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ON FREE STOCHASTIC PROCESSES AND THEIR

DERIVATIVES

DANIEL ALPAY, PALLE JORGENSEN, AND GUY SALOMON

Abstract. We study a family of free stochastic processes whose
covariance kernels K may be derived as a transform of a tempered
measure σ. These processes arise, for example, in consideration
non-commutative analysis involving free probability. Hence our
use of semi-circle distributions, as opposed to Gaussians. In this
setting we find an orthonormal bases in the corresponding non-
commutative L2 of sample-space. We define a stochastic integral
for our family of free processes.
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1. Introduction

A number of recent papers have advanced our understanding of Gauss-
ian processes specified by general classes of covariance kernels of the
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form

(1.1) K(t, s) =

∫

R

e−iut − 1

u

eius − 1

u
dσ(u),

where σ is a positive measure satisfying:

(1.2)

∫

R

dσ(u)

u2 + 1
<∞,

For this family of Gaussian processes, typically having singular gener-
ating measures, we established in [2, 3, 5, 4] a versatile extension of Ito
calculus to allow for measures not considered in the traditional family
of Gaussian processes. We developed an Ito calculus and detailed fac-
torizations for Gaussian processes whose covariance kernels K may be
derived as a transform of a tempered measure σ (see (1.4) and (1.5)
below). This class in turn includes fractional Brownian motion; so, in
particular, processes whose time-increments are not independent (when
the associated Hurst parameter is different from 1

2
). We stress that our

family of processes allow a rich class when the generating measure σ
for the covariance kernel is singular. In our earlier work on this, we
introduce a new harmonic analysis which in turn is the basis for our
proof of Ito representations for these processes. In the case when σ is
a singular measure, these Ito representations go beyond what is known
in earlier studies.

Our analysis of Gaussian processes associated to covariance kernels
with singular measure σ is motivated in turn by a renewed interest in
a harmonic analysis of Fourier decompositions in L2(σ) for the case
when σ is singular and arises from a scale of selfsimilarities; see for
example [21, 10, 14, 23]. In order to obtain a more versatile harmonic
analysis in the study factorizations, one is naturally led to considera-
tion of independence, but for a host of problems [13, 22], rather than
the traditional notion of independence, one needs a related but differ-
ent notion, that of free independence. The latter arise, for example, in
consideration of free products and free probability. In this context, we
must therefore use semi-circle distributions, as opposed to Gaussians.
As a result, the possibility for orthonormal bases in non-commutative
L2 of sample space entails entirely different algorithms. We resolve this
problem in our Theorem 4.2 below. In the remaining part of our paper
(sections 7-10), we extend part of the theory of stationary increment
processes in the Gaussian case, to the free case of semi-circle free dis-
tributions.
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In the present paper we construct free stochastic processes with covari-
ance (1.1) and consider associated stochastic integrals. We also con-
sider generalized stochastic processes indexed by the Schwartz space S

of rapidly decreasing smooth functions and with covariance function

K(s1, s2) =

∫

R

ŝ1(u)ŝ2(u)du, s1, s2 ∈ S,

where now dσ is subject to

(1.3)

∫

R

dσ(u)

(u2 + 1)N
<∞

for some N ∈ N0.

Since Fock spaces play an important role in the arguments we begin
by setting some notation. Given a real Hilbert space H, we denote
the associated symmetric and full Fock spaces by Γsym(H) and Γ(H)
respectively. These spaces provide the setting for the white noise space
and associated problems in the commutative and non-commutative set-
ting respectively.

Recall that Gaussian stochastic processes indexed by the real numbers
and with covariance functions of the form (1.1) play an important role
in stochastic analysis. The kernel (1.1) can be rewritten as

(1.4) K(t, s) = r(t) + r(s)− r(t− s),

where

(1.5) r(t) = −
∫

R

(
e−itu − 1− itu

u2 + 1

)
dσ(u)

u2
.

The case r(t) = |t| corresponds to the Brownian motion, and more
generally r(t) = |t|2H (where H ∈ (0, 1))leads to the fractional Brow-
nian motion. Such stochastic processes were constructed using Hida’s
white noise space setting in [2] for a family of absolutely continuous
dσ and in [5] for singular dσ’s. For the convenience of the reader and
for purpose of comparison we will recall in the sequel the white noise
space setting. We mention that the white noise space can be built using
Minlos theorem or defined as the symmetric Fock space associated to
the Lebesgue space L2(R, dx). An important point in the white noise
space approach is to view the white noise space W as part of a Gelfand
triple

(1.6) S1 ⊂ Γsym(L2(R, dx)) ⊂ S−1,
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where S1 is the Kondratiev space of stochastic test functions and S−1

is the Kondratiev space of stochastic distributions. The processes have
(for appropriate classes of functions r) derivatives which belong to S−1.
This fact, together with the algebra structure of S−1, allows to define
stochastic integrals. See [3].

Let H be a separable real Hilbert space. Let H⊗0 = CΩ be a fixed
one-dimensional Hilbert space and

H⊗n = H⊗H⊗ · · · ⊗ H︸ ︷︷ ︸
n tensor factors

.

Then,

(1.7) Γ(H) = ⊕∞
n=0H⊗n = CΩ+H +H⊗H + · · · ,

with norm

(1.8) ‖
∞∑

n=0

fn‖2 =
∞∑

n=0

‖fn‖2, where fn ∈ H⊗n,

and
Γsym(H) = ⊕∞

n=0H⊗n
sym,

where H⊗n
sym is the closed subspace in H⊗n consisting of all symmetric

n-tensors. By general theory, see [18], there is a Gelfand triple

E ⊂ Γsym(H) ⊂ E ′,

a sigma-algebra of subsets in E ′ (the sigma-algebra generated by cylin-
ders) and a Gaussian measure P on E ′ such that for h ∈ H, 〈·, h〉
extends to a random variable h̃ on E ′, with

E(h̃) = 0, and E(h̃1h̃2) = 〈h1, h2〉
for all h1, h2 ∈ H, where E denotes mathematical expectation:

E(F ) =

∫

E′

FdP

for random variables F on E ′.

