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Abstract 

FGF9 has complex and important roles in skeletal development and repair. We have previously 

observed that Fgf9 expression in osteoblasts (OBs) is regulated by G protein signaling and therefore 

the present study was done to determine whether OB-derived FGF9 was important in skeletal 

homeostasis.  To directly test this idea, we deleted functional expression of Fgf9 gene in OBs using 

a 2.3kb collagen type I promoter-driven Cre transgenic mouse line (Fgf9
OB-/-

). Both Fgf9 knockout 

(Fgf9
OB-/-

) and the Fgf9 floxed littermates (Fgf9
fl/fl

) mice were fully backcrossed and maintained in 

an FBV/N background. Three month old Fgf9
OB-/- 

mice displayed a significant decrease in 

cancellous bone and bone formation in the distal femur and a significant decrease in cortical 

thickness at the TFJ. Strikingly, female Fgf9
OB-/- 

mice did not display altered bone mass. 

Continuous treatment of mouse BMSCs with exogenous FGF9 inhibited mouse BMSC 

mineralization while acute treatment increased the proliferation of progenitors, an effect requiring 

the activation of Akt1. Our results suggest that mature OBs are an important source of FGF9, 

positively regulating skeletal homeostasis in male mice. Osteoblast-derived FGF9 may serve a 

paracrine role to maintain the osteogenic progenitor cell population through activation of Akt 

signaling. 
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Introduction 

The adult skeleton is a dynamic organ that supports body weight and maintains mineral 

homeostasis through continuous bone remodeling at bone surfaces. This process requires 

coordinated cellular activities between osteoclast and osteoblast lineage cells, in which osteoblasts 

are responsible for regulating osteoclasts and depositing bone matrix through perceiving mechanical 

and biochemical cues, such as hormones and growth factors within bone marrow microenvironment 

(1). Parathyroid hormone (PTH) promotes osteoblast function and has emerged as a major approach 

for clinical treatment of osteoporosis because of its anabolic effects. PTH activates the Gs-cyclic 

AMP signaling pathway by acting on the PTH/PTHrP receptor 1 (PTHR1) in osteoblasts. By 

assessing the transcriptome of maturing osteoblasts expressing a Gs-activating engineered receptor 

(Rs1) (2,3), we found that fibroblast growth factor 9 (Fgf9) was significantly down-regulated by Gs 

signaling, suggesting a possible role for osteoblast-derived FGF9 in regulating bone homeostasis 

(4).  

Signaling pathways initiated by the FGF ligand and FGF receptor (FGFR) system are crucial 

for various cellular processes, including proliferation, differentiation and survival (5). The 

functional link between FGF signaling and vertebral limb development has been extensively studied 

(6-9). Signaling through FGFR1 and FGFR2 involve bones arise by intramembraneous ossification 

and mutations of FGFR1 and 2 principally induce craniosynostosis and facial abnormalities (10,11). 

Signaling through FGFR3 principally affects bones that arise by endochondral ossification and 

mutations in FGR3 cause several types of the human skeletal dysplasias including achondroplasia, 

hypochondroplasia, thanaachondroplasia, and severe achondroplasia (11).  

FGF9 expression is localized to perichondrium/periosteum, trabecular bone, and the 

mesenchyme surrounding developing bones (12). FGF9 can interact with multiple FGFRs, but has 

the highest affinity for FGFR3 (6,13,14). FGF9 is reported to have complex and important roles in 
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skeletal development and repair (10,15-18). For instance, FGF9 null mice exhibit a lethal phenotype 

with a limb developmental defect that is similar to achondroplasia in human (12). 

Haploinsufficiency of Fgf9 represses bone fracture repair (17). Conditional over-expression of 

FGF9 in cartilage caused an inhibitory phenotype of chondrocyte terminal differentiation with less 

subchondral bone formation (6). In contrast to its diverse activities in development and physiology, 

the roles of the FGF9 in bone homeostasis are still unclear due to functional and structural 

redundancy and the similar receptor specificity across FGF ligands (5,19).  

In this study, we addressed the physiological role of osteoblast-derived FGF9 by deleting its 

expression in maturing osteoblasts using the 2.3kb collagen type I promoter driven Cre 

recombinase.  We found that osteoblast-derived FGF9 has a sex dimorphic (male-specific) effect on 

adult mouse skeleton associated with an increase in osteoblast progenitor cell proliferation and 

suppression of osteoblast differentiation. 
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Materials and Methods 

Animals 

All transgenic mouse studies were approved by and performed in accordance with the 

Institutional Animal Care and Use Committees at the San Francisco Veterans Affairs Medical 

Center and at the University of California, San Francisco.  

