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Implementing generalized measurements with superconducting qubits
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We describe a method to perform any generalized purity-preserving measurement of a qubit with techniques
tailored to superconducting systems. First, we consider two methods for realizing a two-outcome partial
projection: using a thresholded continuous measurement in the circuit QED setup and using an indirect ancilla
qubit measurement. Second, we decompose an arbitrary purity-preserving two-outcome measurement into
single-qubit unitary rotations and a partial projection. Third, we systematically reduce any multiple-outcome
measurement to a sequence of such two-outcome measurements and unitary operations. Finally, we consider how
to define suitable fidelity measures for multiple-outcome generalized measurements.
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I. INTRODUCTION

The ability to isolate and control coherent quantum sys-
tems has dramatically improved in recent decades. As a
consequence, techniques that were previously restricted to
thought experiments have recently been promoted to practical
laboratory methods. Generalized quantum measurements fall
into this category.

The concept of measurement in quantum mechanics has
been largely dominated historically by projective measure-
ments, in which an experimenter learns precise information
about a quantum system under study [1]. Such projective
measurements are commonly called “von Neumann measure-
ments” since von Neumann first formalized the quasi-Boolean
lattice of projection operators used to describe the curious
logic obeyed by these measurements [2,3]. However, it is
worth noting that von Neumann simultaneously introduced the
possibility of learning imprecise information about a quantum
system by measuring a correlated ancilla that acts as an indirect
detector for the system [2]. When such an indirect detector
becomes correlated with the system, an experimenter still
obtains some information about the system, but the precision of
that information depends on the degree of correlation between
the ancilla and the system. These imprecise measurements are
an example of generalized measurements.

The mathematical description of generalized quantum
measurements has been considerably refined since these early
observations [4–8], giving rise to the modern formalism
of quantum operations. This formalism has proven itself
invaluable for reasoning about tasks in quantum information
and quantum computing [9–13]. However, it is only in the past
decade that experimental systems have become sufficiently
controllable to make generalized measurements a practical
laboratory tool.

Thus far, optical systems have been the primary arena
for implementing generalized quantum measurements, with
experiments using them to examine nonorthogonal state
discrimination [14], nondestructive photon measurements
[15–17], feedback control [18,19], entanglement distillation
[20], weak-value superoscillation effects [21–23], Leggett-
Garg inequality violations [24–26], weak-value amplification
[27–33], locally averaged photon trajectories [34], direct
wave-function determination [35], error-disturbance comple-

mentarity [36,37], conditional measurement reversal [38,39],
Hardy’s paradox [40,41], and much more. In addition to these
specific examples of generalized measurements, there have
been several discussions about how to implement any desired
measurement on optical qubits [42–44]. Nevertheless, current
optical qubit architectures are not easily scalable. Though mea-
suring one or two photonic qubits in a general way is possible
using linear optics and parametric downconversion, it is not
so easy to reliably entangle and manipulate larger numbers of
independent photonic qubits. This scaling difficulty limits the
potential applications of generalized measurements.

In contrast, solid-state systems have demonstrated better
scalability in recent years and have also implemented a variety
of generalized quantum measurements. Experiments with
superconducting qubits have used generalized measurements
to demonstrate partial collapse [45] and measurement reversal
[46], violate Leggett-Garg inequalities [47,48], stabilize Rabi
oscillations with quantum feedback control [49], demonstrate
quantum backaction in an individual continuous measurement
[50], observe single quantum trajectories [51,52], entangle
qubits by measurement [53,54], and reduce decoherence via
uncollapsing [55]. These systems show promise for realizing
scalable architectures that can manipulate many entangled
qubits simultaneously. As such, we expect that many more
applications of generalized measurements will soon appear.
It is thus of particular interest to specify exactly how to
implement generalized measurements with these systems in
a systematic way [44].

In this paper, we discuss how to use modern supercon-
ducting systems to perform any generalized purity-preserving
qubit measurement, which is the most commonly discussed
(and most useful) type of generalized measurement (see,
e.g., [9]). For such a measurement, any pure initial state
will collapse to another pure state for each outcome of
the measurement process, but the collection of final pure
states need not form an orthogonal set. Each outcome of a
purity-preserving measurement is characterized by a single
Kraus operator (measurement operator), with the traditional
projection operators being a special case.

Our strategy will be to reduce an arbitrary n-outcome gen-
eralized measurement to a more manageable sequence of two-
outcome measurements. Each such two-outcome measurement
can be further decomposed into single-qubit unitary rotations
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and a standardized partial projection. We discuss two different
ways to realize such a partial projection, specifying explicitly
the experimentally controllable parameters. For simplicity of
discussion in what follows, we consider efficient detectors
that naturally perform purity-preserving measurements, with
the understanding that real laboratory implementations will
also include additional imperfections (like purity-reducing
decoherence) that would require multiple Kraus operators per
measurement outcome to fully describe. As such, we also
examine the issue of how to characterize the fidelity of an
experimentally realized many-outcome generalized quantum
measurement, as compared to an ideal purity-preserving
measurement.

The paper is organized as follows. In Sec. II, we detail
two methods of implementing two-outcome partial projections
using superconducting qubits. In Sec. III we describe how to
implement any generalized measurements by decomposing
them into sequences of unitary operations and partial projec-
tions. In Sec. IV the ways to characterize the fidelity of a
generalized measurement are discussed (with more details in
the Appendix). We conclude in Sec. V.

II. TWO-OUTCOME PARTIAL PROJECTIONS

To understand how to implement an arbitrary generalized
measurement, we first consider how to implement the simple
case of a two-outcome partial projection. We will then be able
to construct the general case as an appropriate sequence of
these partial projections and additional unitary rotations.

Recall that in a projective two-outcome qubit measurement,
the state collapses into an eigenstate of the measurement
|ψ〉 → |0〉,|1〉. By convention, these eigenstates correspond
to the Pauli Z operator σz = |0〉〈0| − |1〉〈1|. Formally, the
collapse can be understood as the application of a particular
projection operator, |0〉〈0| or |1〉〈1|, followed by state renor-
malization. The measurement result of 0 or 1 determines which
projection operator is applied and thus fully determines the
qubit state after the measurement. In the special case when
the initial state is either |0〉 or |1〉, the measurement result
is deterministic, perfectly correlated with the qubit state, and
measurement does not change the qubit state.

For a generalized two-outcome measurement, the measure-
ment result can be “noisy.” That is, the measurement result of
0 or 1 need not perfectly correlate with the premeasurement
qubit state. Instead, the results will correspond to the qubit state
only probabilistically. (Note that we assume the simplest case
here where the measurement basis of |0〉 and |1〉 is unchanged.)
If the qubit is in state |0〉, then there is a probability p that the
result will correctly report 0. Similarly, if the qubit is in state
|1〉, then there is a (generally different) probability q that the
result will correctly report 1. Since the obtained information
is imperfect, the state will only partially collapse toward the
eigenstates of the measurement when a result is obtained.