It is our aim to develop a free stochastic calculus which parallels the
above, but nonetheless has quite different features. As in the papers
[11, 12] (where the free Brownian motion is defined) we replace the
white noise space by the full Fock space associated to L2(R, dx). The
new point in the present paper is to view this space (called the non
commutative white noise space) as a part of a Gelfand triple analogous
to (1.6), where S1 and S−1 are replaced by their non commutative

versions S̃1 and S̃−1 respectively. See [8] and Section 5. This approach
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allows to define the derivatives of the free stochastic processes. More
precisely, we build (for certain classes of dσ’s) a type II1 von-Neumann
algebra Mσ ⊂ L(Γsym(L2(R, dx))) (with trace τ) such that

τ(Z∗
σ(s)Zσ(t)) = K(t, s)

where Zσ(t) ∈ Mσ. When dσ is the Lebesgue measure, Zσ is the non-
commutative Brownian motion introduced in [11, 12].

An important result is that (still for certain classes of dσ’s) we can dif-
ferentiate the function t 7→ Zσ(t), and its values are continuous linear

operators from S̃1 to S̃−1. In the case of the non-commutative Brow-
nian motion, the derivative is the non-commutative counterpart of the

white noise. The special structure of S̃−1 (see inequality (5.1)) allows

to define stochastic integrals in terms of limit of Riemann sums of S̃−1-
valued functions.

The paper consists of seven sections besides the introduction. Sections
2,3 and 5 are of a survey type. The new results appear in Sections
4, 6, 7, and 8. The commutative setting is briefly outlined in Section
2. Section 3 considers the non-commutative setting. We introduce
there in particular a L2-space associated to a certain non-hyperfinite
von Neumann algebra associated to a real Hilbert space. We give an
orthonormal basis of this space in terms of the Tchebycheff polyno-
mials of the second kind in Section 4. Section 5 surveys the recently
developped theory of non commutative stochastic distributions. Non-
commutative processes with correlation functions of the type (1.1) are
constructed in Section 6. Their derivatives are considered in Section
7, as well as stochastic integration, and the case of general tempered

spectral measures. The algebra S̃−1 is an example in a family of similar
algebras, all of them carrying an inequality of the form (5.1). The last
section briefly discusses this general case.

2. Commutative white noise space

In the commutative setting, a realization of Γsym(H) can be given using
the Bochner-Minlos theorem. Assume that H is infinite dimensional
and separable, let ξ1, ξ2, . . . be an orthogonal basis of H, and consider
the Schwartz space SH of elements

∑∞
n=1 xnξn (where the x1, x2, . . .

are real numbers) such that

∞∑

n=1

x2nn
2p <∞, p = 0, 1, 2, . . .



6 DANIEL ALPAY, PALLE JORGENSEN, AND GUY SALOMON

The space SH is nuclear and the Bochner-Minlos theorem (see for in-
stance [20, Appendix A]) implies the existence of a Borel measure P
on its strong dual such that

e−
‖h‖2

2 =

∫

S′
H

ei〈h,w〉dP (w), h ∈ SH.

It follows from this expression that the map which to h ∈ SH associates
the following Gaussian random variable

Qh(w) = w(h)

extends to an isometry (still denoted by Qh) from h ∈ H into Qh ∈
L2(S ′

H, dP ), and we have

(2.1) 〈Qh, Qk〉 = 〈h, k〉
Before giving an orthogormal basis of L2(S ′

H,B, P ) we recall a defini-
tion.

Definition 2.1. The Hermite polynomials {hk}k∈N0 are defined by

hk(u)
def.
= (−1)ke

u2

2
dk

duk
(e−

u2

2 ), k = 0, 1, 2 . . . .

An orthogonal basis of L2(S ′
H,B, P ) is given by the functions

(2.2) Hα(w) =
∞∏

k=1

hαk
(Qξk(w)).

In this expression, ξ1, ξ2, . . . , denote some pre-assigned orthonornal ba-
sis of H and α = (α1, α2, . . .) belongs to the set ℓ of sequences of
elements of N0 indexed by N and with all entries αk are equal to 0 at
the exception of at most a finite number of k’s. We have

W = Γ◦(H) =

{∑

α∈ℓ
fαHα :

∑

α∈ℓ
|fα|2α! <∞

}
= L2(ℓ, ν).

The Wick product is defined by

Hα ◦Hβ = Hα+β, α, β ∈ ℓ,

and thus is a Cauchy product as in [15]. In terms of the basis, we
obtain that

f ◦ g =
(∑

α∈ℓ
fαHα

)
◦
(∑

α∈ℓ
gαHα

)
=
∑

α∈ℓ

(∑

β≤α

fβgα−β

)
Hα,

whenever it makes sense. The space W is not closed under the Wick
product. This motivates the introduction of two spaces, the Kondratiev
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space S1 of stochastic test functions, and the Kondratiev space S−1 of
stochastic distributions, which closed under the Wick product. These
spaces are defined as

S1 =

{∑

α∈ℓ
fαHα :

∑

α∈ℓ
|fα|2(2N)αp(α!)2 <∞ for all p ∈ N

}
,

where (2N)α = 2α1 · 4α2 · 6α3 · · · , and S−1 is defined as:

S−1 =

{∑

α∈ℓ
fαHα :

∑

α∈ℓ
|fα|2(2N)−αp <∞ for some p ∈ N

}

=
⋃

p

L2(ℓ, µ−p),

where µ−p is the point measure defined by

µ−p(α) = (2N)−αp.

