined on the sigma-algebra C = C (S ′) generated by the cylinder sets
(see (2.4)), and determined by the following condition:

(4.2) EPσ

[
eiX

(σ)
ϕ

]
=

∫

S′

ei〈ϕ,ξ〉dPσ(ξ) = e−
1
2

∫
R
|ϕ̂(u)|2dσ(u).

Using the corresponding expectation

Eσ[U ] =

∫

S′

U(ω)Pσ(ω),

(4.2) takes the equivalent form

Eσ

[
ei〈·,ϕ〉

]
= e−

1
2
‖ϕ̂‖2σ .

In the above we make use of reproducing kernel Hilbert spaces and their association with the
study of Gaussian processes; see e.g. [45, 30, 5, 12, 48].

4.2. A Gaussian process realized on S ′.

Lemma 4.2. The pairing (2.1) between S and S ′ extends to a pairing between L2(R) and
S ′. The stochastic process

X(σ)
ϕ (ξ) = 〈ξ, ϕ〉, ϕ ∈ S,

may be extended to a process

X
(σ)
f (ξ) = 〈ξ, f〉, f ∈ L2(R, dx).

Proof. Set

(4.3) X
(σ)
t (ξ) = 〈ξ, χ[0,t]〉.

X
(σ)
t is a zero mean Gaussian process with variance

(4.4)

∫

R

|χ̂[0,t](u)|2dσ(u) = 2

∫

R

1− cos(ut)

u2
dσ(u) = 4

∫

R

sin2(ut2 )

u2
dσ(u).

�

In the following lemma we compute the covariance and related quantities. In formulas (4.7)
and (4.8) below we set

(4.5) rσ(t) = Eσ

[
|X(σ)

t |2
]
.
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Lemma 4.3. We set X
(σ)
0 = 0. The following formulas hold:

Eσ

[
|X(σ)

t |2
]

= 4

∫

R

sin2
(
ut
2

)

u2
dσ(u),(4.6)

Eσ

[
|X(σ)

t −X(σ)
s |2

]
= rσ(s − t),(4.7)

Eσ

[
X

(σ)
t X(σ)

s

]
=

rσ(t) + rσ(s)− rσ(s− t)

2
.(4.8)

The computations are standard and will be omitted.

Thus X(σ) is a stationary-increment Gaussian process. Recall that these are (not necessarily
real) Gaussian processes with covariance function of the form

(4.9) 2Eσ

[
X

(σ)
t X(σ)

s

]
= r(t) + r(s)− r(t− s), t, s ∈ R,

Functions r for which the kernel (4.9) is positive definite on the real line have been investigated
by Schoenberg, von Neumann and Krein; see [36, 28]. They are of the form

r(t) = r0 + ict−
∫

R

{
eitv − 1− itv

v2 + 1

}
dσ(v)

where r0 ≥ 0, c ∈ R and σ is a tempered measure satisfying (2.2) for p = 1. In the case where
σ is even, one recovers formula (4.4).

We note that such processes admit derivatives which are generalized stationary processes with
covariance σ̂(t− s), with the Fourier transform being computed in the sense of distributions.
See [1, 3, 2] for more information.

5. A Gaussian process realized on C(R).

We are now ready to introduce the two realizations of probability spaces for the family of
Gaussian processes considered above.

Theorem 5.1. There is a unique measure Qσ defined on the cylinder sigma-algebra of Ω =
C(R) such that

(5.1) X
(σ)
t (ω) = ω(t), t ∈ R, ω ∈ Ω = C(R),

and X
(σ)
0 = 0 is a Gaussian process with zero mean and covariance

(5.2) EQσ

[
X

(σ)
t X(σ)

s

]
=
rσ(t) + rσ(s)− rσ(s− t)

2

(see (4.8)), with rσ as in (4.5).

Proof. For a finite set t1, . . . , tn ∈ R of sample points and a measurable function fn on Rn

we set

(5.3) F (ω) = fn(ω(t1), . . . , ω(tn)), ω ∈ C(R).

For a > 0 define

(5.4) ga(x) =
1

a
√
2π
e
− x2

2a2 , x ∈ R.
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and for 0 < t1 < t2 < . . . < tn let

Ln(F ) =

∫

Rn

fn(x1, . . . , xn)grσ(t1)(x1)grσ(t2−t1)(x2 − x1) · · · grσ(tn−tn−1)(xn − xn−1)dx1dx2 · · · dxn

=

∫

Rn

fn(x1, x2 + x1, . . . , xn + xn−1 + · · ·+ x1)grσ(t1)(x1)grσ(t2−t1)(x2) · · · grσ(tn−tn−1)(xn)dx1dx2 · · · dxn,

(5.5)

where fn is the function in Rn introduced in (5.3).

Using Kolmogorov’s theorem we see that there is a unique measure Qσ with the property
stated in the theorem such that for a cylinder function F as in (5.3) we have

(5.6)

∫

Ω
FdQσ = Ln(F ).

The other claims are easily verified. We omit the details. �

In this section we make use of the two general procedures for constructing Gaussian processes,
and the corresponding probability spaces. To simplify matters, we divide them into (i) the
inductive limit construction first proposed by Kolmogorov, and (ii) the alternative approach
based on Gelfand triples. For references to the first, see [27, 14], for the second, see e.g., [29].

We further mention the following result from [2] and [3] (we refer the reader to these references
for the proof).

Theorem 5.2. Let σ be a tempered measure (see Definition 2.1) and let
(
X

(σ)
ϕ

)
ϕ∈S

be the

corresponding Gaussian process indexed by the real Schwartz space S. Further, let PW denote

the standard Wiener-measure. For f ∈ L2(R), let f̃ denote the corresponding Gaussian
process with zero mean and covariance

EPW
(|f̃ |2) = ‖f‖22.