The transgenic mice with Fgf9 gene specifically depleted in osteoblasts were generated by 

crossing the male transgenic mice that heterogeneously harbor the Cre recombinase gene (Cre) 

driven by a 2.3kb type 1 collagen promoter [STOCK Tg(Col1a1-Cre)2Bek/Mmucd, MMRRC] with 

the female Fgf9
flox/flox

 mice (generously provided by Dr. Fen Wang, Texas A&M Health Science 

Center)(20). To minimize the unnecessary genetic effects on bone metabolism, we backcrossed all 

the mice to a FVB/N background. The homozygous Fgf9
flox/flox

 mice in a FVB/N background were 

bred by crossing the Fgf9
flox/flox

 chimeras with the wild type FVB/N mice for 10 generations (Fig. 

1A). The average litter size for a FVB/N mouse breeding pair was between 8 to 10 pups in this 

study. Our breeding strategy has resulted in that the offspring of each litter mice had 50% chance to 

be osteoblast conditional knockout mice (Co l1 (2.3)-Cre; FGF9
 flox/flox

)(Fgf9 
OB-/-

) and the other 

50% mice were likely to be FGF9
flox/flox

, which served as littermate controls (Fgf9 
fl/fl

).  

All mice were group-housed at 5 mice per plastic cage, maintained in a humidity and 

temperature controlled facility with a 12/12 hour light/dark cycle, and fed with food and water ad 

libitum. At the termination of this study, 12 week old mice were euthanized and both femurs and 

tibiae were subjected to skeletal phenotype assessment as indicated below. To study bone formation 

and mineralization, mice were injected with 20 mg/kg of calcein (Sigma-Aldrich, St Louis, MO, 

USA) 21 and 7 days before euthanasia and with 15 mg/kg of demeclocycline (Sigma-Aldrich) 2 

days before euthanasia.  

Analysis of Bone Formation  
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Mice were euthanized and femurs and tibiae were removed and dissected free from 

surrounding musculature. Bones were fixed in 10% neutral-buffered formalin for 48 hours at 4C 

and then stored in 70% ethanol before CT and histomorphometry. The distal femurs and tibio-

fibular junction (TFJ) were scanned using a Scanco VivaCT-50 µCT system (Bruttisellen, 

Switzerland). All CT images were obtained using an X-ray energy of 55 kV with a voxel size of 

10.5 um and integration time of 1000 ms. The cancellous region of interest (ROI) was at a distance 

of 0.10 to 1.35 mm from the primary spongiosa. The cancellous ROI was assessed in distal femurs 

using a global thresholding protocol with segmentation values of 0.8/1/270. Quantitative assessment 

of diaphyseal cortex at TFJ was conducted using data from 40 slices (0.42 mm) using a global 

thresholding protocol with segmentation values of 0.8/1/365. 

Histomorphometry  

Following µCT analysis, the un-decalcified femurs and tibiae were embedded in methyl 

methacrylate and then sectioned with Jung 2065 and 2165 microtomes (Leica, 145 Bannockburn, 

IL, USA). Assessment of bone formation activity at cancellous bone surfaces was performed on the 

unstained, 10-mm longitudinal sections from the left femur. Five-mm sections of distal femur bones 

were also processed for Von Kossa/Trichrome staining as previously described for static 

histomorphometry (21). Assessment of cortical bone was performed on 10-mm transverse sections 

at TFJ. Before histomorphometry, mosaic-tiled images of distal femur and TFJ were acquired at x20 

magnification with a Zeiss Axioplan Imager M1 microscope (Carl Zeiss MicroImaging, 

Thornwood, NY, USA) fitted with a motorized stage. The tiled images were stitched and converted 

to a single image using the Axiovision software (Carl Zeiss MicroImaGing) prior to blinded 

analyses being performed using image-analysis software (Bioquant Image Analysis Corp., 

Nashville, TN, USA). Cancellous bone was assessed in the region 100 µm from the lowest point on 

the growth plate, extending 1 mm down the metaphysis. To measure the number of osteoclast per 
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bone surface in the trabecular bone, 5-μm longitudinal sections from the distal femur were stained 

for tartrate resistant acid phosphatase (TRAP) (22-24).  The dynamic indices of bone formation 

within the same region that were measured on 10-mm sections and percent mineralizing surface 

(MS/BS), mineral apposition rate (MAR), and surface-based bone-formation rate (BFR/BS) were 

determined by Bioquant OSTEO software.  