Together with the white noise space these two spaces form the Gelfand
triple (S1,W,S−1), which plays a key role in the stochastic analysis
in [20], and in the theory of stochastic linear systems and stochastic
integration developped in [6, 2, 3, 5, 1]. The reason of the importance of
this triple is the following result, see [20], which allows to work locally
in a Hilbert space setting.

Theorem 2.2 (V̊age, 1996). In the space S−1 =
⋃

p L
2(ℓ, µ−p) it holds

that

(2.3) ‖f ◦ g‖q ≤ Aq−p‖f‖p‖g‖q,
(where ‖ · ‖p denotes the norm of L2(ℓ, µ−p)) for any q ≥ p + 2, and
for any f ∈ L2(ℓ, µ−p), g ∈ L2(ℓ, µ−q), and where the number Aq−p is
independent of f and g and is equal to

Aq−p =

(∑

α∈ℓ
(2N)−α(q−p)

) 1
2

.

We refer to [20, p. 118] for a proof of the fact that Aq−p < ∞. The
result is due to V̊age; see [25]. See also [7] for a more general result.

3. The Fock space Γ(H)

This section is essentially of a review nature, and deals with the Fock
space Γ(H) associated to a real Hilbert space H. For more informa-
tion we refer in particular to [27, 26, 17]. The source [24] is also very
didactic.
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We will use the results for the case where L2(dσ)), where dσ is a posi-
tive Borel measure σ on R such that (1.3) holds, and consider the full
Fock space Γσ = Γ(L2(dσ)).

For h ∈ H we define ℓh to be the operator

ℓh(f) = h⊗ f, f ∈ Γ(H),

f and Th = ℓh + ℓ∗h. We denote by MH the von Neumann algebra
generated by the operators Th, when h runs through H. It is a II1
type von Neumann algebra, and we denote by τ its trace. We have

(3.1) τ(f) = 〈Ω, fΩ〉Γ(H), f ∈ MH,

where Ω is the vacuum vector in (1.7), and, more generally

(3.2) τ(g∗f) = 〈Ω, g∗fΩ〉Γσ
= 〈gΩ, fΩ〉Γσ

, f, g ∈ MH,

where ′′ means double commutant.

Proposition 3.1. It holds that

(3.3) τ(T ∗
hTk) = 〈ThΩ, TkΩ〉 = 〈h, k〉.

We note that (3.3) is the counterpart of (2.1).

Proof of Proposition 3.1. For n ∈ N and h1, . . . , hn ∈ H
ℓ∗hℓk(h1 ⊗ h2 ⊗ · · · ⊗ hn) = ℓ∗h(k ⊗ h1 ⊗ h2 ⊗ · · · ⊗ hn)

= 〈h, k〉h1 ⊗ h2 ⊗ · · · ⊗ hn,

and so

(3.4) ℓ∗hℓk = 〈h, k〉I.
Thus,

τ(T ∗
hTk) = 〈ℓh(Ω) + ℓ∗h(Ω), ℓk(Ω) + ℓ∗k(Ω)〉Γ(H) = 〈ℓh(Ω), ℓk(Ω)〉Γ(H)

since, by definition of the annihilation operator, we have

ℓ∗h(Ω) = ℓ∗k(Ω) = 0,

and where Ω is the vacuum vector, see (1.7), Hence

τ(T ∗
hTk) = 〈ℓh(Ω), ℓk(Ω)〉Γ(H) = 〈h, k〉

in view of (3.4). �

The following two propositions will be needed, and are well known; see
[26, Theorem 2.6.2, pp.17-18].
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Proposition 3.2. Let h ∈ Γ(H) of norm 1. Then 2Th has as its
distribution a semi-circle law C0,1.

Proposition 3.3. Let H1,H2, . . . be pairwise orthogonal Hilbert sub-
spaces of H. Then, the family of algebras MH1,MH2, . . . is free.

Proposition 3.4. Let Ω be the empty state of Γ(H). The map f 7→ fΩ
is one-to-one from the von Neumann algebra MH onto Γ(H).

Proof. Let f ∈ MH be such that fΩ = 0. Then, 〈fΩ, fΩ〉 = 0. But

〈fΩ, fΩ〉 = τ(f ∗f) = 0,

and so f ∗f = 0 (since τ is faithful), and hence f = 0 . �

Corollary 3.5. There is a natural unitary isomorphism

(3.5) L2(MH, τ)
W−→ Γ(H),

intertwining the respective actions, whereM is a copy of a non-hyperfinite
II1 factor, and where τ denotes the trace on M.

Proof. Using (1.8) one checks that for real valued continuous functions
ϕ and ψ, and h, k ∈ HR,

〈ϕ(Th)Ω, ψ(Tk)Ω〉 = 〈ψ(Tk)Ω, ϕ(Th)Ω〉.
As a result the state 〈Ω, ·Ω〉 extends to a faithful trace on the von-
Neumann algebraMH generated by {Th, h ∈ HR}, i.e.,MH = {Th, h ∈ HR}′′.
Hence MH is a II1-factor. It is known (see [26]) to be non-hyperfinite.

