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 1 

Abstract   2 

Objective. To examine the validity of 5 robot-based assessments of arm motor function post-3 

stroke. 4 

Design. Cross sectional. 5 

Setting. Outpatient clinical research center. 6 

Participants. Volunteer sample of 40 participants, age >18 years, 3-6 months post-stroke, with 7 

arm motor deficits that had plateaued. 8 

Intervention. None.  9 

Main Outcome Measures. Clinical standards included the Fugl-Meyer Arm 10 

Motor Scale (FMA), and 5 secondary motor outcomes:  hand/wrist subsection of the FMA; 11 

Action Research Arm Test (ART); Box & Blocks test (B/B); hand subscale of Stroke Impact Scale-2 12 

(SIS); and the Barthel Index (BI). Robot-based assessments included: wrist targeting; finger 13 

targeting; finger movement speed; reaction time; and a robotic version of the (B/B) test. 14 

Anatomical measures included percentage injury to the corticospinal tract (CST) and primary 15 

motor cortex (M1, hand region) obtained from MRI . 16 

Results. Subjects had moderate-severe impairment (arm FMA scores = 35.6±14.4, range 13.5-17 

60). Performance on the robot-based tests, including speed (r=0.82, p<0.0001), wrist targeting 18 

(r=0.72, p<0.0001), and finger targeting (r=0.67, p<0.0001) correlated significantly with the FMA 19 

scores. Wrist targeting (r=0.57 - 0.82) and finger targeting (r=0.49 - 0.68) correlated significantly 20 

with all 5 secondary motor outcomes and with percent CST injury. The robotic version of the 21 

B/B correlated significantly with the clinical B/B test but was less prone to floor effect. Robot-22 
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based assessments were comparable to FMA score in relation to percent CST injury and 23 

superior in relation to M1 hand injury. 24 

Conclusions. The current findings support using a battery of robot-based methods for assessing 25 

the upper extremity motor function in subjects with chronic stroke. 26 

Key Words:  Stroke, Robot Therapy, Arm Outcome Measures 27 

 28 
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Stroke is a leading cause of disability, frequently resulting in the loss of wrist and hand 40 

function required for activities of daily living
1-3

.  Emerging evidence supports the use of 41 

restorative therapies for improving patient outcomes, yet in typical clinical settings, therapists 42 

are often unable to deliver the type or amount of intensive intervention needed for optimal 43 

recovery
4
 5 6 7 due to constraints in the healthcare delivery system 8-10. To address this problem, 44 

researchers and clinicians are incorporating technology-based therapies (e.g., robotic therapy, 45 

computer-based games 
11, 12

 and home-based telerehabilitation systems
13, 14

) into stroke 46 

rehabilitation, but the results have been mixed
7, 15-19

 
20

.  Interpreting and comparing the results 47 

of studies on stroke rehabilitation can be difficult due to the use of different outcome measures 48 

across investigations
21, 22

 
23

 
24

.  The dearth of valid, technology-based outcome measures poses 49 

additional challenges to evaluating the effectiveness of these new approaches.  Therefore, 50 

continuing progress in technology-based stroke rehabilitation depends upon the availability of 51 

valid instrumented assessments that are comparable to existing clinical outcome measures. 52 

For technology-based therapies to gain widespread acceptance, they must render 53 

outcome data that are consistent with valid outcome measures such as the Fugl-Meyer arm 54 

motor test (FMA), which is considered a gold standard assessment
25-27

.  Outcomes also should 55 

be validated against other anatomical measures of stroke severity, such as corticospinal tract 56 

(CST) integrity via neuroimaging.  Administering standardized clinical behavioral outcome 57 

measures to assess arm and hand recovery adds to the cost and inconvenience of technology-58 

based therapies. Therefore is it advantageous to incorporate the use of technology into home-59 

based models of care to assess patients remotely. Consequently, developing reliable, valid 60 

outcome measures that are comparable to valid clinical behavioral outcome measures is a key 61 
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step toward integrating technology into clinical practice, particularly when access to care is 62 

limited. To that end, researchers are working toward identifying instrumented assessments that 63 

can serve in lieu of standardized behavioral outcome measures administered by trained 64 

professionals
28

 
29

. Krebs et al. (2014) 
24

 demonstrated that kinetic measures of upper extremity 65 

movements performed during robotic therapy correlated well with clinical measures, however, 66 

such measures may involve a level of complexity not feasible for wide-spread use in patients’ 67 

homes. Using scores of performance on technology-based therapies as indicators of function 68 

could be a viable alternative to standardized assessments, providing that those scores 69 

accurately reflect arm motor function. Ultimately, having a more comprehensive understanding 70 

of the relationships among clinical behavioral indicators, technology-based-assessments, and 71 

anatomical measures (e.g., corticospinal tract integrity)
30

 of stroke-related motor deficits may 72 

lead to the development of new and better patient-centered therapies that target specific 73 

motor deficits. 74 

As the use of technology-based therapies increases, another factor to consider is 75 

incorporating simple, accurate tests of arm motor function post-stroke that address the 76 

spectrum of the World Health Organization’s (WHO) International Classification of 77 

