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THE POSITIVE REAL LEMMA AND CONSTRUCTION OF ALL

REALIZATIONS OF GENERALIZED POSITIVE RATIONAL

FUNCTIONS

DANIEL ALPAY AND IZCHAK LEWKOWICZ

Abstract. We here extend the well known Positive Real Lemma (also known
as the Kalman-Yakubovich-Popov Lemma) to complex matrix-valued general-
ized positive rational function, when non-minimal realizations are considered.
All state space realizations are partitioned into subsets, each is identified with
a set of matrices satisfying the same Lyapunov inclusion. Thus, each subset
forms a convex invertible cone, cic in short, and is in fact is replica of all real-
izations of positive functions of the same dimensions. We then exploit this re-
sult to provide an easy construction procedure of all (not necessarily minimal)
state space realizations of generalized positive functions. As a by-product, this
approach enables us to characterize systems which can be brought, through
static output feedback, to be generalized positive.

1. Introduction

For a half of a century, the Positive Real Lemma (also known as the Kalman-
Yakubovich-Popov Lemma) has been recognized as a fundamental result in System
Theory. We here extend and exploit it in various ways. Let C+ and C− be the open
right and left halves of the complex plane respectively, and Pk, (Pk) be the set
of all k × k positive definite (semidefinite) matrices1. Recall that a p× p-valued
function F (s), analytic in C+ is said to be positive if

(1.1) F (s) + F (s)∗ ∈ Pp s ∈ C+ .

The study of rational positive functions, denoted by P , has been motivated from
the 1920’s by (lumped) electrical networks theory, see e.g. [7], [11]. From the 1960’s
positive functions also appeared in books on absolute stability theory, see e.g. [43],
[45].
A p × p-valued function of bounded type in C+ (i.e. a quotient of two functions
analytic and bounded in C+) is called generalized positive GP if

(1.2) F (iω) + F (iω)∗ ∈ Pp a.e. ω ∈ R,

1991 Mathematics Subject Classification. Primary: 15B48; 26C15; 47L07; 93B15. Secondary:
15A45; 93B52; 93D10; 94C05.
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2 D. ALPAY AND I. LEWKOWICZ

where F (iω) denotes the non-tangential limit2 of F at the point iω.
Generalized positive functions were introduced in the context of the Positive Real
Lemma (PRL), see [6] and references therein3. Applications of GP functions to
electrical networks appeared in [35], and to control in [40], where they first casted
in a Linear Matrix Inequality (LMI) framework, see e.g. [12] for more information
on LMI. For more application of the generalized PRL, see [30]

Both function sets P and GP are closed under positive scaling, sum and inversion
(when the given function has a non-identically vanishing determinant). Yet these
spaces have quite different properties, as we now illustrate. Let Cp×p(X) be the
space of Cp×p-valued rational functions. Recall that a function Ψ ∈ Cp×p(X)
belongs to GP if and only if it can be factorized as

(1.3) Ψ(s) = G(s)P (s)G(−s∗)∗,

where G,P ∈ Cp×p(X), and P ∈ P . Factorization of this nature appeared e.g.
in [17] and [20], see also Observation 7.1 below. The significance of (1.3) to scalar
rational GP functions was recently treated in [4] and [5].

We now consider properties of the sum of two rational GP functions (series connec-
tion in electrical engineering jargon). From (1.2) it follows that this sum is again
in GP , but both the McMillan degree and the number of negative squares (roughly,
the number of poles in C+) increase. For more details on the number of negative
squares see [36] and [37]. Recall that a rational function Ψ is in GP if and only if
the kernel

Ψ(s) + Ψ(w)∗

s+ w∗

has a finite number of negative squares in its domain of definition in C+. The
number of negative squares of the sum of two elements in GP is preserved if, for
instance, in (1.3) Ψ1(s) = G(s)P1(s)G(−s∗)∗ and Ψ2(s) = G(s)P2(s)G(−s∗)∗ with
P1, P2 ∈ P and the same function G ∈ Cp×p(X), see [5, Section 3] for the scalar
case.
In contrast, if one takes a state space realization sum, the McMillan degree of the
resulting function does not increase, but it may turn to not generalized positive at
all, see Example 7.2 below. One of the results of this paper is a partitioning of
GP functions to subsets, denoted by GP(r, ν, p), closed under state space addition,
while both the McMillan degree and the number of negative squares do not increase.
See Theorem 7.3 below.

We resort to some preliminaries. Let Ψ ∈ Cp×p(X) be of McMillan degree q,
and analytic at infinity, i.e. lim

s → ∞
Ψ(s) exists. Namely, Ψ admits a state space

realization

(1.4) Ψ(s) = C(sI −A)−1B +D L :=

(

A B

C D

)

with A ∈ C
n×n, n ≥ q, B,C∗ ∈ C

n×p and D ∈ C
p×p, namely, L ∈ C

(n+p)×(n+p).
If the McMillan degree of Ψ(s) satisfies q = n, the realization is called minimal.

2This limit exists almost everywhere on iR because F is assumed of bounded type in C+, see
e.g. [22].

3The original formulation was real. The case we address is in fact generalized positive and
complex, but we wish to adhere to the commonly used term: Positive Real Lemma.



REALIZATION OF GENERALIZED POSITIVE RATIONAL FUNCTIONS 3

We can now state the Positive Real Lemma (PRL) as presented in [19, Theorem 1]
(up to substituting the real setting by a complex one)

Lemma 1.1. Let Ψ(s) be a p× p-valued rational function in (1.4) and assume
that q = n.
(I) Ψ ∈ GP if and only if

(1.5) HL+ L∗H = Q ∈ Pn+p ,

for some H = diag{Ĥ, Ip}, where Ĥ ∈ Cn×n is Hermitian non-singular.

(II) If Ψ ∈ P then in part (I) −Ĥ ∈ Pn .

The aim of this work is to first extend this result to the non-minimal case, and then
to use it to obtain a straightforward construction of all (not necessarily minimal)
state space realization of P and GP rational functions. This is then used to
describe the already mentioned partitioning to sets of the form GP(r, ν, p) and to
obtain other results, described below.

The outline of the paper is as follows: The paper is composed of eight sections
besides the introduction. In Section 2 we give a short review of the literature, which
should be paralleled with a complementary survey we offered in our previous paper
[4]. Our aim is not to provide a complete survey, but to raise, through samples,
the intriguing observation that although the PRL has been a standard textbook
material from the 1970’s, see e.g. [7], [25, Chapter 3], [43, Section 4.4, Appendix]
and [45, Section 8.5], it is not straightforward to cover the relevant literature. In
simple words, there is too little of cross-referencing 4.
In Section 3 an algebraic Riccati inclusion associated with necessity part of the
generalized positive real Lemma is addressed. Sections 4 and 5 are devoted to
showing that an algebraic Lyapunov inclusion associated with the sufficiency part
of the generalized positive real Lemma is independent of the minimality of the
realization. Some background material concerning sets of Lyapunov inclusions is
reviewed in Section 6. In particular we provide a convenient parameterization of all
matrices L satisfying the Lyapunov inclusion (1.5) where H is fixed and Q varies
over all P. This Lyapunov inclusion formulation is then employed in Section 7 to
provide a straightforward parameterization of all state space realization of GP
rational functions. This allows us to describe GP functions as a union of replicas
of positive functions. As an application of theses sets, in Section 8 we characterize
all rational functions (vanishing at infinity) which can be rendered GP , through a
static state feedback. Concluding remarks are given in Section 9.