It then follows from the uniqueness in the GNS construction that W ,
defined by

W (X) = XΩ, X ∈ MH,

extends to an isometric isomorphism with the properties stated in the
corollary. �

4. An orthonormal basis

The Tchebycheff polynomials of the second kind are an orthonormal
basis of the space L2([−1, 1],

√
1− x2dx). They are defined by

(4.1) Un(x) =
sin(n + 1)θ

sin θ
, with x = cos θ.

We have

(4.2)
2

π

∫ 1

−1

Un(x)Um(x)
√
1− x2dx = δmn,

where δmn is Kronecker’s symbol.
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We now prove a presumably known result on these polynomials.

Lemma 4.1. Assume m ≥ n. Then the following linearization formula
holds:

(4.3) UmUn =
n∑

k=0

Um−n+2k

Proof. We assume m ≥ n. We have:

ei(m+1)θ − e−i(m+1)θ

eiθ − e−iθ
· e

i(n+1)θ − e−i(n+1)θ

eiθ − e−iθ
=

=
ei(m+n+2)θ − ei(m−n)θ + e−i(m+n+2)θ − e−i(m−n)θ

(eiθ − e−iθ)2

=
1

(eiθ − e−iθ)
×

×
(
ei(m−n)θ

e−iθ
·
(
ei(2n+2)θ − 1

e2iθ − 1

)
+
e−i(m−n)θ

eiθ
·
(
e−i(2n+2)θ − 1

1− e−2iθ

))

=
1

(eiθ − e−iθ)
×

×
(
ei(m−n+1)θ

(
1 + e2iθ + · · ·+ (e2iθ)n

)
−

−e−i(m−n+1)θ
(
1 + e−2iθ + · · ·+ (e−2iθ)n

))

=
n∑

k=0

sin(m− n + 1 + 2k)θ

sin θ
,

and hence the result.
�

We denote by L2(τ) the closure of MH with respect to τ . In Theorem
4.2 we present an orthonormal basis of L2(τ). In (4.5) in the state-

ment the indices are as follows: The space ℓ̃ denotes the free monoid

generated by N0. We write an element of 1 6= α ∈ ℓ̃ as

(4.4) α = zα1
i1
zα2
i2

· · · zαk

ik
,

where α1, i1, . . . ∈ N and i1, . . . ik ∈ N0 are such that

i1 6= i2 6= · · · 6= ik−1 6= ik.

Theorem 4.2. Let h0, h1, h2, . . . be any orthonormal basis of L2(dσ).
The functions

(4.5) Uα = Uα1(Thi1
) · · ·Uαk

(Thik
),



11

where α = zα1
i1
zα2
i2

· · · zαk

ik
∈ ℓ̃ form an orthonormal basis for L2(τ).

Proof. Let h0, h1, . . . be an orthonormal basis of a real Hilbert space
HR. From [26, 27] we know that the family of non-commutative random
variables Th0, Th1, . . . is free, i.e. for any choice of i1, i2, . . . in N0 such
that i1 6= i2 6= i3 6= . . . and measurable functions ψ1, ψ2, . . . are fixed
such that

τ(ψj(Thij
)) = 0, j = 1, . . . , n,

it follows that

τ(ψ1(Thi1
)ψ2(Thi2

) · · ·ψn(Thin
)) = 0.

The functions U0, U1, . . . in (4.1) form an orthonormal basis (ONB) in
L2(dµ), where dµ is the semi-circle law

(4.6) dµ(x) =
2

π
1(−1,1)(x)

√
1− x2.

Hence we have

τ(Um(Ti)) = 0 for all m ∈ N and i ∈ N,

τ(Um(Ti)
2) =

∫

R

U2
m(x)dµ(x) = 1, for all m,n ∈ N0,

We will be using these basic rules in our verification below of the or-
thonormality properties of the system (4.5) of non-commutative ran-
dom variables. Consider

β = z
β1

j1
z
β2

j2
· · · zβm

jm
.

We shall show by induction on |β| = β1 + · · · + βm, that for every
α = zα1

i1
zα2
i2

· · · zαn

in
,

τ(U∗
βUα) = τ(Uβm

(Tjm) · · ·Uβ1(Tj1)Uα1(Ti1) · · ·Uαn
(Tin)) = δα,β.

|β| = 0 implies β = 1. So,

τ(U∗
βUα) = τ(Uα1(Ti1) · · ·Uαn

(Tin)),

which is zero, by freeness, for every α 6= 1, and 1 for α = 1.

Now assume that |β| > 0, and consider the following cases.

Case 1: i1 6= j1. Then it follows from [26, Theorem 2.6.2, (iii)] that
τ(U∗

βUα) = 0.
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Case 2: i1 = j1 and α1 6= β1. Without the loss of generality we may
assume that β1 > α1. By Lemma 4.1,

τ(U∗
βUα) =

α1∑

k=0

τ(Uβm
(Tjm) · · ·Uβ2(Tj2)Uβ1−α1+2k(Ti1)Uα2(Ti2) · · ·Uαn

(Tin))

=

α1∑

k=0

τ(U∗
β′Uα′

k
),

where α′
k = z

β1−α1+2k
i1

zα2
i2

· · · zαn

in
and β ′ = z

β2

j2
· · · zβm

jm
. Since for every

0 ≤ k ≤ α1 we have α′
k 6= βk (because i1 = j1 6= j2), by the induction

assumption we obtain τ(U∗
βUα) = 0.

Case 3: i1 = j1 and α1 = β1. Then again by Lemma 4.1,

τ(U∗
βUα) =

α1∑

k=0

τ(Uβm
(Tjm) · · ·Uβ2(Tj2)U2k(Ti1)Uα2(Ti2) · · ·Uαn

(Tin))

=

α1∑

k=0

τ(U∗
β′Uα′

k
),

where α′
k = z2ki1 z

α2
i2

· · · zαn

in
and β ′ = z

β2

j2
· · · zβm

jm
.