Functioning Disability and Health (ICF). To capture the full extent of the effects of 78 

stroke-related disability, the ICF model includes limitations of body structure/function, 79 

activities, and participation in society, in addition to personal and environmental factors 80 

31. Using the ICF model may enhance clinicians’ abilities to relate the effects of impaired 81 

movement due to dysfunction of a limb (e.g., arm and hand weakness) to the specific 82 

activities that are affected by those impairments (e.g., dressing and eating) and how 83 
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limitations in those activities influence one’s ability to carry out one’s usual roles in life 84 

(e.g., working) 32. Having accurate measures of movement function across ICF domains 85 

may enhance clinicians’ abilities to determine the full impact of individuals’ stroke-86 

related motor deficits and develop more effective treatment strategies. Using robot-87 

based scores across ICF domains may provide a safe, simple alternative to time-88 

intensive behavioral examinations by therapists. 89 

As an initial step, the current study examined the validity of 5 robot-based 90 

assessments of arm motor status by exploring the relationships between these 91 

instrumented assessment scores and established clinical and anatomical measures 92 

pertaining to stroke-induced upper extremity deficits across the ICF. Specifically, we 93 

hypothesized that the robot-based assessment scores would demonstrate construct 94 

validity across the ICF domains when compared to standard clinical behavioral outcome 95 

measures and would also correlate with CST integrity, thereby demonstrating validity 96 

with respect to anatomy following stroke.  Further, we aimed to demonstrate that 97 

robot-based assessments could be administered more rapidly than clinical behavioral 98 

assessments, thereby saving clinicians’ time. Ultimately, if technology-based 99 

assessments can be administered in patients’ homes, clinicians may be able to track 100 

patient performance remotely.  101 
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Methods 102 

Study Design.  The current study was a cross-sectional objective analysis of baseline data 103 

collected as part of a larger clinical trial (clinicaltrials.gov # NCT01244243). 104 

Subjects. Subjects were recruited from the surrounding area through flyers sent to 105 

rehabilitation facilities, healthcare providers, and individuals who had contacted the laboratory 106 

directly to participate in a study of robotic therapy for arm weakness after stroke. All subjects 107 

provided informed consent, in accordance with the University of California Irvine Institutional 108 

Review Board, and were contacted by telephone and screened by the study coordinator (LD) to 109 

determine eligibility. Entry criteria included age >18 years, stroke with onset 11-26 weeks prior 110 

to initial study assessments, arm motor deficits that had reached a stable plateau, and absence 111 

of any condition that would confound study participation. All data in the current report were 112 

obtained at baseline, prior to any therapy.  113 

Procedures. Subjects (or their proxy, for those who were unable to complete the forms 114 

due to motor deficits) completed questionnaires about demographic information (age, sex, 115 

ethnicity, level of education), medical and rehabilitation history, and prior level of function. 116 

Subjects were examined by licensed therapists with established inter-rater reliability (JS, LD, 117 

and AM) via clinical measures as well as robot-based assessments
19

. The primary clinical 118 

measure for current analyses was the total FMA scale
25, 33, 41

, a measure of upper extremity 119 

impairment.  Five secondary clinical measures also were examined:  (1) the hand/wrist 120 

subsection of the FMA; (2) Action Research Arm Test (ARAT)
34, 35

; (3) Box & Blocks test (B/B)
36

, a 121 

second measure of upper extremity function with different psychometric qualities that lends 122 
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itself to implementation in a robotic setting; (4) hand motor subscale of Stroke Impact Scale-2 123 

(SIS)
37

, a patient-reported measure of hand usage; and (5) the Barthel Index (BI)
38

.  The primary 124 

behavioral measure (FMA) and four of the five secondary behavioral measures (hand/wrist 125 

subsection of FMA, ARAT, B/B, SIS-hand) are modality-specific for arm motor status; the BI is a 126 

global measure of function 39. In terms of the ICF categories, restrictions in:  1) body/structure 127 

function were assessed by FMA and the hand/wrist subsection of the FMA; activity were 128 

assessed by B/B, ARAT, and BI; and participation in society were assessed by SIS-hand 129 