2. A historical perspective

We here review some of the relevant existing literature.
As mentioned, the above version of Lemma 1.1 is from [19] and was repeated in
[40]. It was originally proved in [6]. A special case was later treated in [41]. The
positive function case (part II) is well known and sometimes is referred to as the
Kalman-Yakubovich-Popov Lemma and is dated to the 1960’s. For an early full
account see e.g. [7, Chapter 5]. An easy-to-read historical perspective is given in
[12, Sections 1].

4For example, it seems that [19] was hardly ever cited.
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A matrix formulation, see (1.4), of the PRL was introduced in the PhD. thesis of
P. Faurre, see [24, Theorem 4.2] and then in a book he co-authored, [25, Theorem
3.1]. In fact it implicitly earlier appeared in [48]. The formulation through the
Rosenbrock system matrix L (1.4) (for not necessarily positive systems) explicitly
introduced in [19] and subsequently in [40, Lemma 8]. An interesting special case
was studied in [27, Theorem 4]. The notion of Linear Matrix Inequality (LMI) was
introduced in [48]. [40] was one of the early works recognizing the applicability
of LMI framework to the (generalized) Positive Real Lemma (PRL), see also [12,
Section 2.7.2]. A comprehensive survey of the LMI approach to the PRL appeared
in [29]. Unfortunately, in spite of its admirable reference list (201 items), some
important relevant results are missing.

Following (1.1) Positive functions map C+ to L(I), the set of matrices with a
non-negative Hermitian part5. Analogously, following (1.2), a GP function maps
iR (after removing all poles of the function) into L(I), see Observation 7.1 below.
Closely related function sets are addressed in the literature:

• Bounded functions mapping C+ to weak contractions while generalized
bounded functions map iR to weak contractions. Versions of the PRL for
bounded functions appeared [24, Theorem 4.2] [7, Section 7.2] and for gen-
eralized bounded in [19, Equation (6)]. An interesting subclass is treated in
[1, Theorem 2.1]. An important result on a subclass of generalized bounded
functions where iR is substituted by R, appeared in [28, Theorem 3.2].
See also [2, Theorem 2.12] and [38, Chapter 21].

• Carathéodory functions, analytically mapping the open unit disk to L(I)
and generalized (=pseudo) Carathéodory functions, mapping the unit circle
(from the poles of the given function have been removed) to L(I). Versions
of the PRL for Carathéodory functions appeared in [49].

• Schur functions, analytically mapping the open unit disk to weak contrac-
tions and generalized Schur functions, mapping the unit circle to weak con-
tractions. Version of the PRL for Schur functions appeared in [3, Theorem
2.5], [47, Section II], [49] and for operator valued in [10]. For generalized
Schur functions see [19, Theorem 2] and for an interesting special case see
[27, Theorem 3]. A time-varying extension of the PRL to generalized Schur
functions along with a thorough study of various applications is are given
in [30, Theorem 1.2.5 and Appendix 3A].

• Nevanlinna functions, analytically mapping the open upper half plane to
iL(I) and the generalized Nevanlinna functions map R to iL(I), see
e.g. [17] and [20]. Minimal realization of infinite dimensional generalized
Nevanlinna functions was studied in [21].

As already stated, we do not aspire to provide a survey of PRL related results, and
we are aware of additional references dealing with the subject, not mentioned here.
We focused on the scattered nature of the literature related to the generalized case.

3. Generalized positive lemma necessity and the Riccati equation

It has been long recognized that with the part (b) of Lemma 1.1 (dealing with
positive functions) one can associate an algebraic Riccati equation, see e.g. [7,

5The notation L(I), with L honoring A.M. Lyapunov, will be formally defined in (3.1) below.
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Section 5.4] [25, Chapter 5] and [12, Section 2.7.2]. For Schur functions version
see e.g. [18, Theorem 2.1]. We now address the extension of this result to GP
functions. It first appeared in the context of a variant of Generalized Bounded
functions (where iR was substituted by R) in [28, Theorem 3.2] and in [2, Theorem
2.12]. For another variant of this result, see [38, Section 20.1]. In Proposition 3.2
below we provide a simple proof of the result using the system matrix formulation
(1.4), employed all along this work. We shall find it convenient to resort to the
following notation of sets of matrices sharing a common Lyapunov factor: For a
r× r Hermitian non-singular matrix H , define the sets of r× r matrices, L(H)
and L(H) as,
(3.1)
(a) L(H) := {L : HL+ L∗H ∈ Pr } (b) L(H) := {L : HL+ L∗H ∈ Pr }.

In particular, (L(I) ) L(I) is the set of matrices with positive (semi)definite
Hermitian part.

Proposition 3.1. Consider (1.4), (1.5) with H = diag{Ĥ, Ip} and Ĥ ∈ Cn×n

Hermitian. Assume in addition that D ∈ L(Ip). Let us define the following n× n

Riccati expression,

(3.2)
M := Ĥ(A−B(D +D∗)−1C) + (A−B(D +D∗)−1C)∗Ĥ

−ĤB(D +D∗)−1B∗Ĥ − C∗(D +D∗)−1C.

Then Q ∈ Pn+p, if and only if in (3.2)

(3.3) M ∈ Pn .

Proof Using the fact that D ∈ L(Ip) one can employ the classical Schur’s
complement, e.g. [33, Theorem 7.7.6], to write down Q in (1.5) explicitly,

Q =

(

ĤA+A∗Ĥ ĤB + C∗

C +B∗Ĥ D +D∗

)

=

(

In R

0 Ip

)(

M 0
0 D +D∗

)(

In 0
R∗ Ip

)

,

where R := (ĤB+C∗)(D+D∗)−1 and M is given in (3.2). Thus indeed Q ∈ Pn+p

if and only if M ∈ Pn. �

We can now re-formulate the necessity part of Lemma 1.1.

Proposition 3.2. Let Ψ ∈ GP be a p × p-valued rational function so that
lim

s → ∞
Ψ(s) := D exists. Furthermore assume that D ∈ L(Ip). Let q be the

McMillan degree of Ψ.
(I) Then, Ψ(s) admits a state space realization (1.4), so that it is minimal (q = n)
and it satisfies the Riccati inclusion in (3.2), (3.3) for some n×n Hermitian non-

singular Ĥ.
(II) If Ψ ∈ P then in part (I) −Ĥ ∈ Pn.