Since for every 0 < k ≤ α1 we have α′
k 6= βk (because i1 = j1 6= j2), by

the induction assumption we obtain

τ(U∗
βUα) = τ(U∗

β′Uα′
0
) = τ(Uβm

(Tjm) · · ·Uβ2(Tj2)Uα2(Ti2) · · ·Uαn
(Tin)) = δα′

0,β
′,

which is equal to δα,β , since we assume i1 = j1 and α1 = β1.

Thus,

τ(U∗
βUα) = δα,β.

The proof that the Uα form a complete set of functions relies on Corol-
lary 3.5 as follows. Let F ∈ L2(τ) such that

〈Uα, F 〉τ = 0, ∀ α
On account of Corollary 3.5 we may decompose

(4.7) F =

∞∑

k=0

Fk, where, Fk ∈ H⊗k.

Hence for every α with |α| = k,

〈Uα1(Thi1
) · · ·Uαn

(Thin
) , Fk〉H⊗k = 0

for all appropriate choices of indices. Using Lemma 4.1, the othog-
onality property (4.2), and the fact that the Thij

have a semi-circle
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SC0,1-distribution, we get that

〈G , Fk〉H⊗k = 0, ∀ G ∈ H⊗k,

and so Fk = 0, and so F = 0.
�

5. A non-commutative space of stochastic distributions

We here discuss the non-commutative Kondratiev space of stochastic
distributions, which was introduced in [8].
For any p ∈ Z, we denote

Hp =

{ ∞∑

n=1

fnen :

∞∑

n=1

|fn|2(2n)p <∞
}

∼= ℓ2(N, (2n)p),

where the (en) are the Hermite functions. We note that

· · · ⊆ H2 ⊆ H1 ⊆ H0 ⊆ H−1 ⊆ H−2 ⊆ · · · ,
and that

⋂
pHp is the Schwartz space of rapidly decreasing complex

smooth functions and
⋃

p Hp is its dual, namely the Schwartz space of
complex tempered distributions. Let

S̃1 =
⋂

p∈N
Γ(Hp), W̃ = Γ(H0), and S̃−1 =

⋃

p∈N
Γ(H−p).

Definition 5.1. The space S̃1 is called the Kondratiev space of non

commutative stochastic test functions, and S̃−1 is called the Kondratiev
space of non commutative stochastic stochastic distributions.

The following is [8, Theorem 4.1, p. 2314].

Theorem 5.2. For any q ≥ p + 2 and for any f ∈ Γ(H−p) and g ∈
Γ(H−q) we have

(5.1) ‖f ⊗ g‖q ≤ Bq−p‖f‖p‖g‖q and ‖g ⊗ f‖q ≤ Bq−p‖f‖p‖g‖q
where ‖·‖p is the norm associated to Γ(H−p) and where (with ζ denoting
Riemann’s zeta function)

B2
q−p =

∑

α∈ℓ̃

(2N)−α(q−p) =
1

1− 2−(q−p)ζ(q − p)
,

Recall that Γ(H0) is the non commutative white noise space. We have
the Gelfand triple

S̃1 ⊂ Γ(H0) ⊂ S̃−1.
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Proposition 5.3. The algebraic vector space

∞⊕

n=0

(S ′)
⊗n

=

∞⊕

n=0

(⋃

p∈N
H−p

)⊗n

is included in S̃−1 =
⋃

p∈N Γ(H−p).

Proof. Since
⋃

p∈N Γ(H−p) is an algebra, it suffices to show that
⋃

p∈N
H−p ⊆

⋃

p∈N
Γ(H−p),

which is obvious since for any p ∈ N

H−p ⊆ Γ(H−p).

�

Proposition 5.4. Let f ∈ S ′. Then for any q, such that ‖f‖H−q
<∞,

we have that

‖ℓf‖B(Γ(H−q)) = ‖f‖H−q
and ‖ℓ∗f‖B(Γ(Hq)) = ‖f‖H−q

.

Proof. We note that

‖ℓfu‖2Γ(H−q)
=

(∑

n∈N
|fn|2(2n)−q

)
·


∑

α∈ℓ̃

|uα|2(2N)−αq


 = ‖f‖2H−q

‖u‖2Γ(H−q)
.

�

As a consequence of Proposition 5.4 we have:

Corollary 5.5. For every f ∈ S ′, with ‖f‖H−q
< ∞, the operator

Xf = ℓf + ℓ∗f is bounded from Γ(Hq) into Γ(H−q), and

(5.2) ‖Xfu‖Γ(H−q) ≤ (2‖f‖H−p
)‖u‖Γ(Hq).

In particular, the operator Xf is continuous from S̃1 into S̃1. If f ∈
L2(R, dx) = H−0, then Xf is continuous from W̃ into W̃.

Proof. Indeed, we have

‖Xfu‖Γ(H−q) ≤ ‖ℓfu‖Γ(H−q) + ‖ℓ∗fu‖Γ(H−q)

≤ ‖ℓfu‖Γ(H−q) + ‖ℓ∗fu‖Γ(Hq)

= ‖f‖H−p
‖u‖Γ(H−q) + ‖f‖H−p

‖u‖Γ(Hq)

= ‖f‖H−p
‖u‖Γ(Hq) + ‖f‖H−p

‖u‖Γ(Hq)

= (2‖f‖H−p
)‖u‖Γ(Hq).