The simplest form of such a partial collapse does not
include additional unitary evolution and also does not include
decoherence (see [56] for more details). As a result, such
a measurement is purity-preserving, meaning that any pure
initial state collapses to another pure final state for each
measurement outcome. Each outcome (labeled 0 or 1) of
such a measurement formally corresponds to partial-projection

operators,

D0 = √
p |0〉〈0| +

√
1 − q |1〉〈1|,

(1)
D1 =

√
1 − p |0〉〈0| + √

q |1〉〈1|,
which depend on the two probability parameters (measurement
fidelities) p,q ∈ [0,1]. When a result 0 (or 1) is obtained, the
qubit state is updated to the pure state D0|ψ〉 (or D1|ψ〉) and
then renormalized. The probabilities of obtaining results 0 and
1 are ||D0|ψ〉||2 and ||D1|ψ〉||2, respectively. It is natural to as-
sume (without loss of generality) that p + q � 1, so the stated
correspondence between D0 and 0 (or D1 and 1) is sensible.

When p = q = 1, the projective measurement is recovered
as a special case. The case p = 1, q �= 1 is often called a null-
result measurement for the outcome 0 (the outcome 1 collapses
the state to |1〉, while the outcome 0 produces only a partial
collapse towards |0〉). The case p + q = 1 corresponds to no
measurement, with p and q directly indicating the probabilities
of the results 0 and 1 independently of the qubit state. Thus,
|p + q − 1| characterizes the strength of the measurement
(i.e., how well the measurement can discriminate between the
states |0〉 and |1〉); for example, a “weak” measurement (in the
sense of Ref. [7]) satisfies |p + q − 1| � 1. The difference
p − q characterizes the asymmetry between the probabilities
of results 0 and 1; in particular, the probability of the result 0
averaged over initial qubit states is (1 + p − q)/2, while the
averaged probability of the result 1 is (1 + q − p)/2.

We now consider two methods available for supercon-
ducting qubits to implement such a partial projection for an
arbitrary choice of p and q.

A. Thresholded continuous readout

The standard readout of a superconducting qubit in the
circuit QED setup [47–50,50–54,57–62] involves a quadrature
measurement of the leaked output from a pumped microwave
resonator that is dispersively coupled to the qubit. In this
case the qubit state evolves stochastically in the process of
its continuous measurement [63,64] (see also [11,12,65]).

Let us assume that a quadrature at an angle α from the
information-carrying quadrature is amplified by a quantum-
limited phase-sensitive amplifier and then measured. The
instantaneous output signal (which includes noise) is denoted
as I (t). The average of this noisy signal is correlated with the
state of the qubit, so that the dimensionless readout r(t) that
averages to the σz range of [−1,1] is

r(t) = 2
I (t) − Ic

�I
, (2)

where Ic = (I0 + I1)/2, �I = I0 − I1, and the values I0 and
I1 are the average signals obtained when the qubit is fixed in the
states |0〉 and |1〉, respectively. The readout r(t) corresponds
to the z component of the qubit state on the Bloch sphere.
Note that Ic will depend on the quadrature angle α in general.
The response �I will also depend on α as �I = �Imax cos α,
where �Imax is the maximum response at angle α = 0.

In the quantum nondemolition (QND) regime [8] with no
additional unitary evolution, the integrated readout

R =
∫ T

0

dt

τ
r(t) (3)
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completely determines the partial projection of the qubit
[12,64]. Here τ = 2S/(�I )2 is a characteristic “measurement
time” that controls the rate of partial projection (the signal-
to-noise ratio of 1 is reached after time τ ), while S is the
(approximately constant) one-sided spectral density of the
noisy signal due to the amplifier noise, which is assumed
here to be quantum limited. [The variance of I (t) is related
to the spectral density as Var(I ) = ∫ ∞

0 S(ω) dω/2π .] Notably,
the integration duration T in Eq. (3) is arbitrary, so one can
wait for a desired integrated readout R to appear and then
terminate the measurement (i.e., stop pumping the microwave
resonator).

If the output of the microwave resonator is collected
efficiently (i.e., without quantum information loss in con-
nectors, transmission lines, and amplifying circuitry), then
each integrated readout R corresponds to a purity-preserving
measurement that is characterized by a partial-projection
operator (see [64]),

MR ∝ exp

[
R

2 cos α
e−iασz

]

= eR/2e−i(R/2) tan α|0〉〈0| + e−R/2ei(R/2) tan α|1〉〈1|. (4)

After state renormalization, the constant proportionality factor
will cancel. Nonzero α increases the typical measurement
timescale τ = τmin/ cos2 α and produces z rotations of the
qubit state that depend on the integrated result R. For simplicity
in what follows, we assume measurement of the optimal
quadrature, α = 0.

An experimenter can then follow a simple proce-
dure to implement the two-outcome partial projection in
Eq. (1).

(1) Set a positive value R0 and a negative value R1 [given
later in Eq. (7)] as threshold values for the integrated readout
R.

(2) Wait for one of the threshold values to appear and then
terminate the measurement.

According to Eq. (4), this procedure will produce one of
the partial projections,

D0,1 = √
C0,1[eR0,1/2 |0〉〈0| + e−R0,1/2 |1〉〈1|], (5)

where the normalization constants C0,1 can be obtained either
by the first-passage techniques similar to Refs. [66,67] or
simply by using the condition D

†
0D0 + D

†
1D1 = 1, which

follows from the fact that at least one of the two thresh-
olds will eventually be reached (in turn, this follows
from the fact that at infinite time our continuous mea-
surement would collapse the qubit state to either |0〉 or
|1〉).

The thresholds R0,1 will determine the probabilities p and
q in Eq. (1). Squaring the operators in Eq. (5) and comparing
them to Eq. (1) produces the relations

D
†
0D0 = C0[eR0 |0〉〈0| + e−R0 |1〉〈1|]

= p |0〉〈0| + (1 − q) |1〉〈1|,

D
†
1D1 = C1[eR1 |0〉〈0| + e−R1 |1〉〈1|]

= (1 − p) |0〉〈0| + q |1〉〈1|.

It follows by inspection that

C0 =
√

p(1 − q), C1 =
√

q(1 − p), (6)

R0 = 1

2
ln

(
p

1 − q

)
, R1 = −1

2
ln

(
q

1 − p

)
. (7)

Thus, Eq. (7) gives us the threshold values R0 > 0 and
R1 < 0 that need to be set to perform the partial projection in
Eq. (1) with arbitrary p and q. Note that measuring a different
quadrature angle α will require the same thresholds, but will
produce additional z rotations that are absent in Eq. (1).