(Supplement A).  130 

Data from five robotic assessments also were collected (Figure 1 and Supplement B).  The 131 

Hand Wrist Assistive Rehabilitation Device (HWARD) robot focuses on distal upper extremity 132 

motor function and is described in greater detail in Takahashi et al. 
19

. For the current study, a 133 

second (mirror-image) robot was built to allow inclusion of subjects with left-sided upper 134 

extremity involvement.  Briefly, the forearm was supported and stabilized in a cradle to prevent 135 

extraneous movements; subjects moved their wrists and fingers while the robot sensors 136 

measured movement across the 3 degrees of freedom. Scores on the robot assessments were 137 

obtained without robot actuation (i.e., the pneumatically actuated assistance provided by the 138 

robot during therapy was disabled during testing). Participants were required to move on their 139 

own as the robot sensors recorded the five robot-based metrics (below) while participants 140 

moved in response to the cues provided on a computer monitor. After a brief practice period 141 

during which subjects demonstrated their understanding of each of the games, subjects were 142 

asked to complete the tasks described in Figure 1 and Supplement B. The robot-based 143 

assessments focus on wrist and finger movement (flexion and extension), accuracy, and speed. 144 
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The software dictated the time required for administering the robot-based tests. Robot-based 145 

wrist movement test data were collected from 38 of the 40 subjects, as that test was 146 

introduced beginning with the third subject; otherwise, clinical and robotic data were collected 147 

from all subjects.  148 

The primary focus was on three of these tests:  (1) precision of wrist targeting 149 

movements (speed and accuracy of flexing or extending the wrist while moving toward a 150 

circular target); (2) precision of 4-finger targeting movements (ability to flex or extend fingers 151 

quickly and accurately while reaching and maintaining position over a target); and (3) maximum 152 

speed of finger movements in response to a ‘go’ signal. In addition, (4) a robot-based version of 153 

the B/B test was also scored, during which subjects manipulated virtual blocks on the computer 154 

screen using the same instructions as with the clinically tested B/B test; and (5) a simple test of 155 

reaction time.  To ensure that the motor behavioral outcome measures were stable (indicating 156 

that subjects had plateaued), two assessments of the FMA, ARAT, and B/B were performed 157 

between 1 and 3 weeks of one another at baseline, and the scores were averaged; subjects 158 

whose total FMA scores varied by more than 2 points were excluded.  All clinical assessments 159 

were performed by the same licensed physical therapist (JS); intra-rater and inter-rater 160 

reliability for the ARAT and the FMA were established previously for the laboratory
35, 40

 and the 161 

average duration of the testing procedures was determined.  162 

In addition to the behavioral and robotic assessments, anatomical data were collected 163 

from an MRI scan (3T, Philips Achieva system) obtained at baseline, prior to any treatment, and 164 

included high resolution T1-weighted images (repetition time = 8.5 ms, echo time = 3.9 ms, 165 
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slices =150, voxel size = 1 x 1 x 1 mm
3
). Infarct volume was outlined, binarized, then 166 

transformed into Montreal Neurologic Institute (MNI) stereotaxic space.  The extent of injury to 167 

the hand region of the primary motor cortex (M1) injury was determined by measuring the 168 

degree of overlap that each infarct mask had with an MNI-space map of the hand region of 169 

M1
41

. The percent injury to the corticospinal tract (CST) was determined as described 170 

previously
30

 
41

.  171 

Data Analysis.  172 

Descriptive statistics (means, standard deviations, and ranges) and non-parametric (Spearman’s 173 

rho) correlations were calculated between the clinical behavioral outcome measures (FMA, 174 

hand/wrist FMA, ARAT, B/B, BI) and the robot-based scores on finger targeting, wrist targeting, 175 

reaction time, speed, and robot-based B/B using JMP, version 8; Bonferroni correction was 176 

made for multiple comparisons between the measures of interest (p<0.007).  All r values are 177 

reported as absolute value because better motor status is the higher score for some scales and 178 

lower for others; moderate correlations were considered to be those in the range of 0.5 to 0.7, 179 

with strong correlations being >0.7 
42

.  
180 

Results  181 

Study subjects:  A total of 40 subjects (29 male/11 female; average age=58 years (+14)) 182 

were studied. Demographic information and clinical and robotic assessments are presented in 183 

Table 1. All subjects successfully generated scores on the instrumented assessments, which 184 

were rapidly and successfully obtained in all subjects (11-20.5 minutes per session for robotic 185 

assessments vs. 29-49 minutes for behavioral assessments).  Restrictions in movement ranged 186 
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from mild to severe motor impairment (Table 1).  The five robotic assessment scores also 187 

reflected mild to severe deficits (Table 1). Anatomical measures of injury were concordant, 188 

showing that M1 and CST injury ranged from mild to severe (Table 1).  189 

Validity of Robot-based Assessments across the ICF:  All of the scores on the clinical 190 

outcome measures correlated with the robot-based scores, however, different patterns 191 

emerged with regard to the ICF domains of Body Structure/Function, Activity, and Participation 192 