In particular, if f ∈ H0, then Xf : Γ(H0) → Γ(H0) is continuous.
Now, if f ∈

⋃
p∈NH−p, then since the embedding ι :

⋂
Γ(Hp) →֒ Γ(Hp)
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is continuous (and hence so its dual ι∗ : Γ(H−p) →֒
⋃
Γ(H−p) ), we

obtain that as a
⋂
Γ(Hp) →

⋃
Γ(H−p) map, Xf is continuous. �

Remark 5.6. In comparing Gelfand triples and generalized functions
based on the Gaussian distributions to the free semi-circle case one
should keep in mind that both the standard N(0, 1) Gaussian variable
X1 and the standard semi-circle random variable T1 have zero odd
moments, and one has

Esc(T
2n
1 ) =

1

2n(n+ 1)
EGauss(X

2n
1 )

for the even moments. Indeed, standard computations give

Esc(T
2n
1 ) =

1

2n(n+ 1)

(
2n
n

)
=

1

2n(n+ 1)
(2n− 1)!!,

and EGauss(X
2n
1 ) = (2n− 1)!!. The corresponding generating functions

are

gsc(t) = Esc(e
tT1) =

I1(t)

t
,

where I1 is the modified Bessel function, while

gGauss(t) = EGauss(e
tX1) = e

t2

2 .

6. Non commutative stationary increment stochastic
processes

Proposition 6.1. Let t 7→ ft be a L2(R, dx)-valued function. It defines
a free stochastic process Yt = Xft such that

τ(Y ∗
s Yt) =

∫

R

ft(u)fs(u)du.

Proof. In the proof we set ℓft = ℓt to ease the notation. We have:

τ(Y ∗
s Yt)) = 〈ℓs(Ω) + ℓ∗s(Ω), ℓt(Ω) + ℓ∗t (Ω)〉Γ

= 〈ℓs(Ω), ℓt(Ω)〉Γ + 〈ℓs(Ω), ℓ∗t (Ω)〉Γ+
+ 〈ℓ∗s(Ω), ℓt(Ω)〉Γ + 〈ℓ∗s(Ω), ℓ∗t (Ω)〉Γ

= 〈ℓs(Ω), ℓt(Ω)〉Γ,
since

ℓ∗t (Ω) = ℓ∗s(Ω) = 0.

Hence we have

τ(Y ∗
s Yt) = 〈ℓs(Ω), ℓt(Ω)〉Γ =

∫

R

ft(u)fs(u)du.

�
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Following [2] we choose ft of a special form as follows. First consider a
measurable positive function m subject to

(6.1)

∫

R

m(u)du

1 + u2
<∞.

We define the operator Tm, defined via

(6.2) T̂mf(u)
def.
=
√
m(u)f̂(u),

where f̂ denotes the Fourier transform of f :

f̂(u) =

∫

R

e−iuxf(x)dx.

The domain of Tm is

domTm =

{
f ∈ L2(R, dx)

∫

R

m(u)|f̂(u)|2du <∞
}
,

and Tm is Hermitian on its domain; see [2]:

(6.3) 〈Tmf, g〉 = 〈f, Tmg〉, ∀f, g ∈ domTm.

In view of (6.1) we have that 1[0,t] belongs to the domain of the operator
Tm.

Definition 6.2. We set

(6.4) Xm(t) = ℓTm1[0,t]
+ ℓ∗Tm1[0,t]

, t ∈ R.

The case m(u) = 1 in the above definition corresponds to the non-
commutative Brownian motion. More generally, the case m(u) =
|u|1−2H corresponds (up to some multiplicative constant) to the case of
the non-commutative fractional Brownian motion with Hurst parame-
ter H .

Proposition 6.3.

(6.5) τ(Xm(s)
∗Xm(t)) =

1

2π

∫

R

e−itu − 1

u

eius − 1

u
m(u)du, t, s ∈ R.

Proof. We take ft = Tm1[0,t] = ℓt in Proposition 6.1 and obtain

τ(Xm(s)
∗Xm(t)) = 〈ℓt(Ω), ℓs(Ω)〉Γ

= 〈Tm1[0,t], Tm1[0,s]〉L2(R)

and, using Plancherel’s equality

=
1

2π

∫

R

T̂m1[0,t](u) ̂(Tm1[0,s])(u)
∗du

=
1

2π

∫

R

e−itu − 1

u

eius − 1

u
m(u)du,
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since the Fourier transform of 1[0,t] is the function u 7→ e−iut−1
−iu

. �

7. The derivative of certain operator-valued processes

We first recall a result from [2]. In the proof we make use of the
following bounds on the Hermite functions, whose definition we now
recall.

Definition 7.1. The Hermite functions are defined by

h̃k(u)
def.
=
hk−1(

√
2u)e−

u2

2

π
1
4

√
(k − 1)!

, k = 1, 2, . . . ,

where h0, h1 . . . denote the Hermite polynomials (see Definition 2.1 for
the latter).

The Hermite functions {h̃k}k∈N form an orthonormal basis of L2(R, dx).
In Proposition 7.2 below we study the action of the operator Tm on Her-
mite functions.

The following proposition outlines the main properties of the Hermite
functions which we will need; see [9, p. 349] and the references therein.

Proposition 7.2. [9, p. 349]
of L2(R). Furthermore,

(7.1) |h̃k(u)| ≤
{
C if |u| ≤ 2

√
k,

Ce−γu2
if |u| > 2

√
k,

where C and γ > 0 are constants independent of k. Finally, the Fourier
transform of the Hermite function is given by

(7.2)
̂̃
hk(u) =

√
2π(−1)k−1h̃k(u).