RNA Extraction and RT-qPCR  

Both femur and tibia were isolated immediately after animals were euthanized. The 

epiphyses were then removed and bone morrow was flushed with PBS. The diaphyses were kept 

frozen in liquid nitrogen until processing. Frozen tissues were pulverized using a biopulverizer 

(Biospec Products, Inc., Bartlesville, OK, USA), followed by RNA extraction using RNA STAT60 

(Tel-Test, Inc., Friendswood, TX, USA) and subsequent purification using Micro-to-Midi Total 

RNA Purification Kit (Invitrogen, Carlsbad, CA, USA). cDNA was synthesized using TaqMan 

Reverse Transcription Reagents (Applied Biosystems, Inc., Foster City, CA, USA) and random 

hexamer primers according to the recommendations of the manufacturer. Gene amplification was 

measured with SYBR Green using the ABI Prism ViiA
TM

 7 real-time PCR System (Waltham, MA, 

USA). Analysis was carried out using the ViiA
TM

 7 software supplied with the thermocycler. The 

sequences of the primer sets have been published previously (4,23,25). The target gene expression 

was displayed normalized to GAPDH. 

Serum Chemistry  

Before euthanizing the mice, blood was collected from the abdominal inferior vein when 

mice were under isoflurane inhalation anesthesia and then processed in MicroTainer serum 

separator tubes (BD Biosciences, San Jose, CA, USA). Serum procollagen type I amino-terminal 

propeptide (PINP) and serum pyridinoline (PYD) measurements were carried out using the 

rat/mouse PINP EIA Kit AC-33F1 from Immunodiagnostic Systems (Scottsdale, AZ, USA) and the 
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Metra Biosystems Serum PYD Kit 8019 (Metra Biosystems Inc., Santa Clara, CA, USA) according 

to manufacturers’ directions. 

Bone marrow stromal cell culture and mineralization in vitro 

 Briefly, the bone marrow plugs from 8 to 10 week old wild type FVB/N mice were flushed 

out from both femurs and tibiae and cultured in primary culture medium, alpha modification of 

Eagle’s medium (-MEM; Thermo Scientific) supplemented with 10% fetal bovine serum 

(HyClone), 100U/ml penicillin, 100µg/ml streptomycin (Invitrogen), and 0.25µg/ml Fungizone 

(26). Bone marrow stromal cells (BMSCs) were plated into 6-well plates at a density of 1.8 ~ 2.3 

x10
6 

cells/well. Cells were incubated in a humidified atmosphere of 5% CO2 at 37°C. On day seven, 

50 µg/ml ascorbic acid (Sigma-Aldrich) and 3mM ß-glycerol phosphate (Sigma-Aldrich) were 

added to the primary culture media to induce osteoblastic differentiation. Media was changed every 

2-3 days. To assess mineralization, two percent silver nitrate solution (Sigma-Aldrich) was added to 

cell culture dishes on day 21 for Von Kossa (VK) staining and UV-crosslinked for 10 minutes. 

Stained cultures were scanned and quantified using Improvision Openlab software version 5.0.2. 

Cell Proliferation 

 Effect of FGF9 on mouse BMSC proliferation was determined by measuring BrdU 

incorporation using a Cell Proliferation ELISA kit (Roche Applied Science, Indianapolis, IN)(23). 

Briefly, mouse BMSCs were plated onto 96-well plates at a seeding density of 1x10
4 

cells / well in 

primary culture media. On day 3, 1 ~ 10 ng/ml recombinant mouse FGF9 (R&D Systems, INC, 

Minneapolis, MN) was added to the media for 24 hours, and BrdU was added 4 hours prior to the 

assay. The incorporated BrdU in each culture was quantified according to the manufacturer’s 

instruction. The results of this assay were confirmed by repeating the experiment three times. 

Protein Extraction and Immunoblotting 
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The wild type BMSCs at confluence were treated with 5ng/ml FGF9 for 24hr. FGF9 

solution was prepared in the osteogenic medium, in which the fetal bovine serum (FBS) was 

omitted to eliminate the effect of serum components on the phosphorylation of Akt and Akt1. 

