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This is a supplement for “Entanglement-assisted weak value amplification,” wherein we provide
the derivations for the technical results.

I. DERIVATION OF THE MAXIMUM POST-SELECTION PROBABILITY

To maximize Ps ≈ |〈Ψf |Ψi〉|2 while keeping Aw and |Ψi〉 fixed, we note that the initial state can be decomposed
into a piece parallel to (Â−Aw)|Ψi〉 and an orthogonal piece in the complementary subspace V⊥:

|Ψi〉 =
(Â−Aw)|Ψi〉〈Ψi|(Â−A∗w)|Ψi〉
〈Ψi|(Â−A∗w)(Â−Aw)|Ψi〉

+

(
|Ψi〉 −

(Â−Aw)|Ψi〉〈Ψi|(Â−A∗w)|Ψi〉
〈Ψi|(Â−A∗w)(Â−Aw)|Ψi〉

)
. (1)

Since |Ψf 〉 must also be in V⊥ by the definition of the weak value, it follows that the maximum Ps can be achieved
for the post-selection state parallel to the component of |Ψi〉 in V⊥, i.e.,

|Ψf 〉 ∝ |Ψi〉 −
(Â−Aw)|Ψi〉〈Ψi|(Â−A∗w)|Ψi〉
〈Ψi|(Â−A∗w)(Â−Aw)|Ψi〉

. (2)

After some calculation, it follows that

max
|Ψf 〉∈V⊥

Ps =
Var(Â)|Ψi〉

〈Ψi|Â2|Ψi〉 − 2〈Ψi|Â|Ψi〉ReAw + |Aw|2
, (3)

where Var(Â)|Ψi〉 = 〈Ψi|Â2|Ψi〉 − [〈Ψi|Â|Ψi〉]2 is the variance of Â in the state |Ψi〉.
For the purposes of weak value amplification, we usually require |Aw| to be larger than any eigenvalue of Â,

|Aw| � |Λ|. Therefore, this maximum Ps can be approximated as Eq. (9) in the main text.

II. DERIVATION OF THE OPTIMAL POST-SELECTION STATE

As noted in the previous section, the optimal post-selection state should be parallel to the component of |Ψi〉 in
V⊥. The post-selection probability is then controlled by the variance Var(Â)|Ψi〉. This variance is maximized for a
maximally entangled initial state |Ψi〉 = 1√

2
(|λmax〉⊗n + eiθ|λmin〉⊗n). Hence, we can directly compute the optimal

post-selected state to be

|Ψf 〉 ∝ |Ψi〉 −
(Â−Aw)|Ψi〉〈Ψi|(Â−A∗w)|Ψi〉
〈Ψi|(Â−A∗w)(Â−Aw)|Ψi〉

(4)

=
1√
2

(|λmax〉⊗n + eiθ|λmin〉⊗n)− 1√
2

((nλmax −Aw)|λmax〉⊗n

+ eiθ(nλmin −Aw)|λmin〉⊗n)
nλmax + nλmin − 2A∗w

|nλmax −Aw|2 + |nλmin −Aw|2

∝ (|nλmin −Aw|2 − (nλmax −Aw)(nλmin −A∗w))|λmax〉⊗n

+ eiθ(|nλmax −Aw|2 − (nλmin −Aw)(nλmax −A∗w))|λmin〉⊗n)

∝ −(nλmin −A∗w)|λmax〉⊗n + eiθ(nλmax −A∗w)|λmin〉⊗n.

This is Eq. (12) in the main text.
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III. QUANTUM FISHER INFORMATION

It is important to determine just how well the weak value amplification technique can estimate the small parameter
g. There is some concern that the post-selection process will lead to a substantial reduction of the total obtainable
information, since a large fraction of the potentially usable data is being thrown away (e.g., [1–3]). To assuage these
concerns, we compare the maximum Fisher information about g that can be obtained without post-selection to the
Fisher information that remains in the post-selected states used for weak value amplification.