This way of realizing the partial projection in the circuit
QED setup is a direct generalization of the “uncollapsing”
measurements considered in Refs. [66] and [67]. This mea-
surement technique can also be viewed as an experimental
realization of the type of continuous measurement decompo-
sition of a generalized measurement described in [68–70]. For
two-outcome measurements on a qubit, only minimal feedback
is necessary, that is, determining when the measurement
process should terminate. For higher-dimensional systems
similar continuous measurement decompositions exist, but,
in general, more sophisticated feedback is needed in the
measurement process.

From Eq. (7) it is easy to check that a projective
measurement (p = q = 1) requires R0 = −R1 = ∞; such a
complete measurement can only be realized approximately.
The null-result measurement (p = 1, q �= 1) requires R1 =
−∞ and finite positive R0, so that the result 1 gives complete
information, while the result 0 is inconclusive. The case of no
measurement (p + q = 1) gives R0 = R1 = 0, which means
that the measurement is immediately terminated. A weak
measurement (|p + q − 1| � 1, with p and q not too close to
0 or 1) corresponds to small values of the thresholds, R0 � 1
and |R1| � 1, so that the measurement procedure likely lasts
for a short time. A symmetric measurement (p = q) requires
symmetric thresholds, R1 = −R0.

There is a significant caveat to this partial projection
implementation: The operator MR in Eq. (4) strictly applies
only for a purity-preserving (i.e., efficient) measurement.
Experimentally, a quadrature readout typically has imperfect
quantum efficiency (η < 1), which causes additional state
decoherence during the readout [64]. For example, recent
experiments verifying continuous state collapse showed a
quantum efficiency of roughly η ≈ 0.5, meaning that only
about half of the observed ensemble dephasing rate could be
attributed to information acquisition during the measurement
[49–52]. For such an inefficient measurement, the duration T

of the integrated readout will matter, since it will determine
the extra accumulated decoherence. As such, the thresholding
technique will generally produce a fluctuating distribution of
measurements with different amounts of additional decoher-
ence and so will only approximate the desired partial projection
with imperfect fidelity.

B. Ancilla qubit measurement

As an alternative to thresholding a continuous dispersive
readout, one can also realize the partial projection in Eq. (1)
with arbitrary p and q as a quantum circuit using an
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ancilla qubit measurement. This method does not require a
continuous measurement with perfect quantum efficiency, but
it does require high-fidelity two-qubit entangling operations
and single-qubit gates; it also requires high-fidelity projective
measurement of the ancilla qubit. This method can be realized
with various types of qubits (not necessarily in circuit QED
systems) and at present is easier to implement experimentally
for superconducting qubits (e.g., Refs. [48,55]) than the
method discussed in the previous subsection.

The procedure requires standard one-qubit and two-qubit
gates with adjustable parameters. In particular, the one-qubit
gates we will use are the X, Y , and Z rotations around the
Bloch sphere [9]:

Rx(φ) = e−iφσx/2 =
(

cos φ

2 −i sin φ

2

i sin φ

2 cos φ

2

)
,

Ry(φ) = e−iφσy/2 =
(

cos φ

2 − sin φ

2

sin φ

2 cos φ

2

)
,

Rz(φ) = e−iφσz/2 =
(

e−iφ/2 0

0 eiφ/2

)
.

For most superconducting qubit implementations, X and Y

rotations are realized with microwave pulses. The Z rotation
can be realized either by changing the qubit frequency
or as a composition of X and Y rotations, e.g., Rz(φ) =
Rx(π/2)Ry(φ)Rx(−π/2).

The partial-projection procedure also requires a two-qubit
entangling gate. The most convenient gate to use for concep-
tually understanding a partial projection is a Z-controlled Y

rotation (or X rotation) of the form

Ry|z(φ) = e−iφ(σz⊗σy )/2

=

⎛
⎜⎜⎜⎜⎝

cos φ

2 − sin φ

2 0 0

sin φ

2 cos φ

2 0 0

0 0 cos φ

2 sin φ

2

0 0 − sin φ

2 cos φ

2

⎞
⎟⎟⎟⎟⎠. (8)

This gate rotates the qubit in the Z-X plane of the Bloch sphere
by an angle ±φ depending on the state of the control qubit. This
gate may be produced directly if the qubit implementation ad-
mits an effective Z-Y (or Z-X) interaction Hamiltonian of the
form ��(σz ⊗ σy) (e.g., [59,71]). Alternatively, as discussed
later, it may be realized by using a controlled-phase gate,

CZ(2φ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei2φ

⎞
⎟⎟⎟⎠, (9)

that is properly dressed by Xπ/2 rotations of the ancilla (e.g.,
[48]); the angle in Eq. (9) is 2φ because the total phase
difference is 2φ in the gate (8). Yet another way to realize
the gate (8) is by using a fixed controlled-Z gate CZ(π ) and
one-qubit rotations that depend on φ (as we shall see shortly).

Now let us discuss the protocol to implement the partial
projection of Eq. (1). Using the Z-controlled Y rotation (8), it
can be done via the procedure illustrated in Fig. 1.

(1) Initialize the ancilla qubit in the state |0〉.

FIG. 1. Quantum circuit implementing the partial projections
D0,1 using an ancilla qubit. The ancilla is initialized in the state |0〉 and
then a Z-controlled Y rotation of ±φ is applied [see Eq. (8)], which
creates an angular separation of 2φ between the ancilla states coupled
to the qubit states of |0〉 and |1〉. Finally, the ancilla is Y rotated
by the angle ε − π/2 and measured. For ε = 0 this corresponds to
measurement in the X basis; the offset ε allows for measurement
asymmetry. The resulting partial projection of the qubit D0,1 depends
on the classical outcome 0 or 1 of the ancilla measurement.

(2) Perform a Z-controlled Y rotation (8) of the ancilla by
an angle φ (to be determined later), which entangles the main
qubit with the ancilla.

(3) Perform a Y rotation of the ancilla Ry(ε − π/2), with
the offset angle ε to be determined later.

(4) Measure the ancilla projectively in the computational
basis {|0〉,|1〉}.

The idea behind this procedure is to first create two states
of the ancilla that correspond to the main qubit states |0〉 or
|1〉 and that are both in the Z-X plane at angles ±φ from
the Z axis. These ancilla states are then measured along a
direction in the same Z-X plane at an angle ε from the X axis.
The angle φ then determines the effective distinguishability of
the states |0〉 and |1〉 of the main qubit: When φ = 0 the states
are indistinguishable. The offset angle ε introduces asymmetry
between the averaged probabilities of the measurement results,
with ε = 0 indicating perfect symmetry.