Whole cells protein lysates were prepared using RIPA buffer (50 mM sodium chloride, 1.0% NP-

40, 0.5% sodium deoxycholate, 0.1% SDS (sodium dodecyl sulfate), 50 mM Tris, pH 8.0) plus 

protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific) and measured the 

concentrations using BCA assay (Thermo Fisher Scientific). Protein samples (10-15ug/lane) were 

resolved by SDS-PAGE (10% separating gel), transferred to PVDF membranes, and subjected to 

immunoblot analysis with specific antibodies against Akt; Akt1, phosphorylated Akt; and 

phosphorylated Akt1 (Cell Signaling) at the dilution of 1:1000. Detection was made by enhanced 

chemiluminescence (ECL) using SuperSignal West Dura Extended Duration Substrate (Thermo 

Fisher Scientific). Data was captured using Fujifilm LAS 4000 (Fuji Medical Systems, USA). 

Statistical Analysis 

Statistical significance was ascertained by a two-tailed Student's t test or, where indicated, 

by two-way ANOVA. α ≤ 0.05 was considered significant. 
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Results: 

Loss of Fgf9 in Osteoblasts Has no Effect on Bone Growth 

FGF9 participates in multiple steps of endochondral ossification to regulate skeletal 

development in the proximal limb (6). The FGF9 null mice have rhizomelic limb shortening, 

initiated at the earliest stages of skeletal growth. However, specific knockout Fgf9 gene in 

osteoblasts (OBs) did not replicate the skeletal phenotypes in Fgf9 null mice (12). We did not 

observe a significant change of body weights up to 3 months of age (Fgf9 
fl/fl  

vs. Fgf9 
OB-/- 

: male, 

24.13 ± 0.59 vs. 23.3 ± 0.62 g; female, 18.42 ± 0.27 vs. 17.8 ± 0.97 g).  

Loss of Fgf9 in Osteoblasts Decreases Cancellous Bone Formation in Adult Male Bones 

To test the specificity of Cre gene expression, we bred the Co l1 (2.3)-Cre mice with a line 

of Rosa tomato red mice (generously provided by Dr. Ann Zovein, University of California San 

Francisco, CA) (Fig 1B). The Cre recombinase is demonstrated to be expressed in OBs and 

osteocytes (OCTs) in adult Coll (2.3)-Cre; td/Tomato Red mice (Fig 1B). To test the efficiency of 

Fgf9 deletion in Fgf9
OB-/-

 mice, we also performed reverse transcription end point PCR on RNA 

extracted from long bones and demonstrated that FGF9 gene was successfully excised by Cre 

recombinase (Fig. 1C)(20) and as expected, the conditional Cre-loxp recombination dramatically 

decreased Fgf9 mRNA level in both male and female Fgf9
OB-/-

 mice (Fig. 1D). 

MicroCT assessment demonstrated that Fgf9 deletion led to a dramatic decrease in 

cancellous bone fractional volume (BV/TV) at distal femur in male, but not female, Fgf9 
OB-/- 

mice 

(Fig. 2A and Table 1).  The decrease was mainly associated with a significant decrease in 

trabecular thickness (Tb.Th) (p<0.001) and an increase in trabecular separation (Tb.Sp) (Table. 1). 

In contrast, Fgf9 deficiency did not change trabecular number (Tb.N) (Table. 1). The effects of 

Fgf9 gene deletion on adult mouse bones were also evaluated by histomorphometry. The 3 month 

old male Fgf9 
OB-/- 

mice showed a significant decrease in cancellous BV/TV and Tb.N, and a 
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significant increase in Tb.Sp, compared to the age and sex-matched Fgf9 
fl/fl

 mice (Fig. 2B). 

However, the female transgenic mice displayed no change in BV/TV, Tb.Th, Tb.N, and Tb.Sp at 

the distal femur (Fig. 2B). The osteoblasts sitting at the trabecular surface (N.Ob/BS) was also 

counted. It was found that N.Ob/BS was significantly lower in the male but not in the female Fgf9 

fl/fl
 mice, compared to the age-matched controls (Supplemental Fig. 1A). 

To reveal the mechanism by which the loss of Fgf9 in osteoblasts led to decreased 

cancellous factional bone volume, we performed dynamic histomorphometry on the same bones 

(Fig. 2C). A sexual dimorphic response of bone formation to the Fgf9 deletion in osteoblasts was 

also observed at the distal femur by measuring fluorescence labeled trabecular surfaces (Fig. 2C). 

Male Fgf9 
OB-/- 

mice displayed decreased MS/BS and BFR. However, trabecular MAR was not 

altered in male Fgf9 
OB-/- 

mice. In contrast, there were no differences seen in the parameters of 

dynamic histomorphometry between female Fgf9 
OB-/-

 mice
 
and sex matched littermate control mice 

(Fig. 2C).  