Then, there exists a continuous linear operator Q(σ) from S into L2(R) such that

EPW

[
eiQ̃

(σ)(ϕ)

]
= EPσ

[
eiX

(σ)
ϕ

]
= e−

1
2

∫
R
|ϕ̂(u)|2dσ(u).

6. Equivalence of measures

In this section we provide details (Theorem 6.4 below) associated with the equivalence of the
two realizations of probability spaces for the family of Gaussian processes considered above.

6.1. Two probability spaces. In the approach based on Gelfand triples we realize the
family of stationary-increment processes on the probability space (S ′,C (S ′), Pσ), while in
the approach based instead on Kolmogorov consistency theorem, a probability space is
(C(R),C , Qσ), where C is the corresponding cylinder sigma-algebra. In both cases the Gauss-
ian process is indexed by a fixed tempered measure σ.

The setting in the present section is as follows. Fix a tempered measure σ on R and consider
the above two variations of the σ-Gaussian process, For ω ∈ C(R) let ω′ be the corresponding
Schwartz tempered distribution.

We shall write X
(σ)
Kolm(t) for the process in the Kolmogorov realization, and X

(σ)
Gel for the

Gelfand-triple realization, i.e.

X
(σ)
Kolm(t)(ω) = ω(t), ∀ω ∈ C(R), ∀t ∈ R,(6.1)

X
(σ)
Gel(t)(ξ) = 〈ξ, χ[0,t]〉, ∀ξ ∈ S ′, ∀t ∈ R.(6.2)
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6.2. Equivalence. In the following statement recall that cylinder sets have been defined in
(2.4).

Lemma 6.1. Let σ be a tempered measure as introduced in Section 4 (see Lemmas 4.2 and

4.3). Then the Gaussian process (X
(σ)
ϕ )ϕ∈S determined by

E
[
X(σ)

ϕ

]
= 0 and E

[
eiX

(σ)
ϕ

]
= e−

1
2

∫
R
|ϕ̂(u)|2dσ(u)

extends from S to L2(R), i.e. the S-S ′ pairing X(σ)
ϕ (ξ) = 〈ξ, ϕ〉 extends uniquely to X

(σ)
f . By

abuse of notation we shall write

X
(σ)
f (ξ) = 〈ξ, f〉.

Proof. For f ∈ L2(R), interpret X
(σ)
f (ξ) as the Ito-integral

(6.3) X
(σ)
f (ξ) =

∫

R

f(x)dX(σ)(x),

where the right hand side of (6.3) is computed with the use of Lemma 3.5. �

Fix k ∈ N, and consider a Gaussian measureQ on C(Rk) constructed from Gaussian transition
probabilities, see e.g. (5.4)-(5.3) above. We denote by

Ctemp(R
k) = C(Rk) ∩ S ′

Rk

the set of tempered continuous functions on Rk (see [47]). Furthermore, let
•
Rk=

(
Rk ∪ {∞}

)∼
denote the one-point compactification of Rk. Then we have:

Lemma 6.2. It holds that

(6.4) C(Rk) ∩
∏

Rk

•
Rk⊂ Ctemp(R

k).

Proof. The functions ω in the intersection on the left hand side of (6.4) have well defined
limits at ∞. There are in particular bounded and hence tempered. �

Lemma 6.3. The Gaussian measure Qσ in Theorem 5.1 is supported in C(Rk) ∩∏Rk

•
Rk

Proof. The fact that Qσ(C(Rk) ∩∏Rk

•
Rk) = 1 is contained in [35, Appendix A]. �

Theorem 6.4. For a fixed tempered measure σ let X
(σ)
Kolm and X

(σ)
Gel be the associated Gaussian

processes arising from Kolmogorov and Gelfand constructions respectively. Let

T : Ctemp(R) −→ S ′

be defined by

(6.5) T (ω) = ω′, ω ∈ Ctemp(R);

(the prime in ω′ denotes the derivative in the sense of distributions). Then,

(6.6) X
(σ)
Gel(ω

′) = X
(σ)
Kolm(ω) = ω(t),

and
Qσ ◦ T−1 = Pσ ,

meaning that for all cylinder sets ∆ ⊂ S ′, with

T−1(∆) =
{
ω ∈ Ctemp(R) such that ω′ ∈ ∆

}
,

then

(6.7) Qσ

(
T−1(∆)

)
= Pσ(∆).
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Proof. To prove (6.6) let ω ∈ Ctemp(R) and t ∈ R. Since the process is assumed to be zero
at t = 0 we can write

X
(σ)
Gel(ω

′) = 〈ω′, χ[0,t]〉
= −〈χ′

[0,t], ω〉
= ω(t)

= X
(σ)
Kolm(t)(ω).

We now turn to the proof of (6.7). Note that this yields an explicit formula for the measure
Pσ on S ′ which was previously obtained indirectly as an application of Minlos’ theorem to
the right hand side of (3.6), i.e. the Minlos-Gelfand approach does not yield a construction
of Pσ, only existence. Let A ⊂ Rn be a Borel set. Consider a cylinder set of the form (2.4),
with

ϕk(u) = χ[0,tk](u), k = 1, . . . , n.

Then,

Pσ

{
ω′ ∈ S ′ | (〈ω′, χ[0,t1]〉, . . . , 〈ω′, χ[0,tn]〉) ∈ A

}
= Qσ {ω ∈ Ctemp(R) | (ω(t1), . . . , ω(tn)) ∈ A} ,

where Pσ and Qσ refer to the functional measures on S ′ and C(R) respectively.

�
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