Quantitatively, the results 0 or 1 of the ancilla measurement
produce the following partial projections of the main qubit:

D0 = 〈0| [1 ⊗ Ry(ε − π/2)] Ry|z(φ) |0〉

=
√

1 + sin(φ + ε)

2
|0〉〈0| +

√
1 − sin(φ − ε)

2
|1〉〈1|,

(10)

D1 = 〈1| [1 ⊗ Ry(ε − π/2)] Ry|z(φ) |0〉

=
√

1 − sin(φ + ε)

2
|0〉〈0| +

√
1 + sin(φ − ε)

2
|1〉〈1|.

(11)

By comparing the form of Eq. (10) to the standard form of
Eq. (1), the parameters p and q are

p = 1
2 [1 + sin(φ + ε)], (12)

q = 1
2 [1 + sin(φ − ε)]. (13)

Therefore, any desired parameters p and q may be realized by
setting the angles of the implementation circuit in Fig. 1 to

φ = arcsin(2p − 1) + arcsin(2q − 1)

2
, (14)

ε = arcsin(2p − 1) − arcsin(2q − 1)

2
. (15)
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FIG. 2. Quantum circuit using a controlled-phase gate (9) to
implement the same partial projections D0,1 as in Fig. 1.

It is easy to check that projective measurement (p = q = 1)
requires φ = π/2 and ε = 0. The case of no measurement
(p + q = 1) is realized when φ = 0, and a weak measurement
(|p + q − 1| � 1) requires |φ| � 1. The symmetric case (p =
q) corresponds to ε = 0. A null-result measurement (p = 1) is
realized when φ + ε = π/2, so that the qubit state |0〉 always
produces a measurement result of 0.

The realization of the partial projection (1) using a Z-
controlled Y rotation (8) is shown in Fig. 1 and Eqs. (14) and
(15). Alternatively, Fig. 2 shows how to use a controlled-phase
gate (9) instead. In this case, step 2 of the above procedure is
further partitioned into the following steps:

(2a) Perform an X rotation of the ancilla by −π/2.
(2b) Perform a controlled-phase entangling gate by an

angle 2φ.
(2c) Perform an X rotation of the ancilla by π/2.
(2d) Perform a Y rotation of the ancilla by φ to correct its

phase. (This step can be naturally combined with the step 3;
see Fig. 2.)

(2e) Perform a Z rotation of the main qubit by −φ to
correct its phase.

This simulation of the Z-controlled Y rotation is useful
when a controlled-phase gate is more readily implemented
than a direct Z-Y (or Z-X) coupling interaction. Note that
the final Z rotation of the main qubit may be omitted if the
system will be measured in the Z basis directly after the weak
measurement interaction (e.g., [48]).

Similarly, Fig. 3 shows how to replace the Z-controlled Y

rotation in the above procedure with a standard controlled-Z
gate CZ(π ). In this case, step 2 of the above procedure is instead
partitioned into the following steps:

(2a) Perform a Y rotation of the ancilla by the angle φ.
(2b) Perform a controlled-Z gate to entangle the main qubit

with the ancilla.
This implementation has the advantage of using a fixed

controlled-Z two-qubit entangling gate, which may be more
easily optimized to high fidelity than CZ(2φ) (e.g., [62,72]). As
such, the implementation will be determined by which two-
qubit gate has been optimized; the one-qubit gates typically
have high fidelity, even for variable angles such as φ and ε.

FIG. 3. Quantum circuit using the standard CZ gate to implement
the same partial projections D0,1 as in Fig. 1. The RY (φ) rotation of the
ancilla qubit, followed by the CZ gate, creates an angular separation
of 2φ between the ancilla states coupled to the qubit states |0〉 and
|1〉. Then the ancilla qubit is measured in the slanted basis, which
becomes the X basis in the symmetric case (when ε = 0).

For superconducting qubits, the experimental method dis-
cussed in this subsection may suffer from several types of
inefficiency, including imperfect fidelities of the gates (e.g.,
recent two-qubit CZ gates report roughly 0.6% infidelity [72]),
decoherence during the procedure (e.g., dephasing times of
roughly 10 μs [72]), and imperfect fidelity of the ancilla
measurement (e.g., present-day techniques typically permit
only up to 99% readout fidelity [73]). Nevertheless, we expect
this method to give better overall performance than the thresh-
olded continuous readout for the current implementations of
superconducting qubits.

III. GENERALIZED MULTIPLE-OUTCOME
MEASUREMENTS

An arbitrary n-outcome purity-preserving measurement
can be implemented by reducing it to a sequence of two-
outcome measurements, which can be more naturally im-
plemented experimentally. The resulting decomposition is
a sequence of unitary gates and standardized two-outcome
partial projections [Eq. (1)], each of which can be implemented
as discussed in the previous section.

A. Arbitrary two-outcome measurements

First, we decompose an arbitrary two-outcome qubit mea-
surement into the partial projection of Eq. (1) and unitary
operations. These partial projections are implementable using
either technique described in the previous section, though cur-
rently the ancilla method is experimentally simpler. Consider
a set of two measurement operators {N0,N1} that correspond
to a single two-outcome purity-preserving measurement [9].
These operators must satisfy the completeness condition
N

†
0N0 + N

†
1N1 = 1. Therefore, the positive operators |N0,1| ≡

(N †
0,1N0,1)1/2 can be diagonalized simultaneously (with the

same unitary operator V ), and therefore the singular-value
decompositions of N0,1 have the form

N0,1 = U0,1D0,1V
†, (16)

where U0,1 are unitary operators and D0,1 are the (diagonal)
partial-projection operators as defined in Eq. (1). Notice that
Eq. (16) can be applied to any basis, but we use the natural Z

basis, in which the qubit is (partially) measured.
Therefore, one can implement any two-outcome measure-

ment {N0,N1} of a qubit with the following sequence of
operations.

(1) Apply the unitary operation V † to the qubit.
(2) Perform the partial projection D0,1 using specific p and

q values [see Eq. (1)]. Record the outcome 0 or 1.
(3) Apply the unitary U0 or U1, depending on the obtained

outcome.

B. Reduction algorithm

Now we can extend the two-outcome reduction of the pre-
vious subsection to an arbitrary n-outcome purity-preserving
measurement, with n > 2. (See also [43,44] for somewhat
similar decompositions.) Consider a set of desired qubit
measurement operators {M0, · · · ,Mn−1}. These operators
must satisfy the completeness condition

∑n−1
k=0 |Mk|2 = 1.

(Conceptually, one can imagine these operators as describing
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the effects on the quantum state that would be induced by each
of the n outcomes of some fictitious laboratory instrument
[74].) Note that since n > 2, only one of the Mk may be
a projection operator satisfying M2

k = Mk according to the
completeness condition; any such operator will be labeled last
as Mn−1 in what follows.