Proposition 7.3. (see [2, Proposition 3.7 and Lemma 3.8]) Assume
that the function m satisfies a bound of the type:

(7.3) m(t) ≤
{
K |t|−b |t| ≤ 1,

K|t|2N |t| > 1,

where b < 2, N ∈ N0 and 0 < K <∞. Then,

(7.4) |(Tmhn)(t)| ≤ C1n
N+1

2 + C2,

and

(7.5) |(Tmhn)(t)− (Tmhn)(s)| ≤ |t− s|
(
D1n

N+2
2 +D2

)
,
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where C1, C2, D1, D2 are non-negative constants independent of n.

Theorem 7.4. Letm be as in Proposition 7.3. There exists a L(S̃1, S̃−1)-
valued function t 7→ Wm(t) such that

(7.6)
d

dt
Xm(t)f = Wm(t)f, ∀f ∈ S̃1.

in the topology of S̃−1.

Proof. We divide the proof in a number of steps. In the proof, recall

that S̃−1 = ∪p∈NΓ(H−p) and that an element f =
∑

α∈ℓ̃ fαUα ∈ S̃1 =
∩p∈NΓ(H−p) if and only if

(7.7)
∑

α∈ℓ̃

|fα|2(2N)αp <∞, ∀p ∈ N.

STEP 1: The function t 7→ Tm1[0,t] is differentiable inH−p for p ≥ N+3
and then

(7.8)
d

dt
Tm1[0,t] =

∞∑

n=1

〈Tm1[0,t], hn〉hn,

where 〈·, ·〉 denotes the inner product in L2(R, dx).

Using (6.3) we can write:

αn(t)
def.
= 〈Tm1[0,t], hn〉 =

∫ t

0

(Tmhn)(u)du.

Using the estimate (7.4) we obtain that

(7.9)
∑

n∈N
|α′

n(t)|2(2n)−p ≤
∑

n∈N
(C1n

N+1
2 + C2)

2(2n)−p <∞

for p ≥ N + 3, and so the right hand side of (7.8) belongs to H−p for
such p’s. Furthermore, with h 6= 0 ∈ R we have

Tm1[0,t+h] − Tm1[0,t]
h

−
∞∑

n=1

〈Tm1[0,t], hn〉hn =

=

∞∑

n=1

〈Tm1[0,t+h] − Tm1[0,t]
h

− Tm1[0,t], hn〉hn

=
∞∑

n=1

∫ t+h

t
(Tmhn(u)− Tmhn(t))du

h
hn
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Using (7.5) we see that

‖
∞∑

n=1

∫ t+h

t
(Tmhn(u)− Tmhn(t))du

h
hn‖2−p ≤ K|t− s|2

where

K =
∞∑

n=1

(
D1n

N+2
2 +D2

)2
(2n)−p <∞

for p ≥ N + 3 and hence the result.

STEP 2: Let wm(t) =
d
dt
Tm1[0,t] Then Xwm(t) is a continuous operator

from S̃1 into S̃−1.

This is a direct application of Corollary 5.5.

STEP 3: (7.6) holds.

We have for f ∈ S̃1 and h 6= 0 ∈ R,
(
Xm(t+ h)−Xm(t)

h
−Xwm(t)

)
f = X∆(t,h)f

where

∆(t, h) =

∞∑

n=1

∫ t+h

t
(Tmhn(u)− Tmhn(t))du

h
hn

and so using (7.5) and Corollary 5.5

‖
(
Xm(t+ h)−Xm(t)

h
−Xwm(t)

)
f‖−p = ‖X∆(t,h)f‖−p

≤ K|t− s|
for some finite constant K.

STEP 4: The operator Wm(t) =
d
dt
(ℓt + ℓ∗t ) is continuous from S̃1 into

S̃−1.

This follows from Corollary 5.5 �

As a corollary we have the following construction. Let dσ be a positive
measure on the real line such that (1.3) is in force. Then, see [4],
there exists a continuous operator Q from the Schwartz space S into
L2(R, dx) such that

∫

R

ϕ̂(u)ψ̂(u)dσ(u) =

∫

R

(Qϕ)(t)Qψ(t)dt
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Proposition 7.5. The free process Xσ(ϕ) = TQϕ satisfies

τ(Xσ(ψ)
∗Xσ(ϕ)) =

∫

R

ϕ̂(u)ψ̂(u)dσ(u).

The inequality (5.1) allows to compute stochastic integrals as limit of
Riemann sums. The following theorem is the non-commutative coun-
terpart of [3, Theorem 5.1, p. 411].

Theorem 7.6. Let f ∈ S̃1 and t 7→ Y (t), t ∈ [a, b], be a S̃−1-valued

function continuous in the strong topology of S̃−1. closed interval [a, b].
Then, there exists p ∈ N (which depends on f) such that the function
t 7→ Y (t)⊗ (Wm(t)f) is Γ(H−p)-valued, and the integral

∫ b

a

Y (u)⊗Wmf(u)

computed as a limit of Riemann sums converges in the form of Γ(H−p).

The proof is the same as in [3], the key being the existence in the
presence setting of inequality (5.1).

8. The use of other Gelfand triples

In Proposition 7.3 the bounds (7.3) played a key role. Without them,
it may happen that, in the notation of the proof of the proposition

∑

n∈N
|α′

n(t)|2(2n)−p = ∞, ∀p ∈ N

and then the arguments fail there. This suggest that other Gelfand

triples could be used. The Gelfand triple (S̃1,Γ(L2(R, dx), S̃−1) belongs
to a general family of Gelfand triples in which an inequality of the
form (5.1) holds. This is explained in the paper [8], on which is based
the present section. We take a separable Hilbert K0, with orthonormal
basis e1, e2, . . .. Furthermore, let (an)n∈N be a sequence of real numbers
greater than or equal to 1. For any p ∈ Z, we denote

Kp =

{ ∞∑

n=1

fnen :

∞∑

n=1

|fn|2apn <∞
}

∼= L2(N, apn).