Note that the technical condition D ∈ L(Ip) in Proposition 3.2 is indeed restrictive.
For example, many system of interest have a zero at infinity and thus are excluded
from the discussion. On the other hand, whenever Ψ(s) = C(sI −A)−1B +D is a
GP function, from the above discussion it follows that D ∈ L(Ip), hence one can

always construct another GP function Ψ̃(s) = C(sI − A)−1B + D̃, with D̃ ∈ L(Ip)

so that ǫ ≥ ‖D − D̃‖, where ǫ > 0 is arbitrary.
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4. Generalized positive lemma sufficiency - an extension

The sufficiency statement of the (generalized) Positive Real Lemma (PRL) of matrix
valued rational functions was first proved in [6], under the assumption of minimality
of the realization (q = n). We now address the question of relaxing this minimality
constraint. This problem was treated in the framework of positive functions in
[49, Lemma 6] and in the framework of functions satisfying D ∈ L(Ip) (as in
the previous section) in [38, Section 21.3]. In a different formulation see also [46,
Theorem 1]. In [26] a proof of the sufficiency statement of the (generalized) PRL,
removing the minimality of realization condition, was presented. Unfortunately a
(redundant) spectral condition on A was imposed there. The result of Proposition
4.2 below, avoids any restriction.
In addition, in Proposition 4.2 below we show that one can bound the number of
poles of Ψ(s) in each open half plane6. To this end, we need some preliminaries. Re-
call that for a matrix A ∈ Cn×n one can associate a triple: inertia(A) = (ν, δ, π),
with ν + δ + π = n, if A has ν eigenvalues in C−, π eigenvalues in C+ and

δ eigenvalues on iR, see e.g. [34, 2.1.1]. Let A, Ĥ ∈ Cn×n with Ĥ Hermitian,
be with inertia,

(4.1) inertia(A) = (νA, δA, πA) inertia(Ĥ) = (ν, 0, n− ν) ν ∈ [0, n],

i.e. Ĥ is non-singular. Consider now the Lyapunov equation

(4.2) ĤA+A∗Ĥ = Q̂ ∈ Pn .

Recall that from a pair A ∈ Cn×n, B ∈ Cn×p, the following controllability matrix

may be constructed C := [B
... AB

... · · ·
... An−1B]. Then Xcont(A,B), the control-

lable subspace associated with the pair A,B is given by the range of C and
Xcont(A,B)⊥, its orthogonal complement, is given by the null-space of C∗, see
e.g. [34, Definition 2.4.8]. Similarly with a pair A ∈ Cn×n, C ∈ Cp×n, one can
associate a observable subspace Xobs(A,C), given by Xobs(A,C) = Xcont(A

∗, C∗)

(and Xobs(A,C)
⊥ = Xcont(A

∗, C∗)⊥). For A, Q̂ in (4.2) denote,

(4.3) m := dim Xobs(A, Q̂)⊥.

Namely, pair A, Q̂ is observable whenever m = 0. We can now cite the following
important result of R. Loewy [39], adapted to our framework,

Theorem 4.1. Let A, Ĥ and m be as in (4.1), (4.2) and (4.3). Then,

ν ≥ νA ≥ max(0, ν −m) n− ν ≥ πA ≥ max(0, n− ν −m).

We can now state the extended sufficiency part of the PRL.

Proposition 4.2. Let Ψ in (1.4) be a p×p-valued rational function of McMillan
degree q, n ≥ q. Assume that state space realization in (1.4) satisfies the Lyapunov

equation (1.5) with H = diag{Ĥ, Ip}, where Ĥ is n× n Hermitian.

(I) If inertia(Ĥ) = (ν, 0, n−ν), for some ν ∈ [0, n], then, Ψ is a GP function
with at most ν poles in C− and n− ν poles in C+.

(II) If in part (I) −Ĥ ∈ Pn, i.e. ν = n, then Ψ ∈ P.

6 Although in a different framework, bounds of a similar nature can be found in [28, Theorem
3.4] and subsequently in [2, Theorem 2.12] and in [38, Section 21.2].
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Proof : I. Indeed assume that (1.5) is satisfied with H = diag{Ĥ, Ip}, Ĥ

Hermitian nonsingular and L as in (1.4). Note that in (1.5) Q is in Pn+p, thus

its upper left block is in Pn. Namely, (4.2) is satisfied, so by Theorem 4.1 the matrix
A has at most ν eigenvalues in C− and n− ν eigenvalues in C+. Recall that
the poles of Ψ are determined by the eigenvalues of A, see (1.4).
Next denoting S := diag{−sIn, 0p} we note that

(4.4) HS + S∗H ∈ Pn+p ,

for all s ∈ iR. Take now 7 L̃ := L+S =
(

−sIn + A B

C D

)

. Then for all s ∈ iR also,

(4.5) HL̃+ L̃∗H ∈ Pn+p .

Next, recall that for arbitrary constant matrix Ψ ∈ GP , if and only if (Ψ + T ) ∈ GP ,
for arbitrary constant matrix −T ∗ = T ∈ C

p×p. Thus, up to a shift by a skew-
Hermitian matrix, we can assume that Ψ(s) in (1.4) is almost everywhere invert-
ible. Thus, a straightforward calculation (see e.g. [33, 0.7.3]) results in,

L̃−1 =

(

(sI −A)−1
(

BΨ(s)−1C(sI −A)−1 − I
)

(sI −A)−1BΨ(s)−1

Ψ(s)−1C(sI −A)−1 Ψ(s)−1

)

.

Multiplying (4.5) by
(

L̃∗
)−1

from the left and L̃−1 from the right, yields

(4.6) HL̃−1 + (L̃−1)∗H ∈ Pn+p

for all s ∈ iR. Now in particular the p× p lower right block of (4.6) satisfies,

(4.7) Ψ(s)−1 +
(

Ψ(s)−1
)∗

=
(

HL̃−1 + (L̃−1)∗H
)

22
∈ Pp

for all s ∈ iR. Thus, Ψ(s)−1 is in GP and hence also Ψ(s). Thus, the first part
of the claim is established.
(b) Positive functions. If −Ĥ ∈ Pn the relation in (4.4) holds for all s ∈ C+ and
subsequently, also (4.6) and (4.7). Hence, Ψ ∈ P , so the proof is complete. �

In the next section we scrutinize some aspects of Proposition 4.2.

5. non-minimal realization and bounds on inertia - a closer look

Roughly, application of Theorem 4.1 to Proposition 4.2 suggests that the “further”
from minimality the realization is, the cruder is the bound on the number of poles
in C+. We here illustrate the “at most” clause in the statement Proposition 4.2
with respect to the number of poles in each open half plane.

Example 5.1. All functions considered in this example are so that in (1.5)H = diag{Ĥ, 1}

with Ĥ = diag{−1, 1}, see also (4.2). Namely the corresponding rational functions
have at most one pole in each open half plane. We present the rational function
along with the corresponding system matrix.

Lα =




0 1 1
1 1 0
1 0 0



 Lβ =




−1 0 0
0 1 1
0 1 1



 Lγ =




−1 0 1
0 1 0
1 0 0





ψα(s) =
s−1

s2−s−1 ψβ(s) =
s

s−1 ψγ(s) =
1

s+1

Lδ =




−1 −1 1
1 1 1
1 −1 0



 Lξ =




0 0 1
0 1 0
1 0 1



 Lη =




−1 −1 2
−1 1 1
2 1 1



 Lθ =




−1 1 −2
1 1 1

−2 1 1





7It is interesting to note that the zeroes of Ψ(s) are the points s for which L̃ is singular.
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ψδ(s) =
−4
s2

ψξ(s) =
s+1
s

ψη(s) = ψθ(s) =
s2+5s−1
s2−2 .

Indeed, ψα(s) and ψη(s) = ψθ(s) have a pole in each open half plane. ψβ(s) has
a single pole in C+, while ψγ(s) a pole in C−. The poles of ψδ(s) and ψξ(s)
are confined to the imaginary axis. �

We now point out that unlike to the approach of [26, Theorem 2], in the PRL
framework, see Proposition 4.2, there is no restriction on the spectrum of L in
(1.5), nor on the spectrum of its upper left block, A in (4.2). Formally, this
follows from Theorem 4.1. Intuitively, restrictions of the form λj + λ∗k 6= 0 are
necessary when Q, the right hand side of the Lyapunov equation is given and
a unique Hermitian solution is sought, see e.g. [34, Corollary 4.4.7]. In contrast,
here we address a genuine Lyapunov inclusion. In fact, in each of the cases Lβ,
Lγ , Lδ, Lξ, Lη and Lθ in Example 5.1, the A matrix (the n × n upper left
block) does not satisfy this spectral condition.

6. Convex invertible cones and the Lyapunov inclusion

In this section we explore some properties of the set L(H) (3.1), to be used in the
sequel in conjunction of the PRL, see e.g. Theorem 7.3
We next resort to some background. Recall that a set of a square matrices is
called Convex Invertible Cone, cic in short, if it is closed under positive scaling,
summation and inversion. More precisely, it may include singular elements provided
that the inverse of every non-singular element, belongs to the set. Thus, the set
P is a cic. For a more detailed study of cics see e.g. [13, Section 2], [14, Section
2] and [15, Sections 2, 3] Recall that for an Hermitian non-singular matrix H we
defined in (3.1) sets of matrices sharing a common Lyapunov factor, L(H), L(H).
The following properties of these sets are fundamental to our discussion.

Theorem 6.1. Let H be r×r Hermitian nonsingular, i.e. inertia(H) = (ν, 0, r − ν)
for some ν ∈ [0, r].

(i) L(H) is an invertible cone of matrices sharing the same inertia as H. It
is a maximal open convex set of nonsingular matrices 8.

(ii) L(H) is a closed invertible cone of matrices with at most ν eigenvalues
in C− and at most r− ν eigenvalues in C+. It is a maximal convex set
with this property.

(iii) L(H)∗ = L(H−1).
In particular, L(H)∗ = L(H), if and only if, up to positive scaling, H is
an involution (H2 = I).

(iv) Let E be an involution which commutes with H then,
EL(H) = L(H)E = L(EH).

(v) For arbitrary Hermitian involution E, EL(E) = L(E)E = L(I).

Proof (i) See [13, Proposition 3.7], [15, Observation 2.3.3].
(ii) Part of the claim appeared in [14, Proposition 2.4(i)]. To establish the inertia
property assume first that H = Ir. By Theorem 4.1 all matrices in L(I) have
inertia (0, r − π, π) for some π ∈ [0, r]. Let B be an r × r matrix
not in L(I), namely the Hermitian part of B has a negative eigenvalue, i.e.

min
k=1, ... , r

λk(B + B∗) = −β for some β > 0. Take now A = β
4 I +

1
2 (B

∗ − B).

8For an impressive particular converse, see [8], [9].
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It is straightforward to verify that A ∈ L(I), but A + B = β
4 I + 1

2 (B + B∗).

Thus, min
k=1, ... , r

λk(A + B) = −β
4 , i.e. in contrast to all elements of L(I), the

matrix A + B has eigenvalues in C− so this part of the claim is established for
H = I. To address a general Hermitian non-singular matrix H , exploit the fact,
see Observation 6.3 below, that one can always find a non-singular V and an
involution Eν (6.1) so that EνV

−1L(H)V = V −1L(H)V Eν = L(I), so the claim
is established.
(iii) The claim for arbitrary H appeared in [13, Equation (3.6)]. If H is a scaled
involution, i.e. H−1 = αH for some α > 0, the claim is follows from multiplying
L(H) in (3.1) by H−1 from both sides.

For the other direction assume that
(

L(H)
)∗

= L(H). This relation is invariant
under unitary similarity. Thus, without loss of generality assume that H is (real
non-zero) diagonal, say H = diag{h1 , . . . , hr}. Take now A to be equal to H ,
except a single non-zero off diagonal element x at the location jk, where j > k,
i.e. A is lower triangular. A straightforward calculation shows that A ∈ L(H)
is equivalent to 2|hj| ≥ |x|. By assumption, also A∗ ∈ L(H), which in turn is
equivalent to 2|hk| ≥ |x|. Thus, hj = ±hk and since true for all j, k this claim is
established.
(iv) This claim is proved for L(H), in [13, Lemma 3.6], see also [15, Proposition
3.2.2]. The case L(H) is similar and thus omitted. Item (v) is in fact a special
case of item (iv). �

Note that item (iv) in Theorem 6.1 says that if L ∈ L(H), for some Hermitian
non-singular H , then both matrices EL and LE belong to L(EH), whenever
E is an involution which commutes with H . Using this, along with item (v) in
Theorem 6.1, we state the following.

Corollary 6.2. For natural n, p and ν ∈ [1, n] let us denote Ho = diag{Iν , −In−ν , Ip},
H1 = diag{−Iν , In−ν , Ip} and H2 = diag{−In, Ip}. Then,

HoL(H1) = L(H1)Ho = L(H2),
HoL(H2) = L(H2)Ho = L(H1).

In addition, HjL(Hj) = L(Hj)Hj = L(In+p) j = 1, 2.

Namely, there is one-to-one correspondence between the sets L(H1), L(H2) and
L(In+p).

We shall find it convenient to introduce the following notation for l × l signature
matrices,

(6.1) Eν,l := diag{−Iν , Il−ν} ν ∈ [0, l].

Whenever the dimension l is evident from the context we shall simply write Eν .

We can now cite the following known facts see e.g. [13, Lemma 3.4].

Observation 6.3. Consider the r × r nonsingular matrices V and H = H∗.
Then the following relations hold in (3.1),

(a) V −1L(H)V = L(V ∗HV ) (b) V −1L(H)V = L(V ∗HV ).
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In particular, if inertia(H) = (ν, 0, n − ν), for some ν ∈ [0, r], V may be
chosen so that,

(a) V −1L(H)V = L(Eν) (b) V −1L(H)V = L(Eν),

where Eν is as in (6.1).

From Observation 6.3 it follows that, up to similarity,
r
⋃

ν=0
L(Eν,r) covers all r×r

matrices. We next point out that technically this is not a proper partitioning. A
straightforward substitution in (3.1) with both H = Eν and Eν+η, reveals that
these sets are “nearly” distinct.

Corollary 6.4. Let ν ≥ 0 and η ≥ 1 be so that r ≥ ν+η and Eν is as in (6.1).

If L ∈ {L(Eν)
⋂

L(Eν+η)} then L =




−Q1 + T1 0 K − R

0 T3 0
K∗ 0 Q2 + T2



 where T1, T2, T3 are

skew-Hermitian matrices of dimensions ν×ν, η×η and (r−ν−η)× (r−ν−η),
respectively, K ∈ Cν×(r−ν−η) is arbitrary and the other blocks are so that the
(r − η)× (r − η) matrix

(

2Q1 R

R∗ 2Q2

)

is positive semi-definite.

Observation 6.3 also suggests that for every non-singular Hermitian H the set
L(H) is isomorphic to L(I). We conclude this section by showing that in turn,
one can describe L(I) as a sum of two cics: P and T, the set of skew-Hermitian
matrices, see e.g. [15, Proposition 3.2.5(ii)]. Furthermore, each may be described
by the convex hull of its extreme directions. To this end, we need to introduce OP,
the set of rank one orthogonal projections, i.e.

OP = {π = xx∗ : x ∈ Cr x∗x = 1 }.

Observation 6.5. I. Let E be as in (6.1), then

EL(I) = L(I)E = L(E),
EL(I) = L(I)E = L(E).

II. [15, Proposition 3.2.5]

L(I) = P+ T L(I) = P+ T.

III. The sets P and T may be constructed from orthogonal projection. Indeed,

P =







r
∑

j=1

αjπj : αj ≥ 0 πj ∈ OP







,

where π1, . . . , πr are all distinct. Similarly,

T =







i

r
∑

j=1

ρjπj : ρj ∈ R πj ∈ OP







where π1, . . . , πr are all distinct.

To summarize, for arbitrary E there is a one-to-one correspondence between
the sets L(E) and L(I). Thus, it suffices to construct the latter set. Indeed,
L(I) = P+ T. Now, P ∈ P can always be parameterized by non-negative scalars
α1, . . . , αr and r distinct points on the ‖ ‖2 unit sphere. Similarly, T ∈ T

can always be parameterized by real scalars ρ1, . . . , ρr and r distinct points
on the ‖ ‖2 unit sphere.
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In fact, parameterization of a point on ‖ ‖2 unit sphere can be further simpli-
fied. Note that π ∈ OP may be identified with a point on the ‖ ‖2 unit sphere
{ x ∈ Cr : x∗x = 1 }. Now, through polar coordinates there is a one-to-one corre-
spondence between this unit sphere and { y ∈ Rr(r−1) : 2π > ‖y‖∞}. For example

for r = 3, x =




cos(θ1) cos(θ2)e
iη1

sin(θ1) cos(θ2)e
iη2

sin(θ2)e
iη3



 θj , ηk ∈ [0, 2π), j = 1, 2 and k = 1, 2, 3. Thus

elements in OP can be parameterized by points in the real “box” [0, 2π)r(r−1).

In the next section we identify the matrix cic L(H) with the set of system matrices
associated with a subset of GP functions, see Theorem 7.3 below. These (not
necessarily minimal) realizations, cover all GP functions with no pole at infinity.

7. convex invertible cones of realizations of generalized positive
functions of prescribed parameters

We start with a couple of known related results. First, recall that in (1.2) we have
already described GP functions as map from iR to L(I). We now formalize this
fact.

Observation 7.1. One can view p× p-valued GP functions as a cic of rational
functions (almost everywhere) analytically mapping iR to L(Ip), (3.1), and P
as a subcic mapping C+ to L(Ip).

In [15, Section 4.4] analogies were drawn between the set P of scalar rational
functions and the matrix set L(H) for H ∈ P. We now use Observation 7.1 to
introduce an analogy between the sets GP and L(I). Recall that

V L(I)V ∗ ⊂ L(I) V ∈ C
n×n,

(and if in addition V is non-singular, then, V L(I)V ∗ ⊂ L(I)). Similarly,

FGPF# ⊂ GP F ∈ F .

Recall also that

As another association between the matrix cic L(H) and a cic of rational func-
tions, we cite the following. Consider the set of all rational functions of the form
C(sI −A)−1B admitting balanced realization, i.e.

HA∗ +AH = BB∗ HA+A∗H = C∗C,

for some non-singular Hermitian H . Each of these sets forms a cic of state space
realizations. In particular, this allows for simultaneous model order reduction of
uncertain systems, see [14, Section 5] for details.

We now identify the matrix cic L(H), (3.1), with a cic of system matrices, (1.4),
associated with a subset of GP functions. As a motivation recall that the set
of p × p GP functions is a cic of rational functions. However, the McMillan
degree of a sum, is roughly the sum of the McMillan degree of the original functions.
Now, if one considers a pair of p× p GP functions, of McMillan degree at most
n, admitting state space realizations of the form (1.4), the sum of the respective
system matrices is associated with a p × p rational function of McMillan degree
at most n. However, this “sum” function may be not generalized positive. This is
illustrated next.
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Example 7.2. For simplicity, consider two (minimal) state space realizations of

the scalar function ψǫ(s) = ψδ(s) = −4
s2

from Example 5.1: Lδ =




−1 −1 1
1 1 1
1 −1 0





and Lǫ =




1 −1 1
1 −1 −1

−1 −1 0



 (note that Lǫ = V −1LδV with V = diag{V̂ , 1} where

V̂ =
(

0 −1
1 0

)

). Let now Lζ be a convex combination of these two realizations,

i.e. Lζ = 1
2 (Lδ + Lǫ) =





0 −1 1
1 0 0
0 −1 0



. This is a (minimal) state space realization of

ψζ(s) =
−1

s2+1 |s=0

= −1, which is not generalized positive. �

Coordinates transformation

Following Proposition 4.2, we have focused our attention on a special case of the
set L(H), where r = n+ p and the Lyapunov factor H is block diagonal of the

form H = diag{Ĥ, Ip}, where Ĥ is n× n Hermitian non-singular.

From Observation 6.3 it follows that up to similarity over L(H)|
H=diag{Ĥ, Ip}

, one

can confine the discussion to the case where in addition in (3.1) Ĥ = Eν,n, see
(6.1).

Recall that coordinates transformation means that whenever V = diag{V̂ , Ip}

with V̂ n × n nonsingular, with L in (1.4), V −1LV is another state space
realizations of the same rational function Ψ(s). Thus, taking in (6.1) l = r = n+p,
without loss of generality we can focus on sets of (n+ p)× (n+ p) matrices of the
form

L(H) H = diag{Eν,n, Ip} ν ∈ [0, n],

partitioned as
(

A B

C D

)

. We now find it convenient to denote by

(7.1) GP(r, ν, p) r ≥ 2 p ∈ [1, r − 1] ν ∈ [0, r − p]

the set of all p × p-valued rational functions obtained by (1.4) and (1.5) (recall,
A is (r − p)× (r − p) ). From item (ii) of Theorem 6.1 we have the following:

Theorem 7.3. Given a set GP(r, ν, p) as described in (7.1). The set of all the
corresponding state space matrices forms a closed invertible cone of realizations of
functions with at most ν poles in C− and at most r − p − ν poles in C+.
Moreover, this is a maximal convex realization set with this property.

Maximality is in the sense described in proof of item (ii) of Theorem 6.1: Recall
that each of the realization matrices L associated with functions in GP(r, ν, p)
has at most ν eigenvalues in C− and at most r− ν eigenvalues in C+. Now if

L̃ is a r× r realization matrix associated of a rational function ψ̃ 6∈ GP(r, ν, p),

then one can always find L so that L + L̃ has ν + 1 in C− or r − ν + 1
eigenvalues in C+.

Before proceeding, we now find it convenient to denote by GPmin(r, ν, p) the
subset of GP(r, ν, p) where in addition the realization is minimal (i.e. the
McMillan degree q is equal to r − p). Under this terminology the necessity
part of the PRL, i.e. Lemma 1.1, and Proposition 3.2, is restricted to elements in
GPmin(r, ν, p).

Example 7.4. We next illustrate some aspects of the correspondence between the
matrix set L(Eν) and the set of rational functions GP(r, ν, p), along with its
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subset GPmin(r, ν, p). As before, we concentrate on the case where r = 3, ν = 1
and p = 1.

(i) To illustrate Theorem 7.3 the functions ψα(s), ψβ(s), ψγ(s), ψδ(s),
ψξ(s) and ψη(s) from Example 5.1 are all in GP(3, 1, 1).

(ii) Starting from L, one may obtain, minimal and non-minimal realizations.
ψβ(s), ψγ(s) and ψξ(s), from Example 5.1 are in GP(3, 1, 1)r GPmin(3, 1, 1).
In contrast, starting from rational functions, ψγ(s) and ψξ(s) can be writ-

ten as part of GPmin(2, 1, 1), i.e. L̂γ =
(

−1 0
1 0

)

and L̂−1
γ = L̂ξ =

(

0 1
1 1

)

are the corresponding system matrices. This now conforms with Proposi-
tion 7.6 part (I) below noting that they are positive.

(iii) L(E1) is a convex invertible cone, cic. Samples of it are all realization
presented in Example 5.1. In particular, Lξ = L−1

γ and Lβ = 1
2 (Lη + Lθ).

In contrast, in Example 7.2, Lǫ is constructed from Lδ so that they do
not share a common Lyapunov factor, of the form diag{Ĥ , 1}, to the LMI
in (1.5).

(iv) Even in GPmin(3, 1, 1) elements may not have a pole in each open half
plane, see e.g. ψδ(s) in Example 5.1.

(v) In contrast to the set GP(r, ν, p), the set of realization matrices associated
with the subset GPmin(r, ν, p) , is not convex. Recall that on the one hand,
ψη(s) = ψθ(s) is in GPmin(3, 1, 1), i.e. Lη, Lθ are the respective minimal
realizations. However, Lβ = 1

2 (Lη + Lθ) is a non-minimal realization of
ψβ(s).

�

We now use the Lyapunov inclusion formulation to establish a strong link between
positive and generalized positive rational functions.

Lemma 7.5. Let r, ν, p with r ≥ 2, p ∈ [1, r − 1] and ν ∈ [0, r − p] be given
and let J = diag{Iν , −Ir−p−ν} (i.e. J = −Eν,r−p).

Let
(

A B

C D

)

be a system matrix associated a function in GP(r, ν, p) and let
(

Â B̂

Ĉ D̂

)

be associated with a p× p-valued positive rational function whose realization is of
dimension r − p.
Then, the following is true.

(I)
(

JA JB

C D

)

and
(

AJ B

CJ D

)

are two r−p dimensional realizations of the same

p× p-valued positive rational function.

(I)
(

JÂ JB̂

Ĉ D̂

)

and
(

ÂJ B̂

ĈJ D̂

)

are two realizations of the same function in GP(r, ν, p).

Proof : To see that these are two realization of the same rational function, recall
that for arbitrary involution J , one has that,

C(sIn − JA)−1JB +D = C(sJ −A)−1B +D = CJ(sIn −AJ)−1B +D.

For the equivalence, the claim follows from Proposition 4.2 and Corollary 6.2 with
n = r − p and Ho = J . �

This can be formalized in the following stating that for given r > p ≥ 1, the set of
p×p-valued rational generalized positive functions whose realization is of dimension
r − p, can be described as r + 1− p replicas of its subset of positive functions.

Proposition 7.6. Let r, ν, p be arbitrary.
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(I) If r = ν + p and ν ≥ 1 then,

GP(r, ν, p)|r=ν+p
⊂ P .

(II) The set GP(r, ν, p) is state-space equivalent to the set of positive functions
GP(r, r − p, p).

(III) For given r > p ≥ 1, the set of p × p-valued rational generalized positive
functions whose realization is of dimension r − p, can be described as

r−p
⋃

ν=0

GP(r, ν, p).

To see that the inclusion in item (I) of Proposition 7.6 is strict, take for example
ψγ(s) from Example 5.1 where r = 3, ν = 1 and p = 1, i.e. it is a positive
function in GP(3, 1, 1)r GPmin(3, 1, 1), but neither belongs to GP(3, 1, 2) nor
to GP(3, 2, 1). See also item (ii) in Example 7.4.

Strictly speaking the sets GP(r, ν, p) do not offer a partitioning of generalized
positive function to distinct subsets. Namely, from Corollary 6.4 is follows that

GP(r, ν1, p) ∩ GP(r, ν2, p) 6= ∅. For example, the system matrix L =




0 0 0
0 a b

0 −b 0





with a ≥ 0, is a realization of ψ = b2

a−s
. As L ∈ L(I) ∩ L(E1), this ψ belongs to

GP(3, 0, 1) ∩ GP(3, 1, 1).

Observation 6.5 offered an easy-to-compue construction of L(I) and subsequently
of L(E), where E = Eν,r and ν ∈ [0, r − p] is arbitrary. Theorem 7.3 and

Eq. (7.1) identify the matrix set L(E) with GP(r, ν, p). Thus, through item
(III) of Proposition 7.6 we here offer a construction of the set of all p × p-valued
rational GP functions whose realization is of dimension r − p, where r > p ≥ 1,
are arbitrary.

LMI control theory and Matlab based LMI procedures, were developed essentially
for P functions, see e.g. [12]. However, as stated in Proposition 7.6, from real-
ization point of view, for arbitrary r ≥ 2, p ∈ [1, r − 1] and ν ∈ [0, p− r], the set
GP(r, ν, p) functions is equivalent to the set GP(r, r− p, p) positive functions.
It is thus of interest to try to adapt some of the LMI theory to GP functions.

To further motivate the introduction of the set GP(r, ν, p), in the next section we
provide a classical control interpretation of it.

8. turning a function generalized positive through static output
feedback

Let F (s) be a p×p-valued rational function vanishing at infinity ( lim
s→∞

F (s) = 0).

Thus, it admits a space realization of the form F (s) = C(sI −A)−1B,

(8.1) ẋ = Ax+Bu, y = Cx,

where u, y are p−dimensional and x is n−dimensional9 . Using (1.4), the
corresponding system matrix is L =

(

A B

C 0p

)

. Assume that a static output feedback

is applied i.e.

(8.2) u = Ky + u′,

9The case D 6= 0 is more involved and thus omitted.
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where K is a constant p × p matrix and u′ is an auxiliary input. Thus, the
resulting closed loop system (mapping u′ to y) is

(8.3) Fcl(s) := C(sI −Acl)
−1B, Acl := A+BKC.

The associated system matrix is, Lcl =
(

Acl B

C 0p

)

. Robust stabilization of a system

of the form (8.1) by static output feedback (8.2) is quite known, see e.g. [18,
Theorem 3.2], [23, Section 3] [31, 32] and [44]. It is well known that positive
functions are closely related with robust stability, see e.g. [43], [24]. We here
introduce a characterization of all systems which may be turned generalized positive
through static output feedback.

Proposition 8.1. Let F (s) be a p × p-valued rational function vanishing at
infinity ( lim

s→∞
F (s) = 0) with a state space realization as in (8.1).

(I) There exists a static output feedback, of the form of (8.2), rendering the
closed loop system, Fcl(s) in (8.3) generalized positive, if and only if, there

exists a nonsingular Hermitian Ĥ ∈ Cn×n so that the open loop system
(8.1) satisfies,

(a) C = −B∗Ĥ,

(b) v∗(AĤ−1 + Ĥ−1A∗)v ≥ 0 for all vector v in the null-space of B∗.
(II) Let r, ν, p, where ν ∈ [0, r−p] and p ∈ [1, r−ν] be given. There exists a

static output feedback, of the form of (8.2), so that Fcl(s) in (8.3) belongs
GP(r, ν, p), if and only if, up to coordinate transformation, the open loop
system (8.1) satisfies,

(a) C = −B∗Eν ,
(b) v∗(AEν + EνA

∗)v ≥ 0 for all vector v in the null-space of B∗.
(III) Let r, ν, p, where ν ∈ [0, r − p] and p ∈ [1, r − ν] be given. The

set GP(r, ν, p) is invariant under static output feedback (8.2) whenever
K ∈ L(−Ip).

(IV) If in part (I) −Ĥ ∈ Pn or in parts (II), (III), ν = r−p, then the resulting
closed loop function Fcl is in P.

Proof : (I) Following Proposition 4.2 denote H = diag{Ĥ, Ip} with Ĥ ∈ Cn×n

Hermitian nonsingular, W := HLcl + L∗
clH and recall that having Fcl ∈ GP is

equivalent to W ∈ Pr

W =
(

ĤA + A∗Ĥ C∗ + ĤB

C + B∗Ĥ 0p

)

+
(

ĤBKC + (BKC)∗Ĥ 0
0 0p

)

.

Thus, having W ∈ Pr, implies condition (a) in the claim. Substituting back one
has that

W =
(

ĤA + A∗Ĥ 0
0 0p

)

+
(

−ĤB(K + K∗)B∗Ĥ 0
0 0p

)

=
(

ĤŴ Ĥ 0
0 0p

)

where Ŵ = AĤ−1 + Ĥ−1A∗ − B(K + K∗)B∗. Now, W ∈ Pr is equivalent to

Ŵ ∈ Pn (recall r = n + p). Next, whenever v∗B̂ 6= 0, one can take K ∈ L(−Ip)

“sufficiently large”, so that v∗Ŵv ≥ 0. Now, if v∗B̂ = 0, condition (b) guarantees

that v∗Ŵv ≥ 0, so this part of the claim is established.
(II) One can always write Ĥ = V ∗EνV for some non-singular V . The state-
ment follows from applying the corresponding transformation of coordinates to the
realization of F (s).
(III) This follows from the proof of part (I) together with Proposition 4.2, noting

that by assumption ĤA+A∗Ĥ ∈ Pn, which is equivalent to AĤ−1+Ĥ−1A∗ ∈ Pn.
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(IV) See part (I) of Proposition 7.6, so the claim is established. �

Example 8.2. We here illustrate Proposition 8.1 by examining sets of rational
functions GP(3, ν, 1) associated with L(Eν), with ν = 0, 1, 2. Recall that, in
most parts of this work, minimality of the realization is not assumed.

Consider the system matrix L =




a a b1
a a b2
b1 −b2 0



 with a, b1, b2 real parameters. It

realizes the function f(s) =
(b21−b22)(s−a)

s(s−2a) .

First, for 0 > a, b21 > b22, f ∈ GPmin(3, 2, 1) ⊂ P, for a > 0, b22 > b21, f ∈ GPmin(3, 0, 1)
and for a(b22 − b21) = 0, ψ ∈ GP(3, 1, 1).

Next, if 0 > a(b22 − b21) f is not generalized positive, but we show that one can
always find a static output feedback of the form (8.2) so that fcl ∈ GP(3, 1, 1).
Indeed consider part II of the claim with E1,2. Condition II(a) is satisfied. To
check condition II(b) note that the null-space of B∗ is given by vectors of the
form

(

−b2
b1

)

. Thus this condition now reads, 2a(b21 − b22) ≥ 0 as required.

Indeed, the closed loop system matrix is Lcl =




a + kb21 a − kb1b2 b1
a + kb1b2 a − kb22 b2

b1 −b2 0



 and for

b1 6= ±b2, it corresponds to GPmin(3, 1, 1) functions whenever a
b22−b21

≥ k. For

instance, for a = 1, b1 = 1, b2 = 1 and k = −1, one obtains Lcl = Lα from
Example 5.1. �

9. concluding remarks

As it is often the case, the introduction of a novel concept opens the door to new
research questions. Concerning the set GP(r, ν, p) we here mention a sample of
four problems.

1. LMI techniques
A comprehensive survey of the LMI approach to the PRL appeared in [29]. As
already mentioned Proposition 7.6 suggests that large parts of LMI techniques can
be extended to GP functions. For example, the use of LMI to render a closed loop
function positive, through static output feedback, was addressed in literature, see
e.g. [32, 44]. This can be extended in the spirit of Section 8.

2. Lyapunov Order
Recall that in Examples 5.1 and 7.4 we considered the system matrices Lγ and
Lξ = L−1

γ and the respective GP(3, 1, 1) rational functions ψγ(s) =
1

s+1 and

ψξ(s) =
s

s+1 . Consider now Lx := 1
2 (Lγ + Lξ) =





−
1
2

0 1
0 1 0

1 0 1
2



 and the associated

rational function ψx(s) =
s+ 5

2

2(s+ 1
2
)
. In [16] a (partial) Lyapunov order was intro-

duced in which Lγ ≤ Lx
10 . The Lyapunov order was recently used in [42]. It

is of interest to find an interpretation of this partial order in the framework of the
rational functions ψγ(s) and ψx(s).

3. Model order reduction
One can exploit the convex structure of all system matrices associated with the

10meaning that whenever Lγ ∈ L(H), for some non-singular Hermitian H, it implies that for

the same H, Lx ∈ L(H).
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set GP(r, ν, p) to try to introduce a scheme of model order reduction of uncertain
systems in the spirit of [14, Section 5].

4. Realization of Even and Odd GP functions.
Recall that in the scalar case Odd functions map iR to itself while Even GP
functions map iR to R+. Both sets were addressed in [5] in the framework of
rational functions. One can study properties of all Even and Odd functions within
a prescribed set GP(r, ν, p).

For example, if one considers (for simplicity only real) realizations of functions in
GP(3, 1, 1), the Odd and the Even cases can be parameterized by,

Lodd =

(

0 a b1
a 0 b2
b1 −b2 0

)

Leven =

(

−a1 a2 b
a2 a1 b
b −b d

)

a1+a2>0
b6=0
d≥0.

ψodd(s) =
(b21−b22)s
s2−a2 ψeven(s) =

b2(a1+a2)
a2
1+a2

2−s2
+ d

It is interesting to note that in the framework of the associated Lyapunov equation
(1.5), in the Odd case Q = 0, while in the Even case Q is diagonal.
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Mathématiques de l’Informatique, Dunod, Paris, 1978.

[26] A. Ferrante and L. Pandolfi, “On the Solvability of the Positive Real Lemma Equa-
tions”, Syst. Cont. Lett, Vol. 47, pp. 211-219, 2002.

[27] Y. Genin, P. Van Dooren, T. Kailath, J-M Delosme and M. Morf, “On Σ-Lossless Transfer
Function and Related Questions”, Lin. Alg. & Appl., Vol. 50, pp. 251-275, 1983.

[28] I. Gohberg and I. Rubinstein, “Proper Contractions and their Unitary Minimal Comple-
tions”, In I. Gohberg, editor, Topics in interpolation theory of rational matrix-valued func-
tions, Operator Theory: Advances and Applications, Vol. 33, pp. 223-247, Birkhäuser Verlag,
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[37] M.G. Krĕin and H. Langer, “Über die verallgemeinerten resolventen und die charakteristische

funktion einen isometrischen operators in raume Πκ”, (in German) Hilbert operators and
operators algebras (Proc. Int. Conf. Tihany, 1970), pp. 353-399, North Holland, Amsterdam,
1972. Colloquia Math. Soc Janos Bolyai.

[38] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science Publications,
1995.

[39] R. Loewy, “An Inertia Theorem for the Lyapunov Equation and the Dimension of a Con-

trollability Subspace”, Lin. Alg. & Appl., Vol. 260, pp. 1-7, 1997.
[40] J.H. Ly, M.G. Safonov and R.Y. Chiang “Real/complex multivariable stability margin com-

putation via generalized Popov multiplier LMI approach”, Proc. American Contr. Conf.
Baltimore, Maryland, 1994, pp. 425-429



REALIZATION OF GENERALIZED POSITIVE RATIONAL FUNCTIONS 19

[41] O. Mason, R. Shorten and S. Solmaz, “On the Kalman-Yakubovich lemma and common
Lyapunov solutions for matrices with regular inertia”, Lin. Alg. & Appl., Vol. 420, pp. 183-
197, 2007.

[42] P.S. Muhly and B. Solel, “Absolute continuity, Interpolation and the Lyapunov order”, a
preprint. Available at
http://arxiv.org/abs/1107.0552

[43] K. S. Narendra and J. Taylor, Frequency Domain Methods for Absolute Stability, Academic
Press, New-York, 1973.

[44] D. Peaucelle, A. Fradkov and B. Anrienvsky, “Passification-based adaptive control of linear
systems: Robustness issues”, Int. J. Adaptive Contr., Vol. 22, pp. 590-608, 2008.

[45] V. M. Popov, Hyperstability of Control Systems, Springer Verlag, New-York, 1973.
[46] A. Rantzer, “On the Kalman-Yakubovich-Popov lemma”, Sys. Cont. Lett., Vol. 28, pp. 7-10,

1996.
[47] P. P. Vaidyanathan, “The Discrete-Time Bounded-Real Lemma in Digital Filtering”, IEEE

Trans. Circ. & Sys., Vol. 32, pp. 918-924, 1985.
[48] J. C. Willems, “Least Squares Stationary Optimal Control and the Algebraic Riccati Equa-

tion”, IEEE Trans. Auto. Contr., Vol. AC-16, pp. 621-634, 1971.
[49] C. Xiao and D.J. Hill, “Generalizations of the Discrete-Time Positive Real Lemma and

Bounded Real Lemma”, IEEE Trans. Circ. & Sys. I, Fundamental Theory and Appl., Vol.

46, pp. 740-743, 1999.

(DA) Department of mathematics, Ben-Gurion University of the Negev, P.O. Box 653,
Beer-Sheva 84105, Israel
E-mail address: dany@math.bgu.ac.il

(IL) Department of electrical engineering, Ben-Gurion University of the Negev, P.O.
Box 653, Beer-Sheva 84105, Israel
E-mail address: izchak@ee.bgu.ac.il

http://arxiv.org/abs/1107.0552

	Chapman University
	Chapman University Digital Commons
	2011

	The Positive Real Lemma and Construction of All Realizations of Generalized Positive Rational Functions
	Daniel Alpay
	Izchak Lewkowicz
	Recommended Citation

	The Positive Real Lemma and Construction of All Realizations of Generalized Positive Rational Functions
	Comments
	Creative Commons License
	Copyright


	1. Introduction
	2. A historical perspective
	3. Generalized positive lemma necessity and the Riccati equation
	4. Generalized positive lemma sufficiency - an extension
	5. non-minimal realization and bounds on inertia - a closer look
	6. Convex invertible cones and the Lyapunov inclusion
	7. convex invertible cones of realizations of generalized positive functions of prescribed parameters
	8. turning a function generalized positive through static output feedback
	9. concluding remarks
	References