(Table 2).  Across ICF domains, motor behavioral assessments focused on the upper extremity 193 

showed the strongest correlation with the robotic assessment of speed and the poorest with 194 

reaction time (Table 2). 195 

ICF domain of Body Structure/Function Limitation:  The FMA total score measures body 196 

structure/function and correlated most closely with the robot-based speed test (r= 0.82, 197 

p<0.0001), followed by wrist targeting (r = 0.72, p<0.0001); and finger targeting (r = 0.67, 198 

p<0.0001).  Likewise, scores on the hand/wrist subset of the FMA correlated with the speed test 199 

(r = 0.79, p<0.001), but in this case, finger targeting (r = 0.68, p<0.001) was slightly more 200 

correlated than wrist targeting (r= 0.66, p<0.001). 201 

ICF domain of Activity Limitation:  The ARAT is a modality-specific measures of upper extremity 202 

activity limitation, and was significantly correlated with the speed test (r= 0.84, p<0.0001), wrist 203 

targeting (r= 0.76, p<0.0001), and finger targeting (r= 0.65, p<0.0001); the B/B, another 204 

modality-specific measure of upper extremity activity limitation, correlated most strongly with 205 

the wrist targeting (r= 0.85, p<0.0001), speed (r= 0.84, p<0.0001), and finger targeting (r= 0.65, 206 

p<0.0001) tests.  207 
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 The Barthel Index is a global measure of activity limitation and had a unique profile of 208 

correlations with robotic assessments, being strongest for finger targeting (0.58, p< 0.0001) 209 

and weakest for speed (0.37, p< 0.05-0.007). 210 

ICF domain of Participation Limitation:  The SIS-hand correlated with robotic wrist targeting 211 

(r=0.68, p< 0.0001), followed by speed (r=0.65, p< 0.0001) tests. 212 

Ceiling/Floor effects. The robotic tests performed well with regard to ceiling and floor 213 

effects. There was at least one robotic test without a ceiling effect (finger targeting) and at 214 

least one without a floor effect (B/B). The robust performance of robotic assessments with 215 

regard to this issue was particularly apparent when comparing the two versions of the B/B:  216 

while 12 subjects had the lowest score (zero blocks) on the clinically tested B/B test (30%), only 217 

3 (7.5%) subjects had the lowest score (zero blocks) with the robotic B/B test (Figure 2).  218 

Relationship between robotic assessments and anatomy.  Each of the robot-based 219 

assessment scores significantly correlated with the percent CST injury (Table 3), indicating that 220 

that greater the injury to the CST, the worse the performance on those robot-based 221 

assessments. The robotic assessment scores of finger targeting (r=-0.56, p <0.007-0.0001) and 222 

reaction time (r=0.55, p <0.007-0.0001) were moderately correlated with percent CST injury. 223 

These correlations were stronger than the relationship between the primary clinical assessment 224 

(total FMA) and percent CST injury, which was r=-0.46, p < 0.006. A similar picture emerged 225 

when examining the amount of injury to the hand region of the primary motor cortex (M1), 226 

with which finger targeting and reaction time significantly correlated with amount of injury to 227 

the hand region of M1, while the relationship between the primary clinical assessment (total 228 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Validity of Robotic Assessments 

 

12 

 

FMA) and amount of injury to the hand region of M1 did not show a significant relationship (r=-229 

0.16, p = 0.37).  230 
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Discussion 231 

In this study, we explored the validity of five robot-based assessments of arm motor 232 

status by comparing them to established clinical and anatomical measures of stroke-induced 233 

upper extremity deficits.  All of the robot-based assessment scores were rapidly obtained and 234 

demonstrated good construct validity with respect to several established clinical outcome 235 

measures across the ICF domains of Body Structure/Function, Activity, and Participation, but 236 

the results were less robust with respect to anatomical measures of motor system injury.  The 237 

robot-based assessments strongly correlated with the total FMA score and the secondary 238 

clinical outcome measures (FMA hand/wrist, ARAT, B/B, BI, SIS-hand). The utility of robot-based 239 

testing is most apparent when using a panel of tests, including speed, wrist and finger targeting, 240 

and B/B, however, as no single test by itself was sufficient. 241 

Overall, the robotic speed and wrist targeting tests were the most consistent modality-242 