We can simulate this n-outcome measurement by construct-
ing a sequence of at most (n − 1) two-outcome measurements
using the following algorithm:

(1) Perform the two-outcome measurement with N
(0)
0 =

M0 and N
(0)
1 =

√
1 − |N (0)

0 |2. If N
(0)
0 is seen, then halt: The net

effect on the state is then N
(0)
0 = M0. If N

(0)
1 is seen, continue

to the next step.
(2) Perform the two-outcome measurement with N

(1)
0 =

M1[N (0)
1 ]−1 and N

(1)
1 =

√
1 − |N (1)

0 |2. Note that the inverse of
N

(0)
1 must exist by construction, since we have assumed that

N
(0)
0 (and thus N

(0)
1 ) is not a projection operator. If N

(1)
0 is seen,

then halt: The net effect on the state is then N
(1)
0 N

(0)
1 = M1. If

N
(1)
1 is seen, continue to the next step.
(3) Continue this pattern. At iteration k measure

the outcomes N
(k)
0 = Mk[N (0)

1 ]−1 . . . [N (k−1)
1 ]−1 and N

(k)
1 =√

1 − |N (k)
0 |2. If N

(k)
0 is seen, then halt: The net effect on the

state is then N
(k)
0 . . . N

(1)
1 N

(0)
1 = Mk . If N

(k)
1 is seen, continue

to step (k + 1).
(4) Stop at iteration k = n − 2. A final unitary will in

general be necessary to make the net effect for the last outcome
N

(n−2)
1 match Mn−1.
Every permutation of the initial set of operators {Mk} will

produce a different sequence according to this algorithm.
Once a particular sequence of two-outcome measurements
{N (k)

0 ,N
(k)
1 }n−2

k=0 has been constructed theoretically; each set can
then be implemented according to Eq. (16). As a technical
improvement, note that at any intermediate step of this
reduction algorithm the operator N

(k)
1 can be given an arbitrary

unitary degree of freedom: N
(k)
1 → U

(k)
addN

(k)
1 . This extra

unitary may be used to eliminate the unitary rotation U
(k)
1 from

the singular-value decomposition N
(k)
1 in Eq. (16). Note that

in the described algorithm we implicitly assumed |N (k)
0 |2 � 1;

this inequality can be proven in a straightforward way.
The described algorithm is general, but it is not the only

possible algorithm for realizing an n-outcome generalized
quantum measurement (e.g., [43,44]). In practice, it will be
useful to optimize the algorithm to produce shorter sequences
of measurements.

IV. FIDELITY MEASURES FOR GENERALIZED
MEASUREMENT

With the ability to implement generalized quantum mea-
surements comes the necessity of characterizing how well
one is implementing them in practice. Currently, there is no
standard method for characterizing fidelity of a generalized
measurement with multiple possible outcomes. There are,
however, standard methods for characterizing the fidelity
of individual quantum processes. In this section we extend
these existing definitions to multiple-outcome generalized
measurements (see the Appendix for more details). In contrast

to the previous sections, here we assume an arbitrary number N

of qubits, so that the dimension of the Hilbert space is d = 2N .
The standard way [9] of describing a quantum operation

ρin �→ ρfin (where ρ denotes a density matrix) is by using the
d2× d2 process matrix χ ,

ρ �→
∑
i,j

χijEiρE
†
j , (17)

where {Ei} is the operator basis, which we assume to be the
standard Pauli basis, so that Tr(E†

jEi) = dδij . For a trace-
preserving operation, the matrix χ should satisfy the condition∑

i,j χijE
†
jEi = 1, which in particular implies that Tr(χ ) = 1.

If the desired quantum operation χ ideal corresponds to a unitary
rotation, then the fidelity of an experimental trace-preserving
operation is usually defined as [75]

F = Tr(χ idealχ ), (18)

though sometimes it is defined as the square root of this trace.
Note that the process fidelity F is linearly related [76] to
the average state fidelity Fst, which is used in randomized
benchmarking and sometimes called [77] “gate fidelity,” 1 −
F = (1 − Fst)(1 + 1/d). Also note that the definition (18) is
inapplicable if two nonunitary operations are compared; see
the Appendix.

If a desired unitary operation is experimentally realized
by a selective operation (i.e., involving the measurement and
selection of a certain measurement result), then the fidelity
definition (18) can be modified to [55,78]

F = Tr(χ idealχ )

Tr(χ )
. (19)

In this case, the actual operation is not trace-preserving, so
Tr(χ ) is the selection probability averaged over all initial pure
states (or, equivalently, the selection probability if one prepares
the maximally mixed state). Note that the normalized matrix
χ/Tr(χ ) does not correspond to any physical process, but
the definition (19) still satisfies the requirement 0 � F � 1,
with F = 1 only if χ/Tr(χ ) = χ ideal. Also note that other
definitions for fidelity of a selective quantum operation have
been considered [55,79,80]; however, here we use Eq. (19) as
the starting point for further generalization.

An experimental realization of a generalized multiple-
outcome quantum measurement can be described as a set of
non-trace-preserving operations, each of them corresponding
to a particular outcome k,

ρ �→
∑
i,j

χ
(k)
ij EiρE

†
j , (20)

so that the total nonselective process, χ� = ∑
k χ (k), is a trace-

preserving operation (we assume that at least one of these
outcomes must be reported by the experimental procedure).
The probability of an outcome k, averaged over pure initial
states, is

pk = Tr(χ (k)), (21)

such that
∑

k pk = 1. For simplicity, we assume that the
desired (ideal) generalized measurement is purity-preserving,
ρ �→ MkρM

†
k [9], where the measurement (Kraus) operators

032302-6



IMPLEMENTING GENERALIZED MEASUREMENTS WITH . . . PHYSICAL REVIEW A 90, 032302 (2014)

Mk satisfy the completeness condition
∑

k M
†
kMk = 1.

Therefore,

χ
(k), ideal
ij = α

(k)
i α

(k)∗
j , Mk =

∑
i

α
(k)
i Ei, (22)

with α
(k)
i being the expansion coefficients of Mk in the basis

{Ei}.
Each outcome k can then be naturally assigned a “partial”

fidelity analogous to Eq. (19) [55,78,81,82],

F (k) = Tr(χ (k), idealχ (k))

Tr(χ (k), ideal) Tr(χ (k))
. (23)

Each such fidelity has the proper range, 0 � F (k) � 1, and
is unity only if χ (k) = const × χ (k), ideal. Note, however, that
this definition is insensitive to the multiplication of χ (k) by
a constant, which affects the average probability pk of the
outcome k. Therefore, to define the overall fidelity F tot of a
generalized measurement as a combination of partial fidelities
F (k), we must ensure that the definition also penalizes for the
difference between the desired probability distribution pideal

k =
Tr(χ (k),ideal) and the actual distribution pk .