We first recall a few general results from the study of quantum Fisher information. If one wishes to estimate a
parameter g, then the minimum standard deviation of any unbiased estimator for g is given by the quantum Cramér-
Rao bound : I(g)−1/2. The function I(g) is the quantum Fisher information [4]

I(g) = 4
d〈Φg|

dg

d|Φg〉
dg

− 4

∣∣∣∣d〈Φg|dg
|Φg〉

∣∣∣∣2 , (5)

which is determined by a quantum state |Φg〉 that contains the information about g. If this state is prepared with
some interaction Hamiltonian |Φg〉 = exp(−igĤ)|Φ〉 then the Fisher information reduces to a simpler form [5]

I(g) = 4Var(Ĥ)|Φ〉, (6)

and is entirely determined by the variance of the Hamiltonian in the pre-interaction state |Φ〉.

A. General Discussion

In the main text, the relevant Hamiltonian with a meter observable F̂ is Ĥ = ~gÂ⊗ F̂ δ(t− t0), where Â is a sum of
n ancilla observables â of dimension d. The joint state |Φ〉 is also always prepared in a product state |Φ〉 = |Ψi〉 ⊗ |φ〉
between the ancillas and the meter. If there is no post-selection then the quantum Fisher information is found to be

I(g) = 4

[
〈Â2〉|Ψi〉〈F̂

2〉|φ〉 −
(
〈Â〉|Ψi〉〈F̂ 〉|φ〉

)2
]
. (7)

Now suppose we projectively measure the ancillas in order to make a post-selection. This measurement will produce
dn independent outcomes corresponding to some orthonormal basis {|Ψ(k)

f 〉}d
n

k=1. In the linear response regime with
g � 1, each of these outcomes prepares a particular meter state

|φ′k〉 ∝ 〈Ψ
(k)
f | exp(−igĤ)|Ψi〉|φ〉 ≈ (1̂− igA(k)

w F̂ )|φ〉 (8)

with probability P (k)
s ≈ |〈Ψ(k)

f |Ψi〉|2 that is governed by a different weak value

A(k)
w =

〈Ψ(k)
f |Â|Ψi〉

〈Ψ(k)
f |Ψi〉

. (9)

We can then compute the remaining Fisher information contained in each of the post-selected states
√
P

(k)
s |φ′k〉

using (5), which produces

I(k)(g) ≈ 4P (k)
s |A(k)

w |2
[
Var(F̂ )|φ〉 − 〈F̂ 2〉|φ〉

(
2gImA(k)

w 〈F̂ 〉|φ〉 + |gA(k)
w |2〈F̂ 2〉|φ〉

)]
. (10)

Importantly, if we add the information from all dn post-selections we obtain

dn∑
k=1

I(k)(g) ≈ 4 〈Â2〉|Ψi〉Var(F̂ )|φ〉 −O(g). (11)

With the condition 〈F̂ 〉|φ〉 = 0, this saturates the maximum in (7) up to small corrections, which indicates that the
ancilla measurement does not lose information by itself. One can always examine all dn ancilla outcomes to obtain
the maximum information, as pointed out in [1–3].
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Now let us focus on a particular post-selection k = 1, using an unbiased meter that satisfies 〈F̂ 〉|φ〉 = 0, as assumed
in the main text. This produces the simplification

I(1)(g) ≈ 4P (1)
s |A(1)

w |2
[
1− |gA(1)

w |2Var(F̂ )
]
. (12)

Now recall Eq. (15) of the main text, where we showed that if we fix P (1)
s � 1 and picked a post-selection state that

maximizes A(1)
w then we found

max |A(1)
w |2 ≈

1− P (1)
s

P
(1)
s

Var(Â)|Ψi〉 ≈
Var(Â)|Ψi〉

P
(1)
s

. (13)

For this strategically chosen post-selection with small P (1)
s and maximized A(1)

w , it then follows that

I(1)(g) ≈ 4Var(Â)|Ψi〉

[
1− |gA(1)

w |2Var(F̂ )
]

= I(g)