specific (i.e., arm motor function) performers, regardless of ICF level, followed by finger 243 

targeting scores, but this relationship did not hold true for the anatomical measures. With 244 

regard to injury to the CST and M1 hand area, both anatomical measures were most correlated 245 

with reaction time and finger targeting scores, whereas speed and wrist targeting were least 246 

correlated.  As a result, these differences in scoring patterns may reveal some of the complex 247 

and differential effects of lesion size and location on behavior.   248 

The relationships between scores on the robot-based assessments of arm motor 249 

behavior across the spectrum of WHO ICF domains were particularly interesting. For the ICF 250 

domain of Body structure/Function, the robot-based speed test was most highly correlated with 251 
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scores on both the total FMA and the hand/wrist subsection of the FMA. For the Activity 252 

domain, the robot-based speed test was again correlated with the modality-specific tests of 253 

B/B, and ARAT; the robot-based wrist targeting test also highly correlated with B/B. Likewise, 254 

the robotic and clinical versions of the B/B, although slightly different, also correlated. The 255 

more global BI scores were most closely correlated with robot-based finger targeting and wrist 256 

targeting scores, but least correlated with speed and reaction time scores.  Thus, the 257 

relationships between behavioral and robotic assessments clustered relative to modality-258 

specificity vs. global function, not just according to ICF level. The arm motor modality-specific 259 

FMA, B/B, and ARAT are all timed tests, so speed likely plays a prominent role in performance. 260 

Since the items on the BI are not speed dependent, the motor control and coordination 261 

required for the targeting tests may be more relevant than speed for overall function. For the 262 

ICF domain of Participation, the SIS-hand scores were most correlated with wrist targeting, 263 

again suggesting that motor control may be more important than speed for overall function. 264 

These findings illustrate the relevance of robot-based assessments with respect to the ICF 265 

domains and modality-specific vs. global function deficits, providing a comprehensive picture of 266 

the full impact of stroke on individuals’ ability to function.  267 

The correlations between robot-based assessments and anatomical measures of injury 268 

were generally weaker than those for the clinical outcome measures and the pattern of 269 

correlations differed somewhat. Robot-based assessments may offer some advantages over 270 

standardized clinical or neuroimaging measures of injury for capturing the effects of stroke. 271 

Overall, the anatomical results suggest that the robot-based assessments are of approximately 272 

similar value compared to the FMA total score in relation to percent CST injury, and indeed may 273 
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be of greater validity than the FMA total score with respect to amount of M1 hand region 274 

injury. Since the robotic assessments did not require individuated fine finger movements, which 275 

would likely be more significantly impaired with damage to the hand region of M1 than other 276 

motor cortical areas contributing to the CST, 43, 44  the robotic assessment scores may better 277 

reflect the integrity of the CST than M1. These findings suggest that perhaps a more specific, 278 

patient-centered treatment approach may be developed by considering both the anatomy 279 

involved and the types of motor deficits measured by robot-based tests. 280 

If valid outcome measures of upper extremity function that address ICF domains can be 281 

administered quickly, the time and cost of performing assessments may be reduced.   Although 282 

previous investigators have demonstrated that kinematic measures derived from technology-283 

based systems correlate well with standardized clinical measures 24, using simple, easy-to 284 

administer instrumented performance measures to assess the full spectrum of function across 285 

the ICF may prove to be more utilitarian in the long-run, particularly for individuals with stroke.  286 

Eventually, using robot-based assessments in lieu of standardized behavioral tests administered 287 

by a skilled clinician may provide opportunities for remote testing, such as in the context of 288 

telerehabilitation settings.  289 

The results of this study were consistent across a variety of motor assessments, 290 

including instrumented, robot-based assessments of distal motor function; clinical outcome 291 

measures of impairment and activity, including modality-specific (arm motor) and global 292 

measures; and patient-reported measures of participation related to hand function. Valid and 293 

technology-based assessments that address the full spectrum of the ICF, and that are also 294 
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related to anatomical measures of injury, may prove to be useful in driving the next generation 295 

of therapeutic interventions. For example, being able to track patient performance and 296 

progress quickly, easily, and remotely may make it easier for therapists to develop more 297 

patient-centered treatment plans that identify and address task-specific deficits. 298 

In our sample population, language and cognitive deficits were mild and did not 299 

interfere with subjects’ ability to use the instrumented assessments, thereby reinforcing the 300 

robot’s utility as a device for measuring motor function in many individuals post-stroke.  The 301 

specific threshold for cognitive and language deficits that might limit patients’ abilities to 302 

participate in this type of testing is as yet undetermined, however.   303 

Future work will explore an analysis of the potential cost benefit of using robot- or 304 

related technology-based assessments.  Robot-based assessments have the potential to provide 305 

valid and highly consistent outcome assessments that can be used in emerging models of care, 306 

but further studies are needed to explore the full capabilities of this type of assessment 307 

strategy.  Investigations into the use of instrumented assessments that are incorporated into 308 