While there is a significant freedom in defining the overall
fidelity F tot, here we suggest two different definitions that in
our opinion are the most natural (see the Appendix for more
discussion on this point). The first definition is

F tot =
∑

k

Tr(χ (k),idealχ (k))√
Tr(χ (k),ideal) Tr(χ (k))

. (24)

It is obtained as the weighted sum of the partial fidelities (23),

F tot = ∑
k

√
pideal

k pk F (k), so that the weight factors
√

pideal
k pk

naturally correspond to the outcome probabilities and also
automatically penalize the fidelity for unequal probability
distributions pideal

k and pk .
The second definition we suggest is

F̃ tot =
[∑

k

√
Tr(χ (k),idealχ (k))

]2

, (25)

which is obtained from the partial fidelities F (k) as F̃ tot =
[
∑

k

√
pideal

k pk F (k)]2. The square root of this definition is
a weighted sum of the square roots of the partial fidelities
(23), which in turn are closely related to the Bhattacharyya
coefficient defining the fidelity between classical probability
distributions (see the Appendix for more details).

For both definitions (24) and (25), the fidelity is between 0
and 1, and the value of 1 is achieved only if χ (k) = χ (k),ideal for
all outcomes k. Both definitions are symmetric under exchange
of χ (k) ↔ χ (k),ideal. Both of them become inapplicable if the
desired generalized measurement includes decoherence (i.e.,
does not preserve purity). (See the Appendix for the simple
generalization that admits decoherence.) It is worth noting that
our suggested definitions can also apply in the case that the total
nonselective experimental process χ� is not trace preserving;
the fidelities are then penalized for the missing outcomes.

The fidelity definitions (24) and (25) compare an exper-
imentally implemented generalized quantum measurement
to an ideal one, which is characterized both by a desired

probability distribution of outcomes (for a given initial state)
and by its associated distribution of postmeasurement states.
However, in some experiments the generalized measurement
may be used only to produce desired probabilities of outcomes,
while the postmeasurement state is not important. In this case
the fidelity should be defined in a different way.

The probability Pk(ρ) of an outcome k for the initial state
ρ is

Pk(ρ) = Tr(Pkρ), Pk =
∑
i,j

χ
(k)
ij E

†
jEi, (26)

where Pk are so-called POVM elements, which are positive
matrices satisfying the completeness condition

∑
k Pk = 1.

Note that the average probability pk introduced earlier is pk =
Pk(1/d). To define a “probability-only” fidelity Fp (that would
be applicable, e.g., to “detector tomography” experiments like
[83]), we need to compare the set of POVM elements Pk with
the desired set P ideal

k = M
†
kMk . Following the same logic as

used above for the process matrices, we define Fp via the

weighted sum (with weights
√

pideal
k pk) of the partial fidelities

between (normalized) Pk and P ideal
k , for which we use either

the Uhlmann formula [9] or its square. This leads to the two
following definitions

Fp = 1

d

∑
k

(
Tr

√√
P ideal

k Pk

√
P ideal

k

)2

√
Tr

(
P ideal

k

)
Tr(Pk)

, (27)

F̃p =
(

1

d

∑
k

Tr

√√
P ideal

k Pk

√
P ideal

k

)2

, (28)

which correspond to the logic of Eqs. (24) and (25), respec-
tively. Note that Tr(Pk) = Tr(χ (k)) d = pkd, which produces
the factors d−1 in the definitions of Fp and F̃p. It is
experimentally easier to determine Pk than χ (k), because the
matrix Pk has dimension d × d, in contrast to d2× d2 for χ (k).

V. CONCLUSION

In this paper we have shown that any purity-preserving
generalized measurement of a single qubit can be realized by
a combination of unitary rotations and two-outcome partial-
projection measurements. Two different methods for imple-
menting these partial projections using superconducting qubits
were considered: a thresholded continuous measurement using
a phase-sensitive amplifier and an indirect ancilla qubit
measurement that uses standard unitary gates and projective
measurements. The former requires high quantum efficiency of
continuous measurement, while the latter requires high-fidelity
gates and high-fidelity projective measurements. Both of these
methods are already viable experimentally.

The thresholding technique is notable because it realizes
a previously proposed decomposition of generalized mea-
surements into continuous measurement procedures. This
decomposition is fairly straightforward in the case of qubits;
for higher-dimensional systems it can also be done, but will
generally require more sophisticated control and feedback of
the measurement process.
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We have also addressed the issue of characterizing the
fidelity of a generalized quantum measurement with multiple
possible outcomes, for which there is no established definition
in the literature. We proposed two alternative definitions of
fidelity for an experimental generalized measurement, each
following slightly different logic.

Several special cases of a generalized quantum measure-
ment have already been realized with superconducting qubits,
which essentially implement both thresholding-based and
ancilla-based techniques similar to those discussed here. We
expect that experiments with generalized measurement will
become more routine in the future and will continue to attract
interest, in particular due to potential practical advantages in
applications.
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APPENDIX: DISCUSSION OF FIDELITY MEASURES

In this Appendix we justify the definitions of fidelity pre-
sented in Sec. IV of the main text. Let us start with reviewing
existing definitions of fidelity for probability distributions,
density matrices, and quantum processes, and discuss how
they relate to one another.

Suppose that one experimentally determines a classical
probability distribution {pk} with

∑
k pk = 1 as a set of

measured frequencies. There are several ways to define a char-
acteristic comparing this distribution to an ideal (reference)
distribution {pideal

k }. The most widely used characteristics [9]
are the Kolmogorov distance

∑
k

1
2 |pk − pideal

k | (this is the
maximum difference between probabilities of an event com-
bining several outcomes) and the Bhattacharyya coefficient,

F1
({pk},

{
pideal

k

}) =
∑

k

√
pk pideal

k , (A1)

which is the characteristic that is most relevant to our
approach for defining fidelities. The Bhattacharyya coefficient
has the intuitive geometric meaning of the cosine of the
angle θ between the two “probability amplitude” vectors

(
√

p1,
√

p2,...) and (
√

pideal
1 ,

√
pideal

2 ,...). The separation angle
θ is also the angle between quantum state vectors |ψ〉 and
|ψ ideal〉 that reproduce these classical probability amplitudes
[84], which is a useful connection.

In spite of nice mathematical properties of the definition
(A1), it has become fashionable in some quantum computing
communities to use this definition squared as the fidelity

between two probability distributions,

F2
({pk},

{
pideal

k

}) =
[ ∑

k

√
pk pideal

k

]2

. (A2)

This change in definition is primarily because the squared
definition has a direct connection to the standard overlap
|〈ψ |ψ ideal〉|2 between two wave functions, which in turn is
related to the probability of a quantum measurement result
when |ψ〉 is measured “along” |ψ ideal〉.

The choice between the two definitions (A1) and (A2)
has essentially doubled the number of fidelity definitions that
are used in quantum computing, which has created some
confusion. As discussed later, our proposed fidelity definitions
(24) and (27) follow the logic of the definition (A2) [while
using (A1) for the weight factors]. In contrast, our definitions
(25) and (28) follow the logic of Eq. (A1), but at the end are
converted (by squaring) into the more standard “dimension”
of the definition (A2).