Loss of Fgf9 in Osteoblasts Decreases Cortical Bone Formation in Adult Male Bones 

The cortical bone shell is a key determinant of bone strength and fracture risk and thins 

rapidly with age (27,28). Effects of the conditional knockout of FGF9 on cortical bone volume, 

cortical bone thickness, and bone marrow area were assessed at the TFJ by µCT (Fig. 3A and 

Table 1.). In male mice, there was no difference in tissue volume between the knockout and the 

littermate control mice. However, the FGF9 deletion resulted in a slight and statistically significant 

decrease in bone volume and cortical bone thickness (Ct. Th). There were no significant differences 

observed between female control and transgenic mice (Table 1.). The changes in cortical bone were 

further confirmed by histological analysis of the TFJ in Fgf9
OB-/-

 (Fig. 3B). In males, loss of Fgf9 in 

osteoblasts did not affect the cortical periosteal perimeter. The endosteal perimeter and bone 

marrow area were significantly greater while cortical thickness was significantly smaller at the TFJ 
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in male Fgf9
OB-/-

 mice (Fig. 3B). This result demonstrates that the loss of bone that occurred at the 

TFJ was mainly at the endosteal surface. The decreased bone formation at both periosteal and 

endosteal surfaces of the TFJ was mainly due to the decreased mineralizing surface in male Fgf9 
OB-

/-
. There were no significant changes in any of the cortical parameters in female mice (Fig. 3C). In 

addition, it has been found that the Ps.BFR is decreased in Fgf9
OB-/- 

male mice without any 

significant changes in periosteal perimeter (Ps.Pm) (Fig. 3B and 3C). The mice used in this study 

were at age of 3 months and by then the peak bone mass has already been established (29). Our 

result suggests that the source of FGF9 from mature osteoblasts possibly does not impact the 

cortical bone accrual during growth but may affect the cortical bone expansion during aging. 

Endogenous Fgf9 Restrains the Function of Mature Osteoblasts 

We examined the effects of FGF9 deletion on the expression of genes in the femoral 

diaphysis. We observed no change in the expression of the early osteogenic marker genes, such as 

Osx and Runx2. Surprisingly, Alp, Col1, Ocn, and Dmp1 mRNA expression was significantly higher 

in male Fgf9
OB-/-

, compared to age-matched Fgf9
 fl/fl 

mice. There were no significant differences 

observed between female transgenic and control mice, in regards to gene expression (Fig. 4). It has 

been reported that Fgf9 is important for promoting skeletal vascularization and global Fgf9 null 

mice displayed delayed osteogenesis due to defects in angiogenesis (12). However, we did not 

detect a significant change pecam1 mRNA level in the Fgf9
OB-/-

 mice (data not shown).  

Bone Resorption in Adult Fgf9 
OB-/-

 Mouse Bone Was not Altered 

In a previous study, Fgf9 null mice were found to display a reduction in osteoclast numbers 

in the perchondrondrium and primary spongiosa of the developing long bones (12). To examine if 

Fgf9 deficiency in osteoblasts affects osteoclastogenesis in adult skeleton, we performed TRAP 

staining and found that the specific deletion of Fgf9 in osteoblasts did not alter the number of 

osteoclasts (N.Oc/BS) within the distal femur (Fig. 5). Consistent with this finding, serum PYD was 
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not changed, either (Fig. 5). Although the levels of Opg and Rankl mRNA were increased in males 

(data not shown), the ratio of OPG/RANKL was not significantly altered by deleting Fgf9 (Fig. 5). 

Exogenous FGF9 Stimulates Proliferation of BMSCs 

We demonstrated that Fgf9 
OB-/-

 mice displayed an osteoblastic phenotype, in which deletion 

of Fgf9 in osteoblasts led to a low bone mass due to a decreased bone formation rate in male 

skeleton. We have carried out additional studies to determine whether there is a cell autonomous 

autocrine role for FGF9 in promoting osteogenesis.  We found that bone marrow stromal cells 

derived from male Fgf9 
OB-/-

 mice displayed osteogenic differentiation that was comparable to that 

seen in cultures from WT mice (Supplemental Figure 1B).  These findings suggest that osteoblast 

derived FGF9 promotes osteogenesis through paracrine effects on osteoprogenitors. To test this 

hypothesis, we cultured BMSCs from wild type mice and the effect of exogenous FGF9 on BMSC 

proliferation was examined using a BrdU incorporation assay. It was found that treatment with 

rmFGF9 for 24 hrs significantly increased proliferation in both male and female BMSCs in a dose 

dependent manner (Fig. 6A). Strikingly, BMSCs from male mice were more responsive to FGF9 

than were BMSCs from female mice. At a dose of 5 ng/ml rmFGF9, there was a 209% (p<0.01) 

increase in BrdU labeled male cells and a 76% (p<0.05) increase in BrdU labeled female cells, 

when compared to sex matched, vehicle treated control cells (Fig. 6A). 