Telerehabilitation systems and other game-based therapies are currently ongoing. While 309 

technology is unlikely to replace clinicians or clinical assessments, it is already playing a role in 310 

augmenting and expanding more typical rehabilitation provided one-on-one by therapists on-311 

site, thereby off-setting current limitations in access to optimal care.  As clinicians and 312 

researchers seek to clarify the relationships between and among lesion location and size, 313 

patients’ scores on outcome measures, the selection of appropriate interventions, and the 314 
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prognosis for recovery, so too must the appropriate use of technology be factored in to future 315 

models of healthcare delivery. 316 

Limitations of the study.  Some of the clinical outcome measures used in this study have 317 

floor (e.g., B/B) or ceiling (e.g., FMA, BI) effects.  Nonetheless, they represent the current 318 

standards and are widely used in research in the field.  The robot-based assessments used in 319 

this study may be prone to similar limitations, which is why using this battery of tests is 320 

preferable to using a single outcome measure.   Also, the two versions of the B/B tests, while 321 

correlated, are different; the robotic version does not require proximal arm and shoulder 322 

movement and it allows more time overall, limiting the user’s rate of grasp and release. As a 323 

result, the robot version may be slightly easier and less fatiguing than the clinical version. 324 

Future technology-based therapies also could benefit from incorporating measures of sensory 325 

function
45

 to provide a more comprehensive assessment of upper extremity function. Finally, 326 

language and cognitive deficits were mild in the current population, so the extent to which 327 

current results generalize to a more globally impaired population remains to be determined.  328 

The use of technology-based assessment and treatment interventions may be restricted to 329 

those with minimal cognitive impairment until specific guidelines are established. 330 

Conclusions 331 

 Robot-based assessment scores were valid across all domains of the ICF, correlating 332 

with both established clinical outcome measures and anatomical measures of motor system 333 

injury. Using a battery of robot-based, instrumented assessments (i.e., speed, finger targeting, 334 

wrist targeting, and B/B) of post-stroke upper extremity motor function may be a viable option 335 

for both patients and therapist 336 
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Figure Legends  444 

Figure 1.   Description of Robot Assessments:  445 

A. Hand Wrist Assistive Rehabilitation Device (HWARD) Robot. The subject’s forearm and 446 

hand are stablized in the cradle to allow flexion and extension of the wrist and hand in 447 

the plane of gravity. (Image from: Takahashi et al.,Instrumented hand motor therapy 448 

after stroke, Brain (2008); 131 (2):  425-437, used with permission from Oxford 449 

University Press.) 450 

B. Wrist targeting task: Subject flexes and extends the affected wrist in the plane of gravity 451 

to align the cursor (white circle), over the colored balls, achieving 90% overlap of the 452 

target (blue ball) and holding the position for 1 sec. The balls flash at a set rate, 453 

alternating between red and blue, beginning at 3 sec intervals; in subsequent trials, the 454 

rate is increased or decreased, depending upon the subject’s performance.  455 

C. Finger targeting task:  Subject flexes and extends the affected fingers in the plane of 456 

gravity to move the red bar inside blue box and keep it inside the blue box until the 457 

yellow bar fills for 3 sec, as represented by the yellow bar timer.  The easiest level (Level 458 

1) is shown above; with increasing levels of difficulty (up to level 25), the size of the 459 

target blue box is reduced. 460 

D.  Robotic Box and Blocks task:  Subject  must open their hand for a block to appear inside 461 

the image of the virtual hand on the computer screen. The subject then closes the hand 462 

for the virtual hand on the computer screen to grasp the virtual block until it clears the 463 

barrier, after which the subject’s hand must open to release the virtual block. 464 

  (Reaction Time and Speed Tests not shown.) 465 
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Figure 2.   Correlations Between Standard Box and Blocks and Robotic Box and Blocks 466 

Assessment: Scores on the instrumented version of the Box/Blocks test were significantly 467 

correlated with scores obtained by a therapist using the standard approach to this test (r=0.53, 468 

p<0.001).  Note that the lowest score (zero blocks, floor effect) was found in 12 subjects 469 

(31.6%) using the standard B/B test but only 3 (7.5%) subjects with the instrumented B/B test.  470 

 471 

 472 

 473 

474 
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Table 1. Characteristics of Subjects with Stroke.  