Now suppose that one experimentally determines a quan-
tum state ρ with Tr(ρ) = 1 using quantum-state tomography.
The Uhlmann fidelity [9,85] of this state compared to a
reference (ideal) state ρ ideal is usually defined as

F3(ρ,ρ ideal) = Tr(
√√

ρ ideal ρ
√

ρ ideal), (A3)

but it can also be defined [75,86] as its square,

F4(ρ,ρ ideal) = [F3(ρ,ρ ideal)]2. (A4)

Importantly, the Uhlmann fidelity (A3) can be found by
minimizing the Bhattacharyya coefficient (A1) over all possi-
ble generalized measurements that can be made on the two
states to produce probability distributions to be compared
[87],

F3(ρ,ρ ideal) = min
{Pk}

F1[{Tr(Pkρ)}, {Tr(Pkρ
ideal)}], (A5)

where {Pk} are varied over all possible sets of positive prob-
ability operators such that

∑
k Pk = 1. Squaring this equation

produces the same relation between definitions (A4) and (A2).
In most cases the reference state ρ ideal = |ψ ideal〉〈ψ ideal| is a
pure state, in which case the definition (A4) reduces to the
simpler state overlap,

F4 → F5(ρ,ρ ideal) = Tr(ρ ρ ideal) = 〈ψ ideal|ρ|ψ ideal〉. (A6)

As mentioned above, the simplicity of this overlap motivates
the choice of the squared definitions (A4) and (A2), which
we have adopted here and in the main text. (Note that the
full Uhlmann formula for F4 does not permit any simple
interpretation.)

Now suppose that one experimentally determines a quan-
tum process matrix χ with quantum process tomography
(QPT). This matrix is mathematically equivalent to a (gen-
erally un-normalized) density operator, so the definition of
its fidelity compared to an ideal process matrix χ ideal can be
based on the fidelity definition (A4) for density matrices. To
see this, recall that for N qubits such a matrix χ is found by
first choosing a matrix basis {Ei} that usually consists of all
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4N tensor products of the four Pauli operators {I,σx,σy,σz},
and then writing the process as a state-transformation function
of the form

ρ �→
∑
i,j

χi,j Ei ρ E
†
j , (A7)

where χi,j are the complex components of the 4N × 4N Hermi-
tian process matrix χ . Typically, the reference (ideal) process
is assumed to be purity preserving, and thus characterized by
a single Kraus operator M: ρ �→ MρM†. This operator can be
expanded in terms of the Pauli matrix basis as M = ∑

i αi Ei ,
where αi = Tr(E†

i M)/2N are its complex components.
Hence, the reference process matrix components have the
form

χ ideal
i,j = αiα

∗
j . (A8)

This expression can be related to a density matrix by formally
defining a complex vector |M〉 of the components αi of M and
then expressing the reference process matrix χ ideal as a dyadic
(outer) product

|M〉 = (α1, . . . ,α4N )T , (A9)

χ ideal = |M〉〈M|. (A10)

If M is unitary then the reference process is trace preserving
and Tr(χ ideal) = 1, so χ ideal is completely equivalent to a pure-
state density operator. If the experimental process χ is also
trace preserving, then it is also equivalent to a density operator
acting in the Hilbert space with dimension 22N , corresponding
to a generally mixed state (the Jamiołkowski-Choi “channel-
state duality” [88–90]). Therefore, the fidelity definition
(A6) can be used directly, leading to the standard definition
[75,91]

F6(χ,χ ideal) = Tr(χ χ ideal) (A11)

for the fidelity of a quantum process χ . If the reference process
χ ideal is not unitary (but is still trace preserving), then this
definition is naturally replaced with the definition based on
Eq. (A4),

F7(χ,χ ideal) = [
Tr(

√√
χ ideal χ

√
χ ideal)

]2
. (A12)

Choosing the nonsquared fidelity definition (A3) instead will
produce the equally valid process fidelity definition

√
F7 (and

correspondingly
√

F6); however, this variation is not typically
used in QPT experiments, so we do not consider it here.

If the process χ is not trace-preserving, it necessarily
involves a selection; in other words, we consider the process
as happening only in some “successful” cases (e.g., when
a detector clicks). There are several meaningful ways to
generalize the definitions (A11) and (A12) to this case. For
example, if the ideal process is still unitary, we can continue
using the standard definition F6 (A11) without any change.
This will mean that we take into account all realizations of the
process, including “unsuccessful” ones, for which we assign
zero fidelity. Alternatively, we can consider only “successful”
realizations. In this case there are also several ways to
generalize the standard fidelity definition (e.g., [92]); here
we consider the way that is based on the Jamiołkowski-Choi
channel-state duality.

For nonunitary M in Eq. (A10) (e.g., a partial projection),
dividing χ ideal by its trace Tr(χ ideal) = 〈M|M〉 = ∑

i |αi |2 still
produces a positive matrix with unit trace that is formally
equivalent to a pure-state density operator. Similarly, χ/Tr(χ )
is a positive matrix with unit trace, and therefore it is also
formally equivalent to a (generally mixed) density operator.
As a result, the definition [55,78,81,82]

F8(χ,χ ideal) = Tr(χ χ ideal)

Tr(χ ) Tr(χ ideal)
= 〈M|χ |M〉

Tr(χ ) 〈M|M〉 (A13)

satisfies the condition 0 � F8 � 1, with F8 = 1 only if χ =
const × χ ideal. In the case when both χ and χ ideal are not purity
preserving (for example, when decoherence is considered even
for the “ideal” process), both equivalent density operators will
be mixed, so it will be necessary to use the full Uhlmann form
of the state fidelity definition (A4) instead of its simplified
form (A6) for the corresponding density matrices; this trivially
generalizes Eq. (A13) to

F9(χ,χ ideal) =
[
Tr

(√√
χ ideal χ

√
χ ideal

)]2

Tr(χ ) Tr(χ ideal)
. (A14)

We emphasize that the definitions (A13) and (A14) compare
the two operations only when they are successfully realized
(selected).

Given the fidelity definitions reviewed above, we now
consider a generalized measurement that has several outcomes
k. Each distinguishable outcome corresponds to a separate
quantum process,

ρ �→
∑
i,j

χ
(k)
i,j Ei ρ E

†
j , (A15)

characterized by a process matrix χ (k) that can be determined
experimentally with QPT. The sum of these process matrices
produces the total nonselective process matrix that sums
over all possible outcomes:

∑
k χ (k) = χns. The nonselective

process χns will be trace-preserving (assuming no loss) so
the trace of this matrix is unity. In contrast, the trace of each
outcome matrix is the probability pk = Tr(χ (k)) of obtaining
the outcome k if one prepares a maximally mixed state (or,
equivalently, if one averages over all possible preparations).
All the outcome matrices χ (k) and their associated probabilities
pk should be involved in the definition of the total fidelity of
the generalized measurement.