We have examined the expression levels of FGFR3 in both bone marrow progenitors (PCs) 

and mature osteoblasts (OBs) because FGF9 has the highest affinity for FGFR3 (6,13,14). It was 

found that the expression level of FGFR3 mRNA was much higher in mature OBs regardless of 

gender and genotype (supplemental Fig. 2A). We also assessed whether exogenous FGF9 would 

produce anabolic effects in maturing OBs due to their high level of expression of FGFR3.  In this 

study, the BMSCs from male and female wild type mice were cultured separately. FGF9 at a dose 

of 5ng/ml was administered to OBs from day 14 to day 21 post culture, mRNA levels of the 
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osteogenic marker genes including osterix, Runx2, alkaline phosphatase, type 1 collagen and 

osteocalcin were measured using real time PCR. It was found that mRNA levels of these bone 

marker genes were decreased by FGF9 treatment regardless of gender (Supplemental Fig. 2B and 

2C). 

FGF9 Stimulates Proliferation of BMSCs through Akt1 Signaling Pathway 

Inhibition of Akt activity by adding the Akt inhibitor MK-2206 (1µM) completely 

eliminated the stimulatory effect of FGF9 on osteoblast precursor proliferation in vitro (Fig. 6B). 

Additionally, levels of Akt1and phosphorylated Akt1 in the confluent BMSCs treated with FGF9 

were measured by western blot. It was found that exogenous FGF9 stimulated BMSC proliferation 

by mainly increasing phosphorylation of Akt1 (Fig. 6C), a result in line with the previous finding 

that loss of Akt1 was shown to be deleterious to osteoblast precursor development, leading to lower 

bone mass in male (but not female) mice (30).  
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Discussion 

FGF9 is critical for skeletal development (6-9). It has been reported that FGF9 is expressed 

in the proximity of the developing skeleton and that FGF9 null mice exhibited a limb phenotype 

with rhizomelia (12). FGF9 is expressed at low levels in osteoprogenitor cells, but is highly 

expressed in mature osteoblasts (31). The physiological role of osteoblast-derived FGF9 in skeletal 

homeostasis is unknown. Our results show that deletion of Fgf9 in osteoblasts led to a significant 

decrease in both cancellous and cortical bone in young adult male mice. Surprisingly, the specific 

deletion of FGF9 had no such effect in female mice. We have previously observed that Fgf9 

expression in osteoblasts is regulated by G protein signaling (4). Activation of Gs signaling or 

increasing intracellular level of cAMP, both conditions producing strong bone formation (2,3), 

down-regulated the expression of Fgf9 in mature osteoblasts. This led us to hypothesize that 

osteoblast-derived FGF9 might play a negative role in skeletal anabolism.  However, deletion of 

Fgf9 in osteoblasts resulted in an osteopenic phenotype, as evidenced by a decreased trabecular 

bone fractional volume with decreased bone formation at trabecular bone surfaces in male Fgf9
OB-/-

 

mice. Histomorphometry also demonstrated that FGF9 deficiency resulted in a decrease in number 

of OBs and mineralized surface (MS/BS) but had no effect on MAR at the distal femur, suggesting 

that deletion of FGF9 in osteoblasts might not affect the speed of mineralization, but the number of 

osteoblasts, at the trabecular surface. In the diaphysis of long bones (where mature osteoblasts and 

osteocytes are the dominant osteoblast lineage cell types) loss of Fgf9 led to increased expression of 

markers of mature osteoblasts, including Ocn, Dmp1, and Col1. However, the male Fgf9
OB-/-

 mice 

exhibited a decreased cortical bone thickness with a decreased cortical bone formation rate. 

Collectively, these findings suggest that mature osteoblasts serve as an important source of FGF9 

and that secreted FGF9 regulates bone formation in adult male mice in a cell non-autonomous 

manner.   
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FGFs including FGF9 comprise the most common subfamily that transduces signals through 

FGFR tyrosine kinases. These polypeptides can be retained in the extracellular matrix in the vicinity 

of their secreting cells and act as autocrine and/paracrine factors (32,33). In previous studies, 

exogenous FGF9 has been demonstrated to be pro-osteogenic and to facilitate bone regeneration 

(17,18). Recently, FGF9 has been found to induce osteoblast proliferation and new bone formation 

in a bone organ assay (34). In the present study, we demonstrated that exogenous FGF9 stimulates 

bone marrow stromal cell proliferation in a dose dependent manner, a finding similar to that of Lu 

et al. (35). These findings support the hypothesis that osteoblast secreted FGF9 serves as a paracrine 

role to stimulate osteogenesis of bone marrow skeletal stem cells to maintain bone homeostasis. 

Akt1 deficiency is reported to decrease bone mass and formation (30,36). FGF9 has been 

demonstrated to activate Akt pathways to stimulate steroidogenesis in mouse Leydig cells (37). 

Akt1 is the major isoform in bone cells and acts to suppress osteoblast apoptosis (36). In the present 

study, we demonstrated that FGF9 stimulates the proliferation of BMSCs by activating Akt1. 

It is not clear why loss of Fgf9 in osteoblasts resulted in significant bone loss in male mice 

while not affecting the female skeleton. Available evidence suggests that there is a collaborative 

interaction between FGF9 and the actions of androgens on bone (30,38,39). Firstly, FGF9 has 

functions related to sex domination in addition to bone formation. Mice globally lacking Fgf9 

display male-to-female sex reversal (40). Secondly, androgens promote proliferation of osteoblast 

progenitors and differentiation, in part, through PI3-kinase-Akt signaling pathway (30,41). Of 

interest in this regard, global haploinsufficiency of Akt1 in mice also induced a decrease in femoral 

bone mass that was seen in males but not females (30). Thirdly, we have demonstrated that FGF9 

stimulates the proliferation of BMSCs by activating Akt1. Finally, androgens have potent effects on 

osteoblast formation. While androgens maintain trabecular bone mass and integrity, they favor 

periosteal bone formation in men (42). These findings are consistent with the bone phenotype of 
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FGF9 conditional knockout mice, in which deletion of Fgf9 reduced cortical bone by decreasing 

both periosteal and cancellous bone formation. Collectively, the growth factor, FGF9 may serve as a 

mediator of bone anabolic signaling of androgen/Akt1 in osteoblasts. 

 The effects of FGF9 on osteoblasts and progenitors are complex. In addition to delivering a 

mitogenic signal in a variety of cells, FGF9 is also involved in cell differentiation, motility, and 

survival (43). Experiments have suggested that FGF9 serves as an endogenous inhibitor of 

chondrocyte differentiation (6,44). However, the role of FGF9 on the differentiation of OBs is not 

clear. FGF9 is known to signal mainly through FGFR3 in bone (13). In this study, we found that the 

expression levels of FGFR3 were higher in mature OBs than bone marrow progenitor cells, 

independent of gender and genomic difference (Supplemental Figure 2A) and that addition of 

FGF9 inhibited the expression of osteogenic marker genes in both male and female mature OBs 

(Supplemental Figure 2B and 2C).  Our results demonstrate that exposure of mature OBs to FGF9 

does not elicit an “anabolic” response and that the observed difference in the effects of FGF9 on 

bone progenitor cells and mature osteoblasts is not likely related to the levels of FGFR 3. A recent 

study has demonstrated that an activating mutation of FGFR3 in osteoblasts does not produce any 

obvious bone phenotype (45), supporting our conclusion. The seemingly inconsistent results 

between the Fgf9 
OB-/-

 mice and these in vitro cell experiments may be due to functional redundancy 

between FGF ligands (5,11). Fgf9 belongs to the canonical Fgf subfamily, Fgf9/16/20 (5). 

Canonical Fgfs mediate biological response by binding to and activating FGFRs. Although each 

canonical FGF has distinct receptor binding specificity, each member of an FGF subfamily has 

similar receptor specificity (19). The specific role of these receptors in mediating responses to FGF9 

in bone remains to be elucidated.  Given its role in fracture regeneration (17) and in diseases such as 

oncogenesis (46) and tumor metastasis (34,47,48), FGF9 and its signaling pathways are attractive 

targets for therapy.  
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 In conclusion, our results suggest that mature osteoblasts are a possibly important source of 

FGF9, positively regulating skeletal homeostasis in male mice. Osteoblast-derived FGF9 may serve 

a paracrine role to maintain the osteogenic progenitor cell population through activation of Akt1 

signaling. 
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Figure Legends 

Figure 1. Establishment of a transgenic mouse model with the conditional deletion of Fgf9 in 

osteoblasts. A) Schematic showing the transgenic mouse model used in this study. B). The Cre 

recombinase is demonstrated to be expressed in osteoblasts (OBs) and osteocytes (OCTs) in adult 

Coll (2.3)-Cre; td/Tomato Red mice. C) Reverse transcription end point PCR demonstrated a 

successful excision of Fgf9 fragment in the RNA extract from the long bones of the Coll (2.3); Fgf9 

fl/fl
 (Fgf9 

OB-/-
) mice. D) Real time PCR assessment of the level of Fgf9 mRNA (relative to GAPDH) 

in the long bones of 3 months old Fgf9 
OB-/-

 mice. *p<0.05 vs. littermate controls (Fgf9 
fl/fl

).  

 

Figure 2. Assessment of cancellous bone mass at distal femur in the 3 month old male and female 

Fgf9 
OB-/-

 mice. A). Representative CT 3D reconstruction images of the distal femurs. B and C). 

Histomorphometry of cancellous bone at the distal femurs. BV, bone volume; TV, tissue volume; 

Tb.Th, trabecular thickness, Tb.Sp, trabecular separation; MS, mineralizing surface; MAR, mineral 

apposition rate, BFR, bone formation rate. ** p< 0.01, *p<0.05 vs. the sex-matched littermate 

controls. ### p<0.001, ## p<0.01 vs. age-match Fgf9 
fl/fl

 mice with the same genotype.  

 

Figure 3. Assessment of cortical bone at tibio-fibular junction (TFJ) in the 3 month old male and 

female Fgf9 
OB-/-

 mice. A). Representative 3D reconstruction images of CT scan at the TFJ. B and 

C). Histomorphometry of cortical bone at the TFJ. Ps.Pm, periosteal perimeter; Ec.Pm, endosteal 

perimeter; Ct.Th, cortical thickness; Med.Ar, bone marrow area; Ps.BFR, periosteal bone formation 

rate, Ec.BFR, endosteal bone formation rate. ** p< 0.01, *p<0.05 vs. the sex-matched littermate 

controls. 
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Figure 4. Determination of mRNA levels of osteogenic marker genes in the long bones of the 3 

month old Fgf9 
OB-/-

 mice. *p<0.05 vs. the sex-matched littermate controls. 

 

Figure 5. Assessment of bone resorption in the 3 months old Fgf9 
OB-/-

 mice. N. OC, number of 

osteoclasts; BS, the length of bone surface. PYD, pyridinoline. 

 

Figure 6. Effects of exogenous FGF9 on proliferation of the cultured bone marrow stromal cells 

(BMSCs). The BMSCs from wild type mouse were treated with exogenous FGF (5ng/ml) for 24 

hrs. A and B) Assessment of BMSC proliferation in the absence or presence of Akt inhibitor, MK-

2206 (1M). Cell proliferation was determined by BrdU incorporation assay. C) Determination of 

Akt1 activation in BMSCs by FGF9 (5ng/ml) using Western blots. 
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Figure 6  
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Table 1. CT assessment of distal femur and tibiofibular junction in 3 month of Fgf9 
OB-/-

 and 

littermate Fgf9 
fl/fl

 mice. 

Parameters Male Female 

Fgf9 
fl/fl

 Fgf9 
OB-/-

 Fgf9 
fl/fl

 Fgf9 
OB-/-

 

Distal Femur     

BV/TV (%) 12.54  2.09 9.252  1.59 *** 13.29  2.43 12.86  1.40 

Tb.N (1/mm) 5.059  0.457 4.773  0.537 4.873  0.347 4.845  0.595 

Tb.Th (µm) 40.62  2.63 36.18  2.17 ** 42.04  4.35 43.00  4.35 

Tb.Sp (µm) 197.1  18.4 212.5  26.86 205.7  17.46 208.8  28.61 

Tibio-fibular 

Junction 

    

TV (mm
3
) 0.3056  0.025 0.2890  0.016 0.2883  0.018 0.2798  0.039 

BV (mm
3
) 0.2116  0.017 0.1965  0.014* 0.2101  0.018 0.2030  0.021 

Ct. Th (mm) 0.2251  0.014 0.2118  0.017* 0.2356  0.019 0.2316  0.011 

Data are presented as Mean  SD. BV, bone volume; TV, tissue volume; Tb.N, trabecular Number; 

Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; Ct.Th, cortical thickness. *** p<0.001, ** 

p<0.01, * p<0.05 vs. littermate control mice. Statistic analysis was determined by two-way 

ANOVA. 
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