N 40 

Affected side 21 R / 19 L 

Handedness   38 R / 2 L 

Gender 29M / 11F 

Age (Years) 58 ± 14 [21-86] 

Time post-stroke (weeks)  19.2 ± 4.6 [10.9-26.0] 

Total NIH Stroke Scale score (normal =0) 4.3 ± 2.2 [0-11] 

Mini Mental Status Examination (normal = 30) 27.2 ± 2.8 [19-30] 

Modified Rankin Score 2.3 ± 0.7 [range: 1-4] 

Motor Behavioral Assessments (Affected Side):   

Total arm motor Fugl-Meyer Score (FMA) (normal=66) 35.6 ± 14.4 [13.5-60] 

FMA-Hand/wrist Subsection (normal = 24 ) 10.5 ± 7.8 [1-24] 

Action Research Arm Test (normal = 57) 25.1 ± 18.7 [0-57] 

Box/Blocks (# blocks in 60 seconds) (normal = 75.2) 13.2 ± 15.5 [0-59] 

Stroke Impact Scale II-hand motor (normal = 5) 2.1 ± 1.0 [1-4.2] 

Barthel Index (normal =100) 88.5 ± 9.1 [60-100] 

Robotic Assessments for Affected Side:  

Wrist Targeting (Worst Score = 6; Best Score = 1) 4.4 ± 1.3 [2.4-6] 

Finger Targeting (Worst Score = 1; Best Score =25) 9.7 ± 10.0 [0-25] 

Box and Blocks  (Number of Blocks) 19.8 ± 7.6 [0-27] 

Speed (Number of times across threshold) 4.2 ± 4.9 [0-19] 

Reaction Time in seconds (Lower score is better) 0.6 ± 0.2 [0.1-1.3] 

Anatomic Measures of Injury  

Infarct area, hand region primary motor (M1) cortex 1.8cm
3± 3.5 [0-13.5] 

% CST injury  35.7% ± 25.8 [10-100] 
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Table 2.  Correlations Between Motor Behavior and Robotic Assessments  

Motor Behavior 

Robotic Assessment 

Finger 

Targeting 

Wrist 

Targeting 

Box and 

Blocks 

Speed Reaction 

Time 

WHO ICF Level = Body/Structure function: 

     FMA Total 0.67*** 0.72*** 0.53** 0.82*** 0.37* 

     FMA Hand/wrist 0.68*** 0.66*** 0.55** 0.79*** 0.34* 

WHO ICF Level =Activity: 

     ARAT 0.65*** 0.76*** 0.54** 0.84*** 0.42** 

     B/B 0.65*** 0.85*** 0.52** 0.84*** 0.41* 

     Barthel Index 0.58*** 0.57** 0.51** 0.37* 0.44** 

WHO ICF Level = Participation: 

     SIS-hand motor 0.49* 0.68*** 0.40* 0.65*** 0.34* 

*p< 0.05-0.007; **p< 0.007-0.0001; ***p< 0.0001.  Absolute values are given for r 
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Table 3.  Correlations Between Robotic Assessment and Injury Measures 

Anatomic Measure 

Robotic Assessment 

Finger 

Targeting 

Wrist 

Targeting 

Box and 

Blocks 

Speed Reaction 

Time 

Injury to Hand Region 

Primary Motor Cortex 

(M1) 

0.37* 0.11 0.31 0.17 0.44* 

Percent Corticospinal 

Tract Injury 

0.56** 0.34* 0.52** 0.39* 0.55** 

*p< 0.05-0.007; **p <0.007-0.0001. Absolute values are given for r 
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A. 

Figure 1. Description of Robot Assessments.  

B.

C.

D.
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Figure 2.  Correlations Between Standard Box and Blocks and Robotic Box and Blocks Assessment



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Supplement B.  

Description of Robot: 

The HWARD device uses a lever design and air cylinders to achieve movement. Each 

air cylinder and  limb  interface  is  mounted  on  opposite ends of a lever, with a 

revolute joint in between. Midori CP-2FB low friction rotary potentiometers were used to 

translate the 360º endless mechanical rotation angles into a 0-5V range that was read 

by the computer using a the National Instruments PCI-6229 data acquisition card.  This 

voltage value was used in the games to sense the degree of rotation. 

The HWARD device allows 3-degrees-of-freedom (3-DOF) of rotational movement of 

the fingers, thumb, and wrist. The four fingers move as a single unit about the 

metacarpophalangeal  (MCP) joint , allowing a range of movement (ROM) of 

approximately 25 to 90 degrees of flexion.    Thumb  movement  out  of  the plane of the 

palm and fingers ranges from approximately 90%  full  extension  to  75%  of  full  

flexion ROM.    Wrist ßmovement  ranges from  approximately  20  degrees  of 

extension  to  15  degrees  of flexion.     