The reference measurement will typically have purity-
preserving processes χ (k),ideal for all outcomes k that are
completely characterized by single Kraus operators M (k), as
discussed above, along with their associated component vec-
tors |M (k)〉, process matrices χ (k),ideal = |M (k)〉〈M (k)|, and out-
come probabilities pideal

k = Tr(χ (k),ideal) = 〈M (k)|M (k)〉. The
total nonselective process matrix χns,ideal will also typically
be trace-preserving (and thus have unit trace).

Defining a sensible overall fidelity F tot that properly in-
cludes information about all outcomes k involves the following
basic conceptual constraints.

(a) F tot should be a symmetric function of all the matrices
χ (k), so the outcomes are interchangeable.

(b) The definition F tot should be in the range [0,1].
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(c) F tot = 0 only when F9(χ (k),χ (k),ideal) = 0 for all k.
(Note that F9 reduces to F8 for purity-preserving ideal
processes. This applies to all discussions below.)

(d) F tot = 1 only when F9(χ (k),χ (k),ideal) = 1 for all k and
F2({pk},{pideal

k }) = 1. (This implies pk = pideal
k for all k, and

therefore χ (k) = χ (k),ideal).
(e) The definition should be symmetric under the exchange

of χ (k) ↔ χ (k),ideal.
To satisfy these constraints, candidate definitions should

be constructed from other meaningful quantities in the range
[0,1], such as the symmetric classical fidelities F2({pk},
{pideal

k }) (or alternatively F1), the outcome process fidelities
F9(χ (k),χ (k),ideal), and the outcome probabilities pk,p

ideal
k ,

which are all functions of the matrices χ (k).
A simple choice for a candidate definition that satisfies all

the above constraints and includes each outcome probability
and fidelity explicitly is

F tot = C ×
[∑

k

√
pkp

ideal
k F9(χ (k),χ (k),ideal)α

]β

, (A16)

where α,β are real numbers and the factor C is discussed

below. The symmetric weighting factors
√

pkp
ideal
k automat-

ically penalize for unequal outcome probability distributions
pk and pideal

k , while the symmetric fidelities Fα
9 penalize for

the differences between each outcome separately. The power α

determines the relative importance of these penalties, while β

is the overall power. The optional prefactor C can contain any
number of additional penalization factors that independently
satisfy the above constraints. Examples of factors that can be
included in C are

(1) C1 = [
∑

k

√
pkp

ideal
k ]β1 ,

(2) C2 = [ 1
n

∑
k F9(χ (k),χ (k),ideal)α2 ]β2 ,

(3) C3 = [
∑

k pkF9(χ (k),χ (k),ideal)α3 ]β3 ,

(4) C4 = [
∑

k pideal
k F9(χ (k),χ (k),ideal)α4 ]β4 ,

(5) C5 = ∏
k F9(χ (k),χ (k),ideal)α

(k)
5 ,

where n is the number of outcomes, each α2,3,4 and β1,2,3,4 is
a real number, and the outcome-dependent weights α

(k)
5 can be

chosen as α
(k)
5 = pk , or pideal

k . Note that the examples C3, C4,
and C5 break the symmetry constraint unless they are properly
combined. Also note that C2, C3, C4, and C5 do not penalize
for pk �= pideal

k , so they can replace the main term in Eq. (A16)
only if additionally multiplied by C1. While each of these
factors can penalize the total fidelity in interesting ways, we
choose the simplest functional form with C = 1 as the most
practical definition.

The remaining parameters α,β in Eq. (A16) can be
constrained by requiring F tot to consistently reduce to the
existing definitions of fidelity as limiting cases. To match the
form of the single-outcome fidelity F7 and/or F6 when only
one pk = pideal

k = 1 with the rest zero, we need to choose
β = 1/α, so we are left with only one free parameter α.
This parameter can be chosen by matching with the classical
probability fidelities F1 or F2 when F9(χ (k),χ (k),ideal) = 1
for all k; this gives α = 1 (β = 1) or α = 1/2 (β = 2),
correspondingly.

The choice of α = 1 identifies F1 as the preferred
classical fidelity for the sum over k, yielding the

definition

F tot
1 =

∑
k

√
pkp

ideal
k F9(χ (k),χ (k),ideal), (A17)

which reduces to Eq. (24) in the main text when the simplified
form F8 is used for the individual outcome fidelities,

F tot
1 →

∑
k

Tr(χ (k) χ (k),ideal)√
Tr(χ (k)) Tr(χ (k),ideal)

. (A18)

The alternative choice of α = 1/2 consistently identifies F2

as the preferred classical fidelity for both the sum over k and
each individual outcome fidelities F9. This choice produces
the definition

F tot
2 =

[∑
k

(pkp
ideal
k )1/2 F9(χ (k),χ (k),ideal)1/2

]2

, (A19)

which reduces to the definition (25) in the main text when the
simplified form F8 is used,

F tot
2 →

[∑
k

√
Tr(χ (k)χ (k),ideal)

]2

. (A20)

The advantage of the definition (A18) is that it is a linear
combination of the outcome fidelities F8. However, because
of the denominator, it is a complicated function of the process
matrices. This complication is related to a subtle inconsistency
in the definition: While F1 is chosen as the preferred classical
fidelity for the sum over k, F2 has been chosen as the preferred
classical fidelity that matches the squared form of the fidelity
F8. Thus, the compromise between the two choices of classical
fidelity preserves the linearity of F tot

1 in the outcome fidelities
F8, but makes the final expression in terms of process matrices
complicated.

Since this definition (A20) is logically consistent in choos-
ing F2 for both cases, its form in terms of process matrices is
simpler. In fact, the only difference between this definition and
the classical fidelity in (A2) is that the factor inside the square
root is an overlap of noncommutative χk matrices, rather than
the product of classical probabilities. Furthermore, removing
the outer square from this definition consistently chooses F1

as the preferred classical fidelity for both the sum over k and
each (nonsquared) outcome fidelity

√
F9. As a result, the total

fidelity
√

F tot
2 becomes a linear function of the nonsquared

outcome fidelities
√

F9 automatically.
As noted earlier, more complicated definitions of F tot can

also be considered. However, we feel that the two simplest
definitions (A17) and (A19) will be the most useful in practice.
The “probability-only” definitions (27) and (28) in the main
text are also essentially the definitions (A17) and (A19), but
applied to the POVM elements Pk instead of the process
matrices χ (k) [the extra factor d−1 comes from different
normalizations: Tr(Pk) = Tr(χ (k)) d].
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