[
Var(Â)|Ψi〉

〈Â2〉|Ψi〉

] [
1− |gA(1)

w |2Var(F̂ )
]
, (14)

which is Eq. (16) in the main text. That is, nearly all the Fisher information can be concentrated into a single (but
rarely post-selected) meter state (see also [6]). The remaining information is distributed among the (dn−1) remaining
states, and could be retrieved in principle. The special post-selected meter state suffers an overall reduction factor
of η = Var(Â)/〈Â2〉, as well as a small loss |gA(1)

w |2Var(F̂ ). However, most weak value amplification experiments
operate in the linear response regime g|A(1)

w |Var(F̂ )
1
2 � 1 where this remaining loss is negligible. Moreover, the

overall reduction factor η can even be set to unity by choosing ancilla observables that satisfy 〈Â〉|Ψi〉 = 0.
As carefully discussed in [2, 3], one cannot actually reach the optimal bound of (7) when making a post-selection.

However, (14) shows that one can get remarkably close by carefully choosing which post-selection to make. It is quite
surprising that one can even approximately saturate (7) while discarding the (dn− 1) much more probable outcomes.
Rare post-selections can often be advantageous for independent reasons (e.g., to attenuate an optical beam down to a
manageable post-selected beam power), so this property of weak value amplification makes it an attractive technique
for estimating an extremely small parameter g that permits the linear response conditions [6].

B. Examples

To see how this works in more detail, let us examine the ancilla qubit post-selection examples used in the main
text, where g = ϕ/2. For completeness, we will work through two examples. First, we consider a sub-optimal ancilla
observable â = |1〉〈1|. Second, we consider an optimal ancilla observable â = σ̂z to emphasize the practical difference.

1. Ancilla Projectors

A suboptimal choice of ancilla observable is the projector â = |1〉〈1| used in controlled qubit operations. From
the optimal initial state given by Eq. (10) in the main text, we have 〈Â2〉 = n2/2 and 〈Â〉 = n/2. Therefore, the
maximum quantum Fisher information from (7) that we can expect for estimating ϕ is

I(ϕ) =
n2

2
, (15)

where the factor 1/2 in g = ϕ/2 has been taken into account, and the corresponding quantum Cramér-Rao bound is√
2/n. This is the best (Heisenberg) scaling of the estimation precision that can be obtained by using n entangled

ancillas with the given initial states.
Now, let us consider what happens when we make the optimal preparation and post-selections for weak value

amplification. We expect from (14) that the maximum information which can be attained through post-selection will
be reduced by a factor of

η =
Var(Â)|Ψi〉

〈Â2〉|Ψi〉
=

1

2
. (16)
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It is in this sense that the choice of â as a projector is suboptimal. We will see in the next section what happens with
the optimal choice of σ̂z.

In the first case considered in the main text (i.e., increasing the post-selection probability with the weak value Aw
fixed), the optimal post-selected state is

|Ψf 〉 ∝ (A∗w)|1〉⊗n + (n−A∗w)|0〉⊗n. (17)

Computing the post-selected meter state then produces

|φ′〉1 =

[
n−Aw[1− cos(nϕ/2)]1̂− iAw sin(nϕ/2)σ̂z

]
|φ〉

(n2 + 2[|Aw|2 − nReAw][1− cos(nϕ/2)])
1/2

≈
(

1̂− iAw
ϕ

2
σ̂z

)
|φ〉, (18)

where we have used 〈φ|σ̂z|φ〉 = 0, and then have made the small parameter approximation nϕ� 1. This recovers the
expected linear response result in (8). This state is post-selected with probability

p1 =
1

2
− cos(nϕ/2)

|Aw|2 − nReAw
n2 + 2[|Aw|2 − nReAw]

≈ n2

2n2 + 4[|Aw|2 − nReAw]
≈ n2

4
|Aw|−2, (19)

where we have made the small parameter approximation nϕ� 1, and then the large weak value assumption n� |Aw|.
Now computing the quantum Fisher information (5) with the post-selected meter state √p1 |φ′〉1 yields the simple

expression

I1(ϕ) ≈ n2

4

(
1−

∣∣∣∣ϕAw2

∣∣∣∣2
)
≤ n2

4
, (20)

in agreement with (14). The maximum achieves the best possible scaling of n2 as in (15). Moreover, for the most
frequently used linear response regime with |Aw|ϕ � 1, we achieