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Abstract. A Nevanlinna function is a function which is analytic in the open
upper half plane and has a non-negative imaginary part there. In this paper
we study a fractional linear transformation for a Nevanlinna function n with
a suitable asymptotic expansion at ∞, that is an analogue of the Schur trans-
formation for contractive analytic functions in the unit disc. Applying the
transformation p times we find a Nevanlinna function np which is a fractional
linear transformation of the given function n. The main results concern the ef-
fect of this transformation to the realizations of n and np, by which we mean
their representations through resolvents of self-adjoint operators in Hilbert
space. Our tools are block operator matrix representations, u–resolvent ma-
trices, and reproducing kernel Hilbert spaces.
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1. Introduction

In the papers [4] and [5] the Schur transformation for generalized Nevanlinna func-
tions with a reference point z1 in the open upper half plane was considered. An
analogous transformation for Nevanlinna functions (for the definition of a Nevan-
linna function see Section 2) and for the reference point ∞ is defined in [1, Lemma
3.3.6], see [3]. This transformation or a simple modification of it we call here the
Schur transformation for Nevanlinna functions, and it is the starting point for the
present paper. To give more details, we consider a Nevanlinna function n which
has for some integer p ≥ 1 an asymptotic expansion of order 2p + 1 at ∞, for
example

n(z) = −s0

z
− s1

z2
− · · · − s2p

z2p+1
+ o

(
1

z2p+1

)
, z = iy, y → ±∞. (1.1)

The Schur transform n̂ of n is the function

n̂(z) := − s0

n(z)
− z +

s1

s0
; (1.2)

the relation between n and n̂ can also be written as

n(z) = − s0

z − s1

s0
+ n̂(z)

.

The transformed function n̂ =: n1 is again a Nevanlinna function, but in general
with an asymptotic expansion of the form (1.1) of lower order 2p− 1, and if p > 1
the Schur transformation can be again applied to n1 etc. As a result we obtain a
finite sequence of Nevanlinna functions n1 = n̂, n2 = n̂1, . . . , np = n̂p−1; this is the
sequence of functions that appears in the asymptotic expansion of n by continued
fractions, see [1, Section 3.3.6].

The transformation (1.2) is closely related to the finite Hamburger moment
problem. We recall that the Nevanlinna function n with an asymptotic expansion
(1.1) admits an integral representation

n(z) =

∫ ∞

−∞

dσ(t)

t − z
, z 6= z∗,

where σ is a bounded non-decreasing function on R. The coefficients sj in (1.1)
are the moments of the function σ:

sj =

∫ ∞

−∞

tj dσ(t), j = 0, 1, . . . , 2p. (1.3)

The moment problem we have in mind is the problem to determine all Nevanlinna
functions n with an expansion (1.1) and given coefficients sj , j = 0, 1, . . . , p, see
[1, Theorem 3.2.1].

An essential feature in our studies are operator representations or so-called
realizations of Nevanlinna functions, see [13], [10], and [9]. In fact, if the Nevanlinna
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function n admits an asymptotic expansion (1.1) its operator representation takes
the simple form

n(z) =
(
(A − z)−1u, u

)
, z 6= z∗, (1.4)

with some Hilbert space H with inner product (·, ·), u ∈ H, and a self-adjoint
operator A in H. We study the corresponding operator representation of the Schur
transform n̂, and also of the functions n2, . . . , np. For example, the function n̂

admits an operator representation of the form (1.4) with a Hilbert space Ĥ, an

operator Â, and an element û which are the orthogonal complement of the element

u in H, the compression of A to Ĥ, and a multiple of the projection of Au onto

Ĥ, respectively. After applying the Schur transformation p times, the resulting
function np admits an operator representation of the form (1.4) with the space

H′
p = H⊖Hp, Hp := span {u, Au, . . . , Ap−1u},

the operator that is the compression of A to this space, and an element which is
a multiple of the projection of Apu onto H′

p.
Since np is obtained by subsequent application of fractional linear transfor-

mations of the form (1.2), there is a fractional linear relation between the function
n and the transformed function np. We derive an explicit form for the defining
2×2 matrix function V of this relation in three ways: By calculating the resolvent
of the operator A in its 2 × 2 block matrix operator form corresponding to the
decomposition H = Hp ⊕H′

p, by means of the description of all generalized resol-
vents of a certain symmetric restriction of A with defect one in the space Hp+1,
and via reproducing kernel methods using the non-negative Nevanlinna kernel

Ln(z, w) =
n(z) − n(w)∗

z − w∗
, z, w ∈ C \ R, z 6= w∗.

For the Nevanlinna function n with an asymptotic expansion (1.1), polyno-
mials ej and dj , j = 1, 2, . . . , p, of first and second kind can be defined by the
well-known formulas, see [1, Chapter I]. Recall that ej is a polynomial of degree
j, and that dj is a polynomial of degree j − 1. We show that the polynomials êj

of first kind of the transformed function n̂ coincide, up to constant factor, with
the polynomials dj+1(z) of second kind for the given function n, whereas the poly-

nomials d̂j of second kind for n̂ are linear combinations of ej+1 and dj+1. As a
consequence, the polynomials of second kind for n are orthogonal with respect to
the measure generated by the non-decreasing function σ̂ in the representation of
the form (1.4) of the Nevanlinna function n̂; in this statement n̂ can be replaced
by the function −1/n. As in the classical moment problem, the 2× 2 matrix func-
tion V , which determines the fractional linear relation between n and np, can be
represented by the polynomials of first and second kind.

A short synopsis is as follows. The Schur transformation is defined in the
next section. We start with weaker forms of the asymptotic expansion (1.1), for
example

n(z) = −s0

z
− s1

z2
+ o

(
1

z2

)
, z = iy, y → ±∞,
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and consider also a weaker form of the Schur transformation. In Section 3 we men-
tion three concrete forms of the operator representation of n. The basic result of
this section is Theorem 3.1 which describes the operator model for the transformed
function. Higher order approximations and the corresponding polynomials of first
and second kind are introduced in Section 4. In the operator model an asymptotic
expansion (1.1) can be characterized by the fact that u ∈ domAp. The main result
of this section is the relation between the polynomials of first and second kind
of n and n̂ which was mentioned above. The reduction via a p–dimensional sub-
space, that corresponds to p subsequent applications of the Schur transformation,
is given in Section 5 by means of a block operator matrix representation of A. In
Section 6 the corresponding transformation matrix V is expressed in terms of the
polynomials of first and second kind. Although the final formulas are well known
(see for example [1]) this approach seems to be new.

In Section 7, applying the theory of u–resolvent matrices, we derive a rep-
resentation of a transformation matrix in an explicit form by means of the given
moments; it corresponds to Potapov’s formula for the solution matrix of the Nevan-
linna - Pick problem, compare also [2]. Finally, in Section 8 we explain the con-
nection between n and np through some basic results from the theory of resolvent
invariant reproducing kernel spaces, and give another proof for the representation
of the transformation matrix by orthogonal polynomials.

2. The Schur transformation

1. A Nevanlinna function is a complex function n which is defined and analytic in
the upper half plane C+ and has the property

z ∈ C
+ =⇒ Im n(z) ≥ 0.

We always suppose that n is extended to the lower half plane C− by the relation

n(z) = n(z∗)∗, z ∈ C
−, (2.1)

and to those points of the real axis into which it can be continued analytically.
The set of all Nevanlinna functions is denoted by N0. Recall that n ∈ N0 if and
only if n is analytic in C \ R and the kernel

Ln(z, w) =
n(z) − n(w)∗

z − w∗
, z, w ∈ C \ R, z 6= w∗,

is positive definite.
Let n ∈ N0 and consider the following properties of n:

(10) n(z) = −s0

z
+ o

(
1

z

)
,

(20) n(z) = −s0

z
+ O

(
1

z2

)
,
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(30) n(z) = −s0

z
− s1

z2
+ o

(
1

z2

)
,

where here and in the following, the limit relations are understood to hold for
z → ±∞ along the imaginary axis. The assumption (2.1) implies that s0 and s1

are real numbers. Evidently, (30) =⇒ (20) =⇒ (10). The function n satisfies the
assumption (10) if and only if it belongs to the class (R0) of [12], which means
that it admits an integral representation

n(z) =

∫ +∞

−∞

1

t − z
dσ(t), z ∈ C \ R, (2.2)

where σ is a bounded non-decreasing function on R. Then
∫ +∞

−∞

dσ(t) = s0,

hence s0 ≥ 0, and if s0 = 0 then n(z) ≡ 0. With the representation (2.2) of n the
assumption ∫ ∞

−∞

|t| dσ(t) < ∞ (2.3)

implies that (30) is satisfied. Indeed, (2.3) implies that

s1 =

∫ ∞

−∞

t dσ(t)

exists and with z = iy

z2
(
n(z) +

s0

z
+

s1

z2

)
=

∫ ∞

−∞

t2

t − z
dσ(t) =

∫ ∞

−∞

t2 + iyt

t2 + y2
t dσ(t) = o(1).

The assumptions (10), (20), and (30) are all different. To see that (10) 6=⇒ (20)
we show that if n ∈ N0 has the representation (2.2) with suppσ ⊂ [0,∞) and

∫ ∞

0

dσ(t) < ∞,

∫ ∞

0

t dσ(t) = ∞,

then (20) does not hold: Let c > 0 be given arbitrarily (large) and choose K > 0

such that

∫ K

0

t dσ(t) ≥ c. If y is chosen large enough then for 0 ≤ t ≤ K we have

y2

t2 + y2
≥ 1

2
,

and hence ∫ ∞

−∞

y2t

t2 + y2
dσ(t) ≥ c

2
,

and therefore, with z = iy,

z2
(
n(z) +

s0

z

)
= z

∫ ∞

−∞

t

t − z
dσ(t) =

∫ ∞

−∞

−y2t + iyt2

t2 + y2
dσ(t) 6= O(1),
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which implies that (20) does not hold. Thus, for example, the function

n(z) =
−1

z −√−z
=

∫ ∞

0

1

t − z

dt

π(t + 1)
√

t

satisfies (10) but not (20).
Let n be the Nevanlinna function, defined in the upper half plane by

n(z) =
−s0

z + γ + f(z)
, z ∈ C

+,

where s0 is a positive real number, γ is a complex number with Im γ > 0, and f
is a Nevanlinna function such that f(z) = o(1). It has the properties

lim
z=iy, y→∞

z2
(
n(z) +

s0

z

)
= γs0, lim

z=iy, y→−∞
z2
(
n(z) +

s0

z

)
= γ∗s0,

and hence n satisfies (20) but, since the two limits are different (and non-real), it
does not satisfy (30).

Instead of the assumption (30) also the assumption

n(z) = −s0

z
− s1

z2
+ O

(
1

z3

)
(2.4)

seems reasonable. However, according to [13, Bemerkung 1.11], (2.4) implies the
existence of a real number s2 such that

n(z) = −s0

z
− s1

z2
− s2

z3
+ o

(
1

z3

)
; (2.5)

this relation will be considered in Section 4 as assumption (11). The implication
(2.4) =⇒ (2.5) can also be seen from the integral representation (2.2) of n: (2.4)
implies

z3

(∫ ∞

−∞

1

t − z
+

1

z
dσ(t) +

s1

z2

)
= O(1),

and hence with z = iy

−
∫ ∞

−∞

y2t(t + iy)

t2 + y2
dσ(t) + iys1 = O(1), y → ∞.

Taking the imaginary part we see that

s1 = limy→∞

∫ ∞

−∞

y2t

t2 + y2
dσ(t)

and taking the real part we see that there exist real numbers C and y0 such that
∫ ∞

−∞

y2t2

t2 + y2
dσ(t) ≤ C, y ≥ y0.

This implies that

s2 :=

∫ ∞

−∞

t2 dσ(t) < ∞,
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hence ∫ ∞

−∞

|t| dσ(t) < ∞

and

s1 =

∫ ∞

−∞

t dσ(t).

Now (2.5) easily follows from the integral representations of n and the expressions
for the real numbers s0, s1, and s2: With z = iy we have

z3
(
n(z) +

s0

z
+

s1

z2
+

s2

z3

)
=

∫ ∞

−∞

t3

t − z
dσ(t) =

∫ ∞

−∞

t4 + it3y

t2 + y2
dσ(t) = o(1).

2. Now we define the basic transformations considered this paper.

Definition 2.1. If n ∈ N0 satisfies the assumption (10) or (20), the Schur type

transform ñ of n is the function

ñ(z) =
−s0

n(z)
− z, (2.6)

if n ∈ N0 satisfies the assumption (30) the Schur transform n̂ of n is the function

n̂(z) =
−s0

n(z)
− z +

s1

s0
. (2.7)

The difference between the formulas (2.6) and (2.7) is just in the additive
real constant s1/s0: under the stronger assumption (30) this constant assures that
the transform tends to zero if z tends to ±∞ along the imaginary axis, see (2.10)
below.

The relations (2.6) and (2.7) can also be written as a first step of a continued
fraction expansion

n(z) = − s0

z + ñ(z)
, or n(z) = − s0

z − s1

s0

+ n̂(z)
.

Theorem 2.2. The following equivalences hold:

n ∈ N0 and satisfies (10) ⇐⇒ ñ ∈ N0, ñ(z) = o(z), (2.8)

n ∈ N0 and satisfies (20) ⇐⇒ ñ ∈ N0, ñ(z) = O(1), (2.9)

n ∈ N0 and satisfies (30) ⇐⇒ n̂ ∈ N0, n̂(z) = o(1). (2.10)

Proof. We have

ñ(z) = n̂(z) − s1

s0
= −s0 + zn(z)

n(z)
.

A straightforward calculation yields

Im ñ(z) = Im n̂(z) =
Im z

|n(z)|2
(

s0
Im n(z)

Im z
− |n(z)|2

)
,

and the estimate

|n(z)|2 =

∣∣∣∣
∫ +∞

−∞

dσ(t)

t − z

∣∣∣∣
2

≤
∫ +∞

−∞

dσ(t)

|t − z|2
∫ +∞

−∞

dσ(t) =
Im n(z)

Im z
s0
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implies ñ, n̂ ∈ N0. The asymptotic properties of ñ follow in case (2.8) from the
relation

ñ(z)

z
= − s0

zn(z)
− 1 = o(1),

in case (2.9) from the relation

ñ(z) = −s0 + zn(z)

n(z)
=

z O

(
1

z

)

zn(z)
,

and for n̂(z) in case (2.10) in a similar way or from [1, Lemma 3.3.6].
Conversely, starting from ñ(z) as in (2.8), the relation

z
(
n(z) +

s0

z

)
= s0

ñ(z)

z

1 +
ñ(z)

z

implies that from ñ(z) = o(z) it follows that n satisfies (10). The corresponding
proofs for (2.9) and (2.10) are similar. �

3. Self-adjoint operator representations

A function n ∈ N0 admits a self-adjoint operator representation or realization with
a self-adjoint relation A in some Hilbert space H of the form

n(z) = n(z0)
∗ + (z − z∗0)

((
I + (z − z0)(A − z)−1

)
v, v
)

(3.1)

with z0 an arbitrary non-real number z0 and an element v ∈ H, see [13], [10], and
[9]. If v is chosen to be a generating element for A, which means that

H = span
{
v, (A − z)−1v

∣∣ z ∈ C \ R
}

and which is always possible, then the operator representation (3.2) is called min-

imal and then it is unique up to unitary equivalence. We have the following equiv-
alences, see [15]:

A is an operator ⇐⇒ n(z) = o(z),

v ∈ domA ⇐⇒ limy→∞y Im n(iy) < ∞;

for n ∈ N0 the latter limit always exists: it is either a non-negative number or ∞.
If the Nevanlinna function n satisfies the assumption (10) (or any of the

assumptions (20), (30)) the representation (3.1) can be simplified to

n(z) =
(
(A − z)−1u, u

)
, z ∈ C \ R, (3.2)

where A is a self-adjoint operator in some Hilbert space H, u ∈ H, (u, u) = s0. If
u is chosen to be a generating element for A, or equivalently,

H = span
{
(A − z)−1u

∣∣ z ∈ C \ R
}
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which is always possible, then the operator representation (3.2) is also called min-

imal and then it is unique up to unitary equivalence. The representation (3.2)
follows from (3.1) and the above mentioned equivalences by taking u = c(A− z0)v
with some unimodular complex number c.

Here are three examples for a more concrete choice of the triplet H, A, u in
(3.2) for the given function n ∈ N0 with integral representation (2.2).

(1) H = L2(σ), A is the operator of multiplication with the independent variable,
and u(t) ≡ 1, t ∈ R.

(2) H is the completion of the linear span of the functions rz , z ∈ C \ R:

rz(t) :=
1

t − z
, t ∈ R,

with inner product defined by

(rz , rζ) =
n(z) − n(ζ)∗

z − ζ∗
, z, ζ ∈ C \ R, z 6= ζ∗,

A is the operator of multiplication by t, and u(t) ≡ 1, t ∈ R.
(3) H is the reproducing kernel Hilbert space L(n) with reproducing kernel

Ln(z, w) =
n(z) − n(w)∗

z − w∗
, z, w ∈ C \ R, z 6= w∗,

A is the self-adjoint operator whose resolvent (A − z)−1 is the difference-
quotient operator Rz :

(Rzf)(ζ) =
f(ζ) − f(z)

ζ − z
, f ∈ L(n),

and take u = n; this function belongs to the space L(n), since n satisfies
the condition (10). Recall that the reproducing property of the kernel Ln is
reflected in the inner product of the space L(n):

〈f, Ln( · , z〉L(n) = f(z), f ∈ L(n), z ∈ C \ R.

That (3.2) holds follows from

(Rzn)(ζ) = Ln(ζ, z∗)

and the reproducing property of the kernel Ln:

〈(A − z)−1u, u〉L(n) = 〈Rzn, n〉L(n)

= 〈n, Ln( · , z∗)〉∗L(n) = n(z∗)∗ = n(z).

The unitary equivalence of the representations in (1) and (2) follows easily
from the relation

(rz , rζ) =

∫ ∞

−∞

dσ(t)

(t − z)(t − ζ∗)
, z, ζ ∈ C \ R,
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and the fact that the functions rz, z 6= z∗, form a total set in L2(σ). The unitary
equivalence between the two representations of n in (2) and (3) is given by the
mapping U :

U(rz) = Ln( ·, z∗);
in particular, we have Uu = n where u is the function u(t) ≡ 1, t ∈ R. The space
L2(σ) (or the equivalent space in (2)) we denote also by H(n). We mention that the
definition of the spaces in (2) and (3) can also be used for generalized Nevanlinna
functions, whereas in this case the space L2(σ) need not be defined. In Sections
4 - 7 we will prove theorems using the representation of n in (1), in Section 8 we
reprove some of these results using the representation in the reproducing kernel
Hilbert space L(n).

Since, according to Theorem 2.2, the functions ñ and n̂ in Definition 2.1
belong to the class N0 and are o(z) for z = iy, y → ∞, they admit again an
operator representation of the form (3.1), for example,

n̂(z) = n̂(z0)
∗ + (z − z∗0)

(
(Â − z0)(Â − z)−1v̂, v̂

)
(3.3)

with a self-adjoint operator Â in some Hilbert space Ĥ, z0 an arbitrary non-real

number, and an element v̂ ∈ Ĥ. Clearly, as the difference between the functions ñ
and n̂ is just an additive real constant, the operator representation for ñ can be
chosen the same, that is, in (3.3) n̂ can be replaced by ñ.

Theorem 3.1. Let n ∈ N0 satisfying the condition (10) and with operator repre-

sentation (3.2) be given, and let

n̂(z) =
−s0

n(z)
− z +

s1

s0

be the Schur transform of n from (2.7). Then in the operator representation (3.3)

of n̂ we can choose Ĥ = {u}⊥, Â in Ĥ as the compression of A to Ĥ : Â = P̂A| bH,

where P̂ is the orthogonal projection in H onto Ĥ, and the element v̂ as

v̂ =
‖u‖

((A − z0)−1u, u)
P̂ (A − z0)

−1u.

If n̂ also satisfies the condition (10)
1, then

n̂(z) =
(
(Â − z)−1û, û)

)
, û :=

P̂Au

‖u‖ .

Remark 3.2. The resolvent of Â is given by

(Â − z)−1 = (A − z)−1 − ((A − z)−1 · , u)

((A − z)−1u, u)
(A − z)−1u,

1This is the case when n satisfies condition (11) defined in Section 4, see Lemma 4.1.
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and

v̂ =

‖u‖(A − z0)
−1u − ((A − z0)

−1u, u)
u

‖u‖
|((A − z0)−1u, u)| .

Note that
(
(A − z0)

−1u, u
)

= n(z0) 6= 0, otherwise n(z) ≡ 0.

Proof of Theorem 3.1. (1) Suppose that n satisfies (10). Then we have ‖u‖ =
√

s0

and

n̂(z) − n̂(z0)
∗ = −‖u‖2

r(z)
− z +

‖u‖2

r(z0)∗
+ z∗0 , (3.4)

where we have put r(z) := ((A− z)−1u, u). It remains to show that the expression
on the right hand side of (3.4) equals

(z−z∗0)
(
(Â − z0)(Â − z)−1)v̂, v̂

)
= (z−z∗0)‖v̂‖2+(z−z∗0)(z−z0)

(
(Â − z)−1v̂, v̂

)
.

This is a straightforward calculation, we only indicate some formulas:

(z − z0)(Â − z)−1v̂ =
‖u‖

|r(z0)|

(
r(z0)

r(z)
(A − z)−1u − (A − z0)

−1u

)
,

‖v̂‖2 = ‖u‖2 ‖(A − z0)
−1u‖2

|r(z0)|2
− 1,

and

(z − z∗0)(z − z0)
(
(Â − z)−1v̂, v̂

)

= ‖u‖2

(
1

r(z0)∗
− 1

r(z)
− (z − z∗0)‖(A − z0)

−1u‖2

|r(z0)|2
)

.

(2) Now assume that n̂ satisfies (10). Then v̂ ∈ dom Â ⊂ domA and the equality

v̂ =
‖u‖
r(z0)

(A − z0)
−1u − u

‖u‖
shows that also u ∈ domA. If we take û = −(Â− z0)v̂, then (see after (3.2)) n̂ has

the asserted representation. It remains to show that û = P̂Au/‖u‖. We have

û = −(A − z0)v̂ =
1

‖u‖(A − z0)u − ‖u‖
r(z0)

u.

Taking the inner product of both sides with u and using (û, u) = 0, we see that

‖u‖
r(z0)

=
((A − z0)u, u)

‖u‖3

and hence

û =
1

‖u‖(A − z0)u − ((A − z0)u, u)

‖u‖3
u =

1

‖u‖

(
Au − (Au, u)

‖u‖2
u

)
=

1

‖u‖ P̂Au.

�
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4. Higher order asymptotics. Orthogonal polynomials

1. For n ∈ N0 and some integer p ≥ 1 we introduce the assumptions

(1p) n(z) = −s0

z
− s1

z2
− · · · − s2p

z2p+1
+ o

(
1

z2p+1

)
,

(2p) n(z) = −s0

z
− s1

z2
− · · · − s2p

z2p+1
+ O

(
1

z2p+2

)
,

(3p) n(z) = −s0

z
− s1

z2
− · · · − s2p+1

z2p+2
+ o

(
1

z2p+2

)
.

Again, (3p) =⇒ (2p) =⇒ (1p), and by [13, Satz 1.10] for the operator represen-
tation the assumption (1p) is equivalent to u ∈ domAp. That is, for the above
representation with the space H(n) the functions

tk(t) := tk, k = 0, 1, . . . , p,

belong to H(n) and the first p of these elements, t0, t1, . . . , tp−1, belong to domA.
Moreover, the formal relation

(A − z)−1 = −
2p∑

j=0

Aj

zj+1
+

A2p+1

z2p+1
(A − z)−1

implies easily

n(z) =
(
(A − z)−1u, u

)

= −
p∑

j=0

(Aju, u)

zj+1
−

2p∑

j=p+1

(Anu, Aj−pu)

zj+1
+

1

z2p+1

(
A(A − z)−1Apu, Apu

)
.

It follows that

sj =

{
(Aju, u) if j = 0, 1, . . . , p,

(Anu, Aj−pu) if j = p + 1, p + 2, . . . , 2p.

Therefore the above assumptions are equivalent to the following relations for the
operator A and the generating element u, u ∈ domAp:

(1p) ⇐⇒ u ∈ domAp,

(2p) ⇐⇒ u ∈ domAp, z(A(A − z)−1Apu, Apu) = O(1),

(3p) ⇐⇒ u ∈ domAp, z(A(A − z)−1Apu, Apu) + α = o(1) with α ∈ R;

(4.1)

in fact, in the last equivalence we have α = s2p+1.



13

Now we consider a function n ∈ N0 with the property (1p) for some p > 1.
For 0 ≤ k ≤ p, by Sk we denote the (k + 1) × (k + 1) Hankel matrix

Sk :=




s0 s1 · · · sk

s1 s2 · · · sk+1

...
...

...
sk sk+1 · · · s2k


 ; (4.2)

it is the Gram matrix associated with the k + 1 functions t0, t1, . . . , tk, and we
introduce the Gram determinants

Dk := detSk =

∣∣∣∣∣∣∣∣∣

s0 s1 · · · sk

s1 s2 · · · sk+1

...
...

...
sk sk+1 · · · s2k

∣∣∣∣∣∣∣∣∣

, k = 0, 1, . . . p. (4.3)

Further, for k = 1, . . . , p, Hk denotes the k–dimensional subspace

Hk := span {t0, t1, . . . , tk−1}
of H(n). Evidently, the subspace Hk is non-degenerated if and only if Dk−1 6= 0.

In the rest of this section we suppose that Dp−1 6= 0, that is, the subspace
Hp is non-degenerated. If Dp = 0, then the function n with the given asymptotics
(jp) is uniquely determined and rational of Mac Millan degree p, in fact, see [1,
pp. 22,23]

n(z) = −dp(z)

ep(z)
,

where the polynomials ep of degree p and dp of degree p− 1 are defined below. To
exclude this (simple) case we often suppose that even Dp 6= 0; clearly, this implies
Dp−1 6= 0.

As a basis in Hp we choose a system of elements ek ∈ H(n) = L2(σ), k =
0, 1, . . . , p − 1, which is obtained from the system t0, t1, . . . , tp by the Gram–
Schmidt orthonormalization procedure. This so-called system of orthogonal poly-

nomials of the first kind, associated with the function n is defined by the following
properties, j, k = 0, 1, . . . , p − 1:

1. e0(z) ≡ 1/
√

s0,

2. ek(z) is a real polynomial of degree k with positive leading coefficient,

3. (ej , ek) = δjk.

Then, see [1, (1.4)],

ek(z) =
1√

Dk−1Dk

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sk

s1 s2 · · · sk+1

...
... · · ·

...
sk−1 sk · · · s2k−1

1 z · · · zk

∣∣∣∣∣∣∣∣∣∣∣

, k = 1, 2, . . . , p − 1, (4.4)
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and by this formula with k = p also a polynomial ep can be defined. Evidently,

ep ∈ H[⊥]
p , and

span {t0, t1, . . . , tk} = span {e0, e1, . . . , ek}, k = 0, 1, . . . , p.

The orthogonal polynomials ej, j = 0, 1, . . . , p, satisfy the difference equa-
tions

bk−1ek−1(z) + akek(z) + bkek+1(z) = zek(z), k = 0, 1, . . . , p − 1, (4.5)

with real numbers ak, k = 0, 1, . . . , p − 1, b−1 = 0, and positive numbers bk, k =
1, . . . , p− 1, and the ‘initial condition’ e0(z) = 1/

√
s0. Explicit formulas for ak, bk

can be given, see [1]; we note that

a0 =
s1

s0
, b0 =

√
s2s0 − s2

1

s0
. (4.6)

The relation (4.5) implies that with respect to the basis e0, e1, . . . , ep−1 of
the space Hp the compression Ap of the operator A to Hp is given by the Jacobi
matrix

Ap :=




a0 b0 0 · · · 0 0
b0 a1 b1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · ap−2 bp−2

0 0 0 · · · bp−2 ap−1




, (4.7)

and that

Aep−1 = bp−2ep−2 + ap−1ep−1 + bp−1ep.

The latter relation means for the orthogonal polynomials

bp−2ep−2(z) + ap−1ep−1(z) + bp−1ep(z) = zep−1(z),

therefore, the eigenvalues of Ap are the zeros of the polynomial ep. For later use
we write the last p − 1 difference equations (4.5) explicitly in the form






b0e0 + a1e1 + b1e2 = ze1

b1e1 + a2e2 + b2e3 = ze2

b2e2 + a3e3 + b3e4 = ze3

...
bp−2ep−2 + ap−1ep−1 + bp−1ep = zep−1;

(4.8)

this system of homogeneous equations for e0, e1, . . . , ep determines the orthogonal
polynomials uniquely if we add the initial conditions

e0(z) =
1√
s0

, e1(z) =
z − a0

b0
√

s0
; (4.9)

the second condition is just the first equation in (4.5).
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The polynomials of the second kind, associated with the function n ∈ N0, are
the functions dk, k = 0, 1, . . . , p, defined as follows:

dk(z) =
√

s0

(
ek(z) − ek(·)

z − · , e0

)
=

(
ek(z) − ek(·)

z − · , u

)
, k = 0, 1, . . . , p. (4.10)

Hence d0(z) = 0 and dk is a polynomial of degree k − 1, k ≥ 1. The definition of
dk and the relation (4.5) imply that

bk−1dk−1(z) + akdk(z) + bkdk+1(z) = zdk(z), k = 1, . . . , p − 1. (4.11)

Therefore the polynomials ek and dk satisfy for k = 1, 2, . . . , p− 1 the same differ-
ence equations but with different initial conditions:

d0(z) = 0, d1(z) =

√
s0

b0
. (4.12)

For later use we write the difference equations (4.11) in the form





a1d1 + b1d2 = zd1

b1d1 + a2d2 + b2d3 = zd2

b2d2 + a3d3 + b3d4 = zd3

...
bp−2dp−2 + ap−1dp−1 + bp−1dp = zdp−1.

(4.13)

For any two solutions u0, . . . , up and v0, . . . , vp of the difference equations
(4.5) with b−1 = 0:

zuk(z) = bk−1uk−1(z) + akuk(z) + bkuk+1(z),

ζvk(ζ) = bk−1vk−1(ζ) + akvk(ζ) + bkvk+1(ζ),
k = 0, 1, . . . , p − 1,

the Christoffel–Darboux formulas hold:
p−1∑

k=m

(z − ζ)uk(z)vk(ζ) = bp−1

(
up(z)vp−1(ζ) − up−1(z)vp(ζ)

)

−bm−1

(
um(z)vm−1(ζ) − um−1(z)vm(ζ)

)
;

(4.14)

in particular,

dp(z)ep−1(z) − ep(z)dp−1(z) =
1

bp−1
. (4.15)

2. In this subsection we assume that n ∈ N0 satisfies the assumption (1p) for
some p ≥ 1, and we consider its Schur transform n̂ from (2.7). For the following
lemma see [8, Lemma 2.1], we sketch the proof.

Lemma 4.1. Suppose that n satisfies (1p) for some p ≥ 1 :

n(z) = −s0

z
− s1

z2
− · · · − s2p

z2p+1
+ o

(
1

z2p+1

)
,

then its Schur transform n̂ satisfies (1p−1) :

n̂(z) = − ŝ0

z
− ŝ1

z2
− · · · − ŝ2p−2

z2p−1
+ o

(
1

z2p−1

)
,
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with for j = 0, 1, . . . , 2p − 2

ŝj =
(−1)j+1

sj+2
0

∣∣∣∣∣∣∣∣∣∣∣

s1 s0 0 · · · 0 0
s2 s1 s0 · · · 0 0
...

...
. . .

. . .
...

...

sj+1 sj sj−1 · · · s1 s0

sj+2 sj+1 sj · · · s2 s1

∣∣∣∣∣∣∣∣∣∣∣

, (4.16)

Proof. Write

n̂(z) = z

(
1 +

s1

s0z
+

s2

s0z2
+ · · · + s2p

s0z2p
+ o

(
1

z2p

))−1

− z +
s1

s0
.

If we set

q(z) =
s1

s0z
+

s2

s0z2
+ · · · + s2p

s0z2p
+ o

(
1

z2p

)
,

then

1

1 + q(z)
= 1 − q(z) + · · · − q(z)2p−1 +

q(z)2p

1 + q(z)

= 1 − q(z) + · · · − q(z)2p−1 + o

(
1

z2p−1

)

and

n̂(z) =
z

1 + q(z)
−
(

z − s1

s0

)
1 + q(z)

1 + q(z)

=

(
−zq(z) +

s1

s0
(1 + q(z))

)
1

1 + q(z)

=

(
−z

(
s2

s0z2
+ · · · + s2p

s0z2p
+ o

(
1

z2p

))
+

s1

s0
q(z)

)
1

1 + q(z)

=

(
− s2

s0z
− · · · − s2p

s0z2p−1
+ o

(
1

z2p−1

)
+

s1

s0
q(z)

)
1

1 + q(z)
,

which is of the needed form. Formula (4.16) for the coefficients ŝj can be obtained
by equating powers of z from both sides of the equality

n(z)

(
z − s1

s0
+ n̂(z)

)
= −s0.

�

Now we can formulate the main result of this subsection.

Theorem 4.2. Let n ∈ N0 satisfy condition (1p) for some p ≥ 2. If ek and

dk, k = 0, 1, . . . , p, denote the polynomials of first and second kind associated
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with the function n, and êk and d̂k, k = 0, 1, . . . , p − 1, denote the polynomi-

als of first and second kind associated with the Schur transform n̂ of n, then for

k = 0, 1, . . . , p − 1 the following relations hold:

êk(z) =
1√
s0

dk+1(z), (4.17)

d̂k(z) = −√
s0ek+1(z) +

1√
s0

(
z − s1

s0

)
dk+1(z)

= b0

(
ek+1(z) − ek+1(·)

z − · , e1

)
=

1√
s0

(
ek+1(z) − ek+1(·)

z − · , · − a0

)
.

(4.18)

Remark 4.3. (i) Here we write ê and d̂ for the polynomials of first and second kind
associated with the Schur transform n̂ of n, but the reader is reminded that these
functions are not the Schur transforms of the polynomials e and d.

(ii) If ěk and ďk stand for the polynomials of first and second kind associated with
the Nevanlinna function −1/n, then for k = 0, 1, . . . , p − 1

ěk(z) = dk+1(z), ďk(z) = −ek+1(z) +
1

s0

(
z − s1

s0

)
dk+1(z).

The first equality readily follows from the fact that the spectral functions of n̂ and
−1/n only differ by a factor s0. The second equality can be obtained by tracing
the proof below; the only difference lies in (4.19): with evident notation, it should
be replaced by

š0 =
s0s2 − s2

1

s3
0

.

Proof of Theorem 4.2. For the function n̂, again with evident notation, we have

ŝ0 =
s0s2 − s2

1

s2
0

(4.19)

and, as a consequence of Theorem 3.1,

Âp−1 =




â0 b̂0 0 · · · 0 0

b̂0 â1 b̂1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · âp−3 b̂p−3

0 0 0 · · · b̂p−3 âp−2




=




a1 b1 0 · · · 0 0
b1 a2 b2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · ap−2 bp−2

0 0 0 · · · bp−2 ap−1




.

(4.20)
For the êj , j = 0, . . . , p − 1, we find

ê0(z) =
1√
ŝ0

=
s0√

s0s2 − s2
1

=
1

b0
=

1√
s0

d1(z)
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and ê1, ê2, . . . , êp−1 follow from the equations (see (4.5)):





a1ê0 + b1ê1 = zê0

b1ê0 + a2ê1 + b2ê2 = zê1

b2ê1 + a3ê2 + b3ê3 = zê2

...
bp−2êp−3 + ap−1êp−2 + bp−1êp−1 = zêp−2.

Since these equation coincide with (4.13) we obtain

êj = c dj+1, j = 0, 1, . . . , p − 1.

The constant c can be determined from the initial condition ê0 = c d1, which gives
c = 1/

√
s0. Therefore

êj(z) =
1√
s0

dj+1(z), j = 0, 1, . . . , p − 1,

and (4.17) is proved.

For the polynomials of second kind d̂j we obtain in a similar way

d̂0(z) = 0, d̂1(z) =

√
ŝ0

b̂0

,





â1d̂1 + b̂1d̂2 = zd̂1

b̂1d̂1 + â2d̂2 + b̂2d̂3 = zd̂2

b̂2d̂2 + â3d̂3 + b̂3d̂4 = zd̂3

...

b̂p−3d̂p−3 + âp−2d̂p−2 + b̂p−2d̂p−1 = zd̂p−2

(one equation less than in (4.13)). These equations can be written as





a2d̂1 + b2d̂2 = zd̂1

b2d̂1 + a3d̂2 + b3d̂3 = zd̂2

b3d̂2 + a4d̂3 + b4d̂4 = zd̂3

...

bp−2d̂p−3 + ap−1d̂p−2 + bp−1d̂p−1 = zd̂p−2.

(4.21)

The last p − 3 equations of this system coincide with the last p − 3 equations of

(4.8) and (4.13). Therefore a solution vector (d̂j)
p−1
1 of the last p− 3 equations of

(4.21) can be obtained as a linear combination of the solution vectors (ej)
p
2 and

(dj)
p
2 of the last p − 3 equations in (4.8) and (4.13):

d̂j = γej+1 + δdj+1, j = 1, 2, . . . , p − 1.
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Now γ, δ have to be found such that these relations hold also for j = 0 with

d̂0(z) = 0, and for j = 1 with d̂1(z) =

√
ŝ0

b̂0

. Since d̂0(z) = 0 it follows that

0 = γe1(z) + δd1(z) = γ
z − a0

b0

1√
s0

+ δ

√
s0

b0
= γ

z − s1

s0

b0

1√
s0

+ δ

√
s0

b0
,

which is satisfied for

γ = −ε, δ = ε

(
z

s0
− s1

s2
0

)
.

The relation d̂1(z) =

√
ŝ0

b̂0

implies

d̂1(z) = ε

(
−e2(z) +

(
z

s0
− a0

s0

)
d2(z)

)

= ε

(
− (z − a1)e1 − b0e0

b1
+

z − a0

s0

(z − a1)d1

b1

)

= ε


−

(z − a1)
z − a0

b0

1√
s0

− b0
1√
s0

b1
+

z − a0

s0

(z − a1)

√
s0

b0

b1




= ε
b0

b1
√

s0
=

√
ŝ0

b̂0

=
b0

b̂0

,

hence

ε =
b1

b̂0

√
s0.

According to (4.20) we find ε =
√

s0. This proves the first equality in (4.18). The
remaining equalities follow from (4.10) and the second equality in (4.9). �

3. In this subsection we give a second proof of Theorem 4.2 using asymptotic
expansions, see [1, (1.34b)]: Assume that n ∈ N0 satisfies (1p) for some p ≥ 2,
that is,

n(z) = −s0

z
− s1

z2
− · · · − s2p

z2p+1
+ o

(
1

z2p+1

)
,

then

− dp(z)

ep(z)
= −s0

z
− s1

z2
− · · · − s2p−1

z2p
+ O

(
1

z2p+1

)
. (4.22)

According to [1, the second to last formula on p. 22] the function −dp/ep is a
Nevanlinna function and by [13, Bemerkung 1.11] there is a real number t2p such
that −dp/ep has the asymptotic expansion

− dp(z)

ep(z)
= −s0

z
− s1

z2
− · · · − s2p−1

z2p
− t2p

z2p+1
+ o

(
1

z2p+1

)
. (4.23)
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By Lemma 4.1,

n̂(z) = − ŝ0

z
− ŝ1

z2
− · · · − ŝ2p−2

z2p−1
+ o

(
1

z2p−1

)
,

and hence by (4.22)

− d̂p−1(z)

êp−1(z)
= − ŝ0

z
− ŝ1

z2
− · · · − ŝ2p−3

z2p−2
+ O

(
1

z2p−1

)
. (4.24)

By Lemma 4.1, the Schur transform of the function −dp/ep in (4.23) has the
asymptotic expansion

(̂
−dp

ep

)
(z) =

s0ep(z)

dp(z)
− z +

s1

s0
=:

r(z)

dp(z)

= − ŝ0

z
− ŝ1

z2
− · · · − ŝ2p−3

z2p−2
− t̂2p−2

z2p−1
+ o

(
1

z2p−1

)
, (4.25)

= − ŝ0

z
− ŝ1

z2
− · · · − ŝ2p−3

z2p−2
+ O

(
1

z2p−1

)
,

where only the number t̂2p−2 depends on t2p according to formula (4.16). Here the
polynomial r, defined via the second equality sign, is given by

r(z) = s0ep(z) −
(

z − s1

s0

)
dp(z)

and its degree is ≤ p. Comparing (4.24) with (4.25), we find that

r(z)

dp(z)
− d̂p−1(z)

êp−1(z)
= O

(
1

z2p−1

)
.

The degree of the product dp êp−1 equals 2p − 2 and hence

r(z)

dp(z)
=

d̂p−1(z)

êp−1(z)
,

which readily implies that for some number k 6= 0

êp−1(z) = kdp(z), d̂p−1(z) = k

(
s0ep(z) −

(
z − s1

s0

)
dp(z)

)
. (4.26)

We claim k = 1/
√

s0. With the proof of the claim the proof of the theorem is
complete.

To prove the claim we note that the leading coefficient of the polynomial ek

is equal to
√

Dk−1/Dk and that, by (4.5),
√

Dk

Dk+1
=

1

bk

√
Dk−1

Dk

.

Hence √
Dp−1

Dp

=
1

bp−1
· · · 1

b1

√
D0

D1
=

1

bp−1
· · · 1

b1

1

b0

1√
s0

,
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and, similarly, because of (4.20) and (4.19),
√

D̂p−2

D̂p−1

=
1

b̂p−2

· · · 1

b̂0

1√
ŝ0

=
1

bp−1
· · · 1

b1

1

b0
.

From (4.26) we obtain

1

k

√
D̂p−2

D̂p−1

= lim
z→∞

dp(z)

zp−1
= s0 lim

z→∞

ep(z)

zp
= s0

√
Dp−1

Dp

,

that is,

√
s0

1

bp−1
· · · 1

b1

1

b0
=

1

k

1

bp−1
· · · 1

b1

1

b0
.

Therefore, k = 1/
√

s0 and the claim holds.

5. Reduction via a p-dimensional subspace

Let again n ∈ N0 with the property (1p) be given. We decompose the space H(n)
with Hp = span {t0, t1, . . . , tp−1} as follows:

H(n) = Hp ⊕H′
p. (5.1)

Then, evidently, ep ∈ H′
p. The corresponding matrix representation of the operator

A is

A =

(
A0 B̃
B D

)
(5.2)

with A0 given by the Jacobi matrix A0 from (4.7),

B = bp−1( · , ep−1)ep, B̃ = bp−1( · , ep)ep−1.

The operator A0 is bounded and self-adjoint in Hp, and D is self-adjoint (possibly
unbounded) in H′

p. In the following theorem we express the function n by means
of the entries of the matrix in (5.2). We set

a00(z) :=
(
(A0 − z)−1u, u

)
, a11(z) := ((A0 − z)−1ep−1, ep−1),

a(z) := ((A0 − z)−1u, ep−1) = ((A0 − z)−1ep−1, u), (5.3)

and

ř(z) :=

∣∣∣∣
a00(z) a(z)
a(z) a11(z)

∣∣∣∣ .

The last equality in (5.3) follows from a(z∗)∗ = a(z), in fact, by Cramer’s rule,
a(z) =

√
s0/(a0 − z) if p = 1 and a(z) = (−1)p−1√s0 b0 . . . bp−2/det (A0 − z) if

p ≥ 2.
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Theorem 5.1. Suppose that the function n ∈ N0 satisfies for some p ≥ 1 one of

the assumptions (jp), j = 1, 2, 3, and that Dp 6= 0, see (4.3). Then

n(z) =
ř(z)np(z) − a00(z)

a11(z)np(z) − 1
, (5.4)

where np(z) := ((D − z)−1up, up) with up := bp−1ep. The function np belongs to

N0 and satisfies the assumption (j0). Moreover, for k ≥ 1 we have

u ∈ domAp+k ⇐⇒ up ∈ domDk, (5.5)

and n satisfies the assumption (jp+k) if and only if np satisfies the assumption

(jk).

Remark 5.2. If the operator representation (3.2) of n is n(z) =
(
(A−z)−1u, u

)
with

the space H = H(n), then, according to Theorem 3.1, the operator representation
of n1 = n̂ is given by

H′
1 = H⊖ {u}, A1 = PH′

1
A|H′

1
, u1 =

PH′

1
Au

‖u‖ ,

the operator representation of n2 = n̂1 by

H′
2 = H⊖ {u, Au}, A2 = PH′

2
A|H′

2
, u2 =

PH′

2
A2u

‖u‖‖u1‖
,

and, via induction, the operator representation of np = n̂p−1 by

H′
p = H⊖ {u, Au, · · · , Ap−1u}, Ap = PH′

p
A|H′

p
, up =

PH′

p
Apu

‖u‖‖u1‖ . . . ‖up−1‖
.

Note that ‖u‖ =
√

s0 and, by Theorem 5.1, ‖uj‖ = bj−1, j = 1, . . . , p.

Proof of Theorem 5.1. With the matrix (5.2), the equation (A− z)x = u becomes

(A0 − z)x1 + bp−1(x2, ep)ep−1 = u, (5.6)

bp−1(x1, ep−1)ep + (D − z)x2 = 0,

where x is written as x =
(
x1 x2

)⊤
according to the decomposition (5.1). The

second equation implies

x2 = −bp−1(x1, ep−1)(D − z)−1ep.

We insert this into (5.6) and apply (A0 − z)−1 to get

x1 = (A0 − z)−1u + b2
p−1(x1, ep−1)

(
(D − z)−1ep, ep

)
(A0 − z)−1ep−1. (5.7)

Now take the inner product with ep−1 and solve the obtained equation for (x1, ep−1):

(x1, ep−1) =

(
(A0 − z)−1u, ep−1

)

1 − b2
p−1 ((D − z)−1ep, ep) ((A0 − z)−1ep−1, ep−1)

.

Observing that n(z) =
(
(A − z)−1u, u

)
= (x1, u), the relation (5.7) yields (5.4).

To prove (5.5), denote by P ′ the orthogonal projection onto H′
p in (5.1). If k = 1,

then u ∈ domAp+1 is equivalent to v := Apu ∈ domA. Since D is the only
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entry in the matrix of (5.2) which is possibly unbounded (B and B̃ are even one–
dimensional), v ∈ A is equivalent to the fact that the non-zero component P ′v,
which is a multiple of ep, belongs to domD. If k = 2 we observe that

A2 =

(
A2

0 + B̃B A0B̃ + B̃D

BA0 + DB BB̃ + D2

)
. (5.8)

Since ep ∈ domD the operators DB and B̃D and hence all the entries in the
matrix representation of A2 except possibly D2 are bounded. Now u ∈ domAp+2

is equivalent to v = Apu ∈ domA2, and hence, by (5.8), P ′v ∈ domD2. The claim
for arbitrary k follows by induction.

The last claim of the theorem for j = 1 follows immediately from (5.5) and
the first equivalence in (4.1). For j = 2, 3 we also use the equivalences in (4.1). A
simple calculation yields

(A − z)−1 =

(
R11(z) R12(z)

R12(z
∗)∗ R22(z)

)
(5.9)

with

R11(z) = S1(z)−1, R12(z) = −bp−1

(
(D − z)−1 · , ep

)
S1(z)−1ep−1,

R22(z) = (D − z)−1 + b2
p−1

(
S1(z)−1ep−1, ep−1

) (
(D − z)−1 · , ep

)
(D − z)−1ep,

where S1(z) := A0 − z− b2
p−1

(
(D − z)−1ep, ep

)
( · , ep−1)ep−1, the first Schur com-

plement. It is easy to see that for f, g ∈ Hp we have

lim
y→∞

iy
(
S1(iy)−1f, g

)
= −(f, g).

Now we observe the relation

A(A − z)−1 =

(
A0R11(z) + B̃R12(z

∗)∗ A0R12(z) + B̃R22(z)

BR11(z) + DR12(z
∗)∗ BR12(z) + DR22(z)

)

and the fact that for z = iy, y → ∞, for example zA0R11(z) = zA0S1(z) has a
limit,

zA0R12(z) = −zbp−1

(
(D − z)−1·, ep

)
A0S1(z)−1ep−1 = o(1),

zDR22(z) = zD(D−z)−1 + zb2
p−1

(
S1(z)−1ep, ep

)(
(D−z)−1·, ep

)
D(D−z)−1ep

= zD(D − z)−1 + o(1),

etc. These relations imply for example with v = Ap+ku

z
(
A(A − z)−1v, v

)
= z

(
D(D − z)−1P ′v, P ′v

)
+ O(1).

Since P ′v ∈ span{ep, ep+1, . . . , ep+k}, ep, ep+1, . . . , ep+k−1 ∈ domD and hence

z
(
D(D − z)−1x′, x′

)
= O(1) for x′ ∈ span{ep, ep+1, . . . , ep+k},

and since P ′v has a non-zero component in the direction of ep+k the claim follows
from (4.1). �
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6. Representation of the transformation matrix by orthogonal
polynomials

The 2 × 2 matrix function which generates the fractional linear transformation
(5.4) we denote in the following by V :

V (z) :=
1

a(z)

(
ř(z) −a00(z)

a11(z) −1

)
(6.1)

In this section we express V by the polynomials of first and second kind. To
this end, the elements of Hp are considered as column vectors with respect to the
basis e0, e1, . . . , ep−1.

First we solve the equation (A0 − z)x = ep−1 in Hp. With the Jacobi matrix
A0 from (4.7) this equation becomes

A0x − zx = ep−1,

or

(A0 − z)




ξ1

...
ξp−1

ξp


 =




0
...
0
1


 .

According to the definition of the orthogonal polynomials of first kind, the solution
of the system with the 1 in the last component of the vector on the right hand side
replaced by −bp−1ep(z) is the vector with components e0(z), e1(z), . . . , ep−1(z). It
follows that

ξj = − ej−1(z)

bp−1ep(z)
, j = 1, 2, . . . , p,

and hence

(
(A0 − z)−1ep−1, ep−1

)
= (x, ep−1) = − ep−1(z)

bp−1ep(z)
,

(
(A0 − z)−1ep−1, e0

)
= (x, e0) = − e0(z)

bp−1ep(z)
,

that is,

a11(z) = − ep−1(z)

bp−1ep(z)
, a(z) = − 1

bp−1ep(z)
. (6.2)

Next we solve the equation (A0 − z)x = u =
√

s0 e0. As above, in matrix form it
becomes

(A0 − z)




ξ1

ξ2

...
ξp


 =




√
s0

0
...
0


 .
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According to the definition of the polynomials of the second kind and because of
b0 d1(z) =

√
s0 we have

(A0 − z)




0
d1(z)

...
dp−2(z)
dp−1(z)




=




√
s0

0
...
0

−bp−1dp(z)




=




√
s0

0
...
0
0




− bp−1dp(z)




0
0
...
0
1




.

It follows that



ξ1

ξ2

...
ξp


 = (A0 − z)−1




√
s0

0
...
0


 =




0
d1(z)

...
dp−1(z)


− dp(z)

ep(z)




e0(z)
e1(z)

...
ep−1(z)




and hence

a00(z) =
(
(A0 − z)−1u, u

)
= −dp(z)

ep(z)
. (6.3)

Inserting the expressions from (6.2) and (6.3) into (5.4) and observing the relation
(4.15) we find that V can be written as

V (z) =

(
−dp−1(z) −bp−1dp(z)
ep−1(z) bp−1ep(z)

)
,

and hence we obtain the following theorem.

Theorem 6.1. If, for some integer p ≥ 1, the Nevanlinna function n satisfies one

of the assumptions (jp), j ∈ {1, 2, 3}, and Dp 6= 0 then the following relation holds:

n(z) =
(
(A − z)−1u, u

)
= −dp−1(z)np(z) + bp−1dp(z)

ep−1(z)np(z) + bp−1ep(z)
, (6.4)

where np(z) =
(
(D − z)−1up, up

)
, up = bp−1ep.

Remark 6.2. (i) Using (4.12) and (4.6) we obtain from (6.4) with p = 1:

n(z) = − s0

z − s1

s0
+ n1(z)

and hence, because n1(z) = o(1), n1 is the Schur transform of n: n1 = n̂. For p ≥ 2
we obtain from (6.4) and (6.4) with p replaced by p− 1 and with the help of (4.5)
and (4.15) that

np−1(z) = − b2
p−2

z − ap−1 + np(z)
,

hence

np−1(z) = −b2
p−2

z
− ap−1b

2
p−2

z2
+ o

(
1

z2

)
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and np = n̂p−1.
(ii) From (6.4), (4.17), (4.18), and (4.20), we obtain

n̂(z) = − s0

n(z)
− (z − a0) = − d̂p−2(z)np(z) + b̂p−2d̂p−1(z)

êp−2(z)np(z) + b̂p−2êp−1(z)
.

Since, according to Theorem 4.2, d̂k and êk are the polynomials of first and second
kind associated with n̂ , this formula implies that the function np is the p − 1-st
Schur transform of n̂.

The 2 × 2 matrix polynomial V , which generates the fractional linear trans-
formation (6.4), has the property

detV (z) = bp−1 (dp(z)ep−1(z) − ep(z)dp−1(z)) = 1.

With

J =

(
0 1
−1 0

)
,

V is J-unitary on the real line, that is,

V (z)JV (z)∗ = J z ∈ R.

Therefore V (z)−1 exists for all z ∈ C and we can form the polynomial matrix
function

V0(z) = V (z)V (0)−1 =

(
p
(p)
1 (z) p

(p)
0 (z)

q
(p)
1 (z) q

(p)
0 (z)

)

with

p
(p)
0 (z) = bp−1

(
dp(z) dp−1(0) − dp−1(z) dp(0)

)
,

p
(p)
1 (z) = bp−1 (dp(z) ep−1(0) − dp−1(z) ep(0)) ,

q
(p)
0 (z) = bp−1 (ep−1(z) dp(0) − ep(z) dp−1(0)) ,

q
(p)
1 (z) = bp−1 (ep−1(z) ep(0) − ep(z) ep−1(0)) .

A straightforward calculation leads to the relation

n(z) ≡
(
(A − z)−1u, u

)
=

p
(p)
1 (z)hp(z) + p

(p)
0 (z)

q
(p)
1 (z)hp(z) + q

(p)
0 (z)

,

where

hp(z) = −dp−1(0)np(z) + bp−1dp(0)

ep−1(0)np(z) + bp−1ep(0)
. (6.5)
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With relation (4.14), the following formulas can be obtained, compare [1, I.2.4]:

p
(p)
0 (z) = z

p−1∑

k=0

dk(z) dk(0),

p
(p)
1 (z) = 1 + z

p−1∑

k=0

dk(z) ek(0),

q
(p)
0 (z) = 1 − z

p−1∑

k=0

ek(z) dk(0),

q
(p)
1 (z) = −z

p−1∑

k=0

ek(z) ek(0).