The case an = 2n corresponds to the non-commutative Kondratiev
space. The choice an = 2n is of special importance, as will appear in
the sequel of this section.

For q ≥ p we denote by Tq,p the embedding Kq →֒ Kp. It satisfies

‖Tq,pa−q/2
n en‖p = a−(q−p)/2

n ‖a−p/2
n en‖q,



21

and hence

‖Tq,p‖HS =

√∑

n∈N
a
−(q−p)
n ,

where ‖ · ‖HS denotes the Hilbert-Schmidt norm. The space
⋃

p∈NK−p

is nuclear if and only for any p there is some q > p such that ‖Tq,p‖HS <

∞, that is, if and only if there exists some d > 0 such that
∑

n∈N a
−d
n

converges. We note that in this case, d can be chosen so that
∑

n∈N
a−d
n < 1.

We call the smallest integer d which satisfy this inequality the index of⋃
p∈NK−p. In the statement Γ(Tq,p) denotes the embedding Γ(K−p) →֒

Γ(K−p), and ‖ · ‖p denotes the norm associated to Γ(K−p).

Theorem 8.1. If
⋃

p∈NK−p is nuclear of index d, then
⋃

p∈N Γ(K−p) is
nuclear and has the property that

‖f ⊗ g‖q ≤ ‖Γ(Tq,p)‖HS‖f‖p‖g‖q and ‖g ⊗ f‖q ≤ ‖Γ(Tq,p)‖HS‖f‖p‖g‖q
for all q ≥ p + d, and where

‖Γ(Tq,p)‖HS =
∑

α∈ℓ̃

a
−α(q−p)
N

=
1√

1−
∑

n∈N a
−(q−p)
n

.

Let us now take an = 2n. Then,

Kp =

{ ∞∑

n=1

fnen :
∞∑

n=1

|fn|22np <∞
}

∼= ℓ2(N, 2np).

We proved in [7] that
⋂

p Kp is the space G of entire holomorphic func-
tions satisfing

∫∫

C

|f(z)|2 e
1−2−p

1+2−p x
2− 1+2−p

1−2−p y
2

dxdy <∞ for all p ∈ N.

In the argument we recall that use is made of the following formula
(see [19])

(8.1)
∞∑

n=0

hn(u)hn(v)s
n = π− 1

2 (1− s2)−
1
2 e

− (1+s2)(u2+v2)−4svu

2(1−s2) .

The space G contains strictly the Schwartz space S . We will work in
the setting of the Gelfand triple defined by

G̃1 =
⋂

p∈N
Γ(Kp), W̃ = Γ(K0), and G̃−1 =

⋃

p∈N
Γ(K−p).
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In this case, the term
∑

n∈N
|α′

n(t)|2(2n)−p <∞

is replaced with

(8.2)
∑

n∈N
|α′

n(t)|22−np <∞

in the proof of the analogue of Theorem 7.4, as we now explain.

Theorem 8.2. Assume that the function m satisfies a bound of the
form

(8.3) m(t) ≤
{
K |t|−b |t| ≤ 1,

C1e
C2|t|, |t| ≥ 1,

where b < 2, N ∈ N0 and where C1 and C2 are strictly positive numbers.

Then there exists a L(G̃1, G̃−1)-valued function t 7→Wm(t) such that

(8.4)
d

dt
Xm(t)f =Wm(t)f, ∀f ∈ G̃1.

Proof of Theorem 8.2. The proof parallels the proof of Theorem 7.4.
The main idea is that the new bounds on

Tmhn(t) and |Tmhn(t)− Tmhn(s)|
are adapted to the new sequence an = 2n, n = 1, 2, . . ..

STEP 1: Assume that the function m satisfies a bound of the form
(8.3). Then,

|Tmhn|(t) ≤ D1e
D2

√
n

|Tmhn(t)− Tmhn(s)| ≤ |t− s|D3e
D4

√
n,

where D1, . . . , D4 are strictly positive constants.

The proofs are similar to those in [2]. The key is is to estimate integrals
of the form ∫ ∞

2
√
n

√
m(u)hn(u)du,

∫ ∞

2
√
n

u
√
m(u)hn(u)du,

and ∫ 2
√
n

0

√
m(u)hn(u)du,

∫ 2
√
n

0

u
√
m(u)hn(u)du,
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taking into account the bound (7.1).

STEP 2: The function t 7→ Tm1[0,t] is differentiable in H−p for p ≥ and

then equation (7.8) holds.

STEP 3: Let wm(t) =
d
dt
Tm1[0,t] Then Xwm(t) is a continuous operator

from S̃1 into S̃−1.

This is a direct application of Corollary 5.5.

STEP 4: (8.4) holds.

This is as in the proof of Theorem 7.4. �

Remarks 8.3.

(1) The previous result, together with the existence of a V̊age type

inequality in G̃−1, allows to define stochastic integrals as in Theorem
7.6.
(2) Finally we remark that the analysis in the papers [2, 3] can be
extended, in the commutative case, to more general Gelfand triples
where a V̊age type inequality holds.

We conclude the paper with a table comparing the commutative and
free cases.

The setting Commutative Free setting

The underlying space Symmetric Fock space Full Fock space

Concrete realization via Bochner-Minlos L2(τ)
L2(S ′, dP )

Polynomials Hermite polynomials Tchebycheff of the second kind

The building blocks Functions Hα See Theorem 4.2
given by (2.2)

Distribution law Gaussian Semi-circle
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