Description of Robot Assessments: 

For all games, maximum finger extension/flexion and maximum wrist extension/flexion 

were recorded ahead of time.  This enabled each game and assessment to be 

normalized to each subject's active range of movement. 

1. Wrist targeting game: Images of four colored (red, green, blue, yellow) circles 

were aligned in a row on the computer screen. Subjects extended and flexed 
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the wrist, moving a round, white circular cursor on the screen that was 

normalized to their active range of motion. They then attempted to 

superimpose the moving cursor over the red and blue targets (positions 1 and 

3), alternating between the two in response to a visual cue of the targets 

flashing (go signal). The starting rate was 3 seconds between go signals. If 

subjects scored greater than 60% accuracy at that level, they were advanced 

to a more difficult level (2 second intervals, then 1 second interval). If subjects 

were unable to meet the initial 3 second interval target, the level of difficulty 

was reduced to 4 second intervals (i.e., slower rate, up to a maximum of 6 

seconds). 

2. Finger Targeting Task. For this task, subjects moved the fingers (i.e., MCP 

flexion or extension) to move a cursor along a target (status bar) that was 

normalized to their active range of motion. Random targets would appear at 

various locations on the bar and the subject would be asked to flex or extend 

until their cursor moved into that location.  They would then have to hold the 

position for a set amount of time.  Each successful completion would be 

awarded 1 point.  Total play time was 48 seconds and subjects were told to 

score as high as possible. The level of difficulty ranged from 1 (least difficult, 

large target box) to 25 (most difficult, small target box), depending upon the 

size of the target box. Testing began at level 10 and moved up or down, 

based upon the subject’s ability to achieve a score of > 60%. 

3. Speed. For the speed game, the each specific appendage was placed in a set 

starting range: 50º  - 90º for fingers and 25º - 50º for wrist. A line 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

corresponding to that degree was rendered on the computer screen, and a 

secondary line was rendered 10º below.  The subjects were then asked to 

oscillate back and forth between these two set points over a duration of 20 

seconds.  Each time a successful alternation occurred between high and low, 

1 point was awarded.  Thus, higher scores were indicative of higher 

oscillation speed. 

 

4. Reaction Time. Subjects self-selected their preferred motion, based on which 

was easiest, from among the motions of finger extension, finger flexion, wrist 

extension or wrist flexion. The goal of this assessment was to perform the 

selected motion as quickly as possible in response to a visual cue (rest, get 

ready, go signals).  The specific appendage was again placed into a starting 

range: 33º   -102º for fingers, 6º  - 55º for wrist.  The subject was then told to 

wait for a cue.  When the cue was displayed, depending on the motion, the 

program would monitor for 2º of movement in the proper direction.  For each 

of the 20 trials, the subject was allowed 21 seconds to try to cross the 

threshold. This assessment was then repeated, the number of trials set by the 

therapist, and the final score was the averaged response time.  Lower scores 

indicated faster reaction times. 

5. Box and Blocks. Box & block was a virtual representation of the real world 

assessment.  A combination of either or both of the wrist and finger sensors 

were used to determine open and close hand positions.  This threshold was 

determined by the therapist and corresponded to each subject's active range 
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of motion.  When virtual blocks appeared on screen, the subject would have 

to move the proper appendages into the closed position.  The block would 

then be moved virtually on screen over a vertical divider.  Once past the 

divider, the subject would have to move to the open position, thereby 

releasing the block and scoring 1 point for each successful drop.  If at any 

time the hand moved into the open position before crossing the divider, the 

virtual block would drop and return to the starting position with no score being 

awarded.  The subjects were given 3 minutes to score as high as possible; 

the score is based upon the number of virtual blocks that the subject is able to 

get to the other side and release. The robotic version of the Box and Blocks 

test varies from the clinical version in that it:  A) is based on finger grasp and 

release and does not require shoulder movements to move the block over the 

barrier, as the clinically tested version does; B) limits the maximum speed of 

block availability; and C) occurs over 3 minutes, rather than 1 minute for the 

clinical version.  
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STROKE

Activity Participation

Modified from: WHO (2001). "World Health Organisation (WHO) International Classification of Functioning, Disability 

and Health: ICF.Geneva.

Environmental Factors Personal Factors

FMA Total

FMA Wrist/Hand Subsection

Body Structure/

Function

SIS-HandBox/Blocks, ARAT

Barthel Index

FMA, Box/Blocks, ARAT= Arm Motor Modality-Specific Outcome Measures; Barthel Index=Global Measure

Supplement B. Adapted  ICF Framework
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