7. Transformation by means of a u–resolvent matrix

Given again a function n ∈ N0 with one of the properties (jp), j = 1, 2, 3. Besides
the decomposition (5.1) we consider the decomposition

H(n) = Hp+1 ⊕H′′, Hp+1 = span{Hp, ep} = span{e0, e1, . . . , ep},
and in the space Hp+1 the restriction

S := A|Hp
=

(
A0

B

)
.

This restriction is a non-densely defined symmetric operator in Hp+1 with defect
index (1, 1), and, evidently, the given function n =

(
(A − z)−1u, u

)
is one of the

u–resolvents of this operator S. Hence n can be represented as a fractional linear
transformation of some function g ∈ N0 by means of the u–resolvent matrix W =
(wkℓ)

2
k,ℓ=1 of S:

n(z) =
w11(z)g(z) + w12(z)

w21(z)g(z) + w22(z)
. (7.1)

Such a u–resolvent matrix W can easily be calculated. To this end we fix
a self-adjoint extension of S in Hp+1, which means that we fix some γ ∈ R in
the right lower corner of the matrix representation of S with respect to the basis
e0, e1, . . . , ep of Hp+1. Denote this matrix or self-adjoint extension of S in Hp+1

by A0,γ :

A0,γ =

(
A0 B̃
B γ

)
.

According to [14] this u–resolvent matrix W is given by the formula

W (z) =
1

(u, ϕ(z∗))

(
(Rγ

zu, u) (Rγ
zu, u)Q(z)− (u, ϕ(z∗))(ϕ(z), u)

1 Q(z)

)
, (7.2)
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where Rγ
z = (A0,γ − z)−1, ϕ(z) is a defect function of S corresponding to the self-

adjoint extension A0,γ , and Q is the corresponding Q–function. An easy calculation
yields

(Rγ
z u, u) =

(
(A0,γ − z)−1u, u

)
= a00(z) − b2

p−1a(z)2

∆(z)
,

where

∆(z) = z − γ + b2
p−1a11(z).

Since S = A0,γ |Hp
and hence, in terms of linear relations,

S∗ = {{x, A0,γx + λep} |x ∈ Hp+1, λ ∈ C},
it is easy to check that for ϕ(z) with {ϕ(z), zϕ(z)} ∈ S∗ we can choose

ϕ(z) = (A0,γ − z)−1ep =
−1

∆(z)

(
−bp−1(A0 − z)−1ep−1

1

)
,

and then the Q–function, which is the solution (up to a real additive constant) of
the equation

Q(z) − Q(ζ)∗

z − ζ∗
= (ϕ(z), ϕ(ζ)),

becomes

Q(z) =
−1

∆(z)
.

Inserting these expressions into W from (7.2) we find

W (z) =
∆(z)

bp−1a(z)




a00(z) − b2
p−1

a(z)2

∆(z)
−a00(z)

∆(z)

1
−1

∆(z)


 . (7.3)

Observe that W (z) is J-unitary on the real line. Next we establish the connection
between the matrix functions V from (6.1) and W from (7.2), in fact we find a
simple expression for V −1W . We have

V (z)−1 =
1

a(z)

(
−1 a00(z)

−a11(z) a00(z)a11(z) − a(z)2

)
.

Multiplying this matrix from the right by W (z) from (7.3) we obtain

V (z)−1W (z) = −



−bp−1 0
z − γ

bp−1
− 1

bp−1


 . (7.4)

Theorem 7.1. If the function n ∈ N0 has one of the properties (jp), j ∈ {1, 2, 3},
then the matrix functions V from (6.1) and W from (7.2) are connected by the
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relation (7.4). Therefore for the Nevanlinna functions np in (5.4) and g in (7.1)
the following relation holds:

np(z) = −
b2
p−1

z − γ − 1
g(z)

. (7.5)

If 1/g(z) = o(1), then formula (7.5) implies that np admits the asymptotic
expansion

np(z) = −b2
p−1

z
− γb2

p−1

z2
+ o

(
1

z2

)

and −1/g is its Schur transform: −1/g = n̂p. Hence the number γ, which defines
the self-adjoint extension of S, corresponds to the number ap.

Remark 7.2. If instead of a self-adjoint operator extension A0,γ of S we choose the
(multi-valued) self-adjoint relation extension of S:

A0,∞ = S + span {0, ep} = A0 + span {0, ep},
then we obtain

R∞
z = (A0,∞ − z)−1 = (A0 − z)−1P,

where P is the orthogonal projection in Hp+1 onto Hp,

ϕ(z) =

(
−bp−1(A0 − z)−1ep−1

1

)
, Q(z) = z + b2

p−1a11(z),

so that

W (z) = − 1

b2
p−1a(z)

(
a00(z) a00(z + b2

p−1a11(z)) − b2
p−1a(z)2

1 z + b2
p−1a11(z)

)
,

V (z)−1W (z) =




0 −bp−1

1

bp−1

z

bp−1


 ,

and instead of (7.5) we have

np(z) = − b2
p−1

z + g(z)
.

Thus if g(z) = o(1), then np has the asymptotic expansion

np(z) = −b2
p−1

z
+ o

(
1

z2

)

and g is the Schur transform of np: g = n̂p.

A more explicit form of the resolvent matrix W from (7.2) can be obtained
following [14] and [2]. To this end we decompose the space Hp+1 as

Hp+1 = ran(S − z) ∔ spanu, z ∈ C, a(z) 6= 0,
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(∔ stands for direct sum) and denote for y ∈ Hp+1 by P(z)y the coefficient of u
in the corresponding decomposition of y:

y = (S − z)x + (P(z)y)u (7.6)

with some x ∈ domS = Hp. Further, define Q(z) y =
(
(S − z)−1(y − (P(z)y)u), u

)
.

Then, according to [14], the resolvent matrix can be chosen to be

W 0(z) = I2 + z

(
Q(z)
−P(z)

)
(Q(0)∗ − P(0)∗)J, J =

(
0 1
−1 0

)
. (7.7)

We derive an explicit expression for W 0(z) := W (z)W (0)−1, following [2]. To
this end, for the vectors and operators we use matrix representations with respect
to the basis t0(= u), t1, . . . , tp. Recall that Sp is the Gram matrix associated with
this basis. We denote by S the (p + 1)×(p + 1)–matrix

S =




0 · · · · · · · · · 0
1 0 · · · · · · 0

0 1 0 · · ·
...

...
. . .

. . .
...

0 · · · 0 1 0




and by e the first column in the (p + 1)×(p + 1) identity matrix. Then S and u
correspond to S |Cp∔{0} and e. First we apply the operator (I − zS

∗)−1 to (7.6)
and observe the relation

e∗(I − zS
∗)−1(S − z)x = 0, x ∈ C

p ∔ {0}.
It follows that

e∗(I − zS
∗)−1y = (P(z)y) e∗(I − zS

∗)−1u = P(z)y. (7.8)

Further, observing that e∗Sp =
(
s0 s1 · · · sp

)
we obtain

Q(z)y =
(
(S − z)−1(y − (P(z)y)u), u

)

= e∗Sp

(
(S − z)−1y − (S − z)−1e

(
e∗(I − zS

∗)−1y
))

=
(
s0 s1 · · · sp

) (
(S − z)−1(I − zS

∗) − (S − z)−1ee∗
)
(I − zS

∗)−1y

=
(
s0 s1 · · · sp

)
S

∗(I − zS
∗)−1y

=
(
0 s0 s1 · · · sp−1

)
(I − zS

∗)−1y,

where for the second last equality sign we have used that

(S − z)−1(I − zS
∗) − (S − z)−1ee∗ = S

∗.

Together with (7.8) we find
(

Q(z)
−P(z)

)
=

(
0 s0 s1 · · · sp−1

−1 0 0 · · · 0

)
(I − zS

∗)
−1

,
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and (7.7) becomes

W 0(z) = I2 + z

(
0 s0 · · · sp−1

−1 0 · · · 0

)
(I − zS

∗)
−1

S−1
p




0 −1
s0 0
...

...
sp−1 0




(
0 1
−1 0

)
.

8. Reproducing kernel spaces: reduction via resolvent invariant
subspaces

In this section we start from the operator representation of the Nevanlinna function
n in the corresponding reproducing kernel space L(n) with kernel

Ln(z, w) =
n(z) − n(w)∗

z − w∗
, z, ζ ∈ C \ R,

see Section 2, (3). The operator A is introduced via its resolvent (A − z)−1 which
is the difference-quotient operator Rz defined by

(Rzf)(ζ) =
f(ζ) − f(z)

ζ − z
, f ∈ L(n). (8.1)

If n satisfies one of the assumptions (jp), then, by [3, Lemma 5.1], the functions

f0(ζ) = n(ζ), f1(ζ) = ζn(ζ) + s0, . . . , fp(ζ) = ζpn(ζ) + ζp−1s0 + · · · + sp−1

all belong to L(n) and

〈fk, fj〉L(n) = sj+k, j, k = 0, 1, . . . , p. (8.2)

In particular, u := n ∈ L(n), and by the reproducing property of the kernel Ln we
have

n(z) = ((A − z)−1u, u)L(n).

By UJ we denote the class of all 2 × 2 matrix polynomials Θ which are J-
unitary on R and for which the kernel

KΘ(z, w) =
J − Θ(z)JΘ(w)∗

z − w∗

is non-negative. The reproducing kernel Hilbert space with this kernel will be
denoted by H(Θ); its elements are 2-vector functions. The matrix polynomials V
and W considered in the previous sections belong to UJ : this follows from the
Christoffel–Darboux formulas (4.14) for V and from (7.4) for W . Note that if Θ
belongs to UJ , then detΘ(z) ≡ c, where is c is a unimodular complex number,
because the determinant detΘ(z) is a non-vanishing polynomial in z.

The following theorem was proved in [4, Theorem 8.1], even in an indefinite
setting.
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Theorem 8.1. Let n ∈ N0 and suppose that there exists a matrix polynomial

Θ =

(
a b
c d

)
∈ Uℓ

such that the mapping

u −→
(
1 −n

)
u

is an isometry from H(Θ) into L(n). Define the function ň by

n(z) =
a(z)ň(z) + b(z)

c(z)ň(z) + d(z)
.

Then the following statements hold.

(i) ň is Nevanlinna function.

(ii) The mapping g 7→ f :

f(ζ) =
(
a(ζ) − n(ζ)c(ζ)

)
g(ζ)

is an isometry from L(ň) into L(n).

(iii) We have

L(n) =
(
1 −n

)
H(Θ) ⊕ (a − nc)L(ň)

and the mapping

W : L(n) ∋ f 7→
(
u

g

)
∈
(
H(Θ)
L(ň)

)
,

where f,u, and g are connected by the relation

f(ζ) =
(
1 −n(ζ)

)
u(ζ) +

(
a(ζ) − n(ζ)c(ζ)

)
g(ζ),

is a unitary mapping from L(n) onto H(Θ) ⊕ L(ň).

(iv) The mapping WRzW
∗ is of the form

WRzW
∗ =

(
R11(z) R12(z)
R21(z) R22(z)

)
:

(
P(Θ)
L(ň)

)
→
(
P(Θ)
L(ň)

)
, (8.3)
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with

R11(z) = Rz − 1

k(z)
(RzΘ)( · )

(
ň(z)

1

)(
0 1

)
Ez

= Rz − KΘ( · , z∗)
(

1
−n(z)

)(
0 1

)
Ez ,

R12(z) =
1

k(z)
(RzΘ)( · )

(
d(z)

−c(z)

)
Ez

= −(a(z) − n(z)c(z))KΘ( · , z∗)
(

0
1

)
Ez,

R21(z) = − 1

k(z)
(Rzň)( · )

(
0 1

)
Ez

= − 1

k(z)
Lň( · , z∗)

(
0 1

)
Ez ,

R22(z) = Rz − c(z)

k(z)
(Rzň)( · )Ez

= Rz − c(z)

k(z)
Lň( · , z∗)Ez,

where Rz is the difference-quotient operator, Ez is the operator of evaluation

at the point z on any reproducing kernel space, and

k(z) = c(z)ň(z) + d(z) =
detΘ(z)

a(z) − n(z)c(z)
.

We mention that formula (8.3) corresponds to the relation (5.9) above.

A space of functions is called resolvent-invariant if it is invariant under the
difference-quotient operator Rz as defined in (8.1). In the following lemma, with
a resolvent-invariant non-degenerate invariant subspace of a certain inner product
space a 2 × 2 matrix function is associated.

Lemma 8.2. Let M be a finite dimensional resolvent–invariant space of 2–vector
polynomials endowed with an inner product 〈 · , · 〉 such that

〈Rzf, g〉 − 〈f, Rwg〉 − (z − w∗)〈Rzf, Rwg〉 = g(w)∗Jf(z), (8.4)

and let that M1 be a resolvent–invariant non-degenerate subspace of M. Then

there exists a Θ1 ∈ UJ such that

(i) M1 = H(Θ1),

(ii) M = H(Θ1) ⊕ Θ1N where N = Θ−1
1 M⊥

1 is a resolvent–invariant space of

2-vector polynomials, for which the relation (8.4) holds if equipped with the

inner product

(Θ−1
1 f, Θ−1

1 g)N = 〈f, g〉, f, g ∈ M1
⊥.
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Relation (8.4) is often called de Branges identity, see [7] and, for further
references, [11]. That N consists of 2–vector polynomials is due to fact that
Θ−1

1 (z) = −JΘ1(z
∗)∗J is a matrix polynomial. The other claims of the lemma

follow from [6, Theorem 3.1].
Now we formulate and prove Theorem 6.1 again in the context of reproducing

kernel spaces.

Theorem 8.3. If, for some integer p ≥ 1, the Nevanlinna function n satisfies one

of the assumptions (jp), j ∈ {1, 2, 3}, and Dp 6= 0 then the following relation holds:

n(z) = −dp−1(z)ňp(z) + bp−1dp(z)

ep−1(z)ňp(z) + bp−1ep(z)
. (8.5)

where ňp is a Nevanlinna function such that ňp ∈ L(ňp), and

ňp(z) = (Rzňp, ňp)L(ňp). (8.6)

Comparing (6.4) and (8.5) we find that ňp(z) = np(z), the p-th element in
the sequence obtained by applying the Schur transformation p times starting with
n.

Proof of Theorem 8.3. Let M be the linear space spanned by the p + 1 2-vector
functions

f0(ζ) =

(
0
−1

)
, f1(ζ) =

(
s0

−ζ

)
, . . . , fp(ζ) =

(
s0ζ

p−1 + · · · + sp−1

−ζp

)
(8.7)

and equipped with the inner product which makes the map u 7→
(
1 −n

)
u an

isometry from M into L(n), see (8.2). Note that if n has the integral representation
(2.2), the elements of M are of the form

(∫∞

−∞
(Rζf)(t) dσ(t)

−f(ζ)

)
,

where f is a polynomial of degree ≤ p. Indeed, it suffices to show this for the basis
elements of M: If f(ζ) = ζj , then

Rζf(t) =
ζj − tj

ζ − t
= ζj−1 + tζj−2 + · · · + tj−2ζ + tj−1,

and hence, on account of (1.3),
∫ ∞

−∞

(Rζf)(t) dσ(t) = s0ζ
j−1 + s1ζ

j−2 + · · · + sp−2ζ + sp−1.

It follows that M is also spanned by the polynomial vectors
(
−dj

ej

)
, j = 0, 1, . . . , p,

where ej and dj are the polynomials of first and second kind associated with n,
see (4.4) and (4.10).



35

Let Mp be the space spanned by the first p of the 2-vector functions in (8.7).
Since Sp−1 from (4.2) is a positive matrix, the space Mp is non-degenerate and

M = Mp ⊕ span

(
−dp

ep

)
.

As both M and Mp are resolvent-invariant spaces, by Lemma 8.2 we have that
for some Θ1 ∈ UJ , which is normalized by Θ1(0) = I2 (and hence detΘ(z) ≡ 1),

Mp = H(Θ1), M = H(Θ1) ⊕ Θ1N .

Here N is a one-dimensional resolvent-invariant space, which, when equipped
with the induced inner product, satisfies the de Branges identity and therefore

is spanned by a constant J–neutral vector
(
α β

)⊤
such that

Θ1(z)

(
α
β

)
= bp−1

(
−dp(z)
ep(z)

)
.

For λ ∈ R denote by Cλ the constant J–unitary matrix

Cλ =





(
λα α

−α−∗ + λβ β

)
, α 6= 0,

(
β−∗ 0
λβ β

)
, α = 0.

Then there exists a λ such that

Θ(z) := Θ1(z)Cλ =

(
a(z) −bp−1dp(z)
c(z) bp−1ep(z)

)
,

where a and c are polynomials such that deg c < deg ep = p. The inclusion

R0

(
a
c

)
∈ H(Θ) = H(Θ1) = Mp

implies that deg a < p − 1. From detΘ(z) ≡ 1 it follows that x = a and y = c are
polynomial solutions of the equation

x(z)ep(z) + y(z)dp(z) =
1

bp−1
.

Since all polynomial solutions of this equation are given by

x(z) = a(z) − s(z)dp(z), y(z) = c(z) + s(z)ep(z)

with some polynomial s, the solutions x = a and y = c have minimal degrees and
because of that they are unique. Observing (4.15), we find

a(z) = −dp−1(z), c(z) = ep−1(z).

Hence

Θ(z) =

(
−dp−1(z) −bp−1dp(z)
ep−1(z) bp−1ep(z)

)
= V (z)

and Cλ = Θ(0) is the coefficient matrix of the fractional linear transformation
(6.5).
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Define the function ňp by (8.5). Then, according to Theorem 8.1, it is a Nevan-
linna function. We show that ňp ∈ L(ňp). The function fp(ζ) =

(
1 −n(ζ)

)
fp(ζ)

belongs to L(n) and, according to Theorem 8.1 (iii), it can be written as
(
1 −n(ζ)

)
fp(ζ) =

(
1 −n(ζ)

)
up(ζ) + (a(ζ) − n(ζ)c(ζ))gp(ζ)

with up ∈ Mp, gp ∈ L(ňp), and the two summands on the righthand side are
orthogonal. This orthogonality and the isometry of the mapping

(
1 −n

)
imply

that (0 6=) fp − up ∈ M⊥
p and hence there is a non-zero complex number γ such

that

fp − up = γ

(
−dp(ζ)
ep(ζ)

)
.

Therefore

(a(ζ) − n(ζ)c(ζ))gp(ζ) = −γ (dp(ζ) + ep(ζ)n(ζ))

and

gp(ζ) = −γ
ep(ζ)n(ζ) + dp(ζ)

−n(ζ) c(ζ) + a(ζ)
= − γ

bp−1
ňp(ζ).

Hence ňp ∈ L(ňp). Equality (8.6) follows from item (3) in Section 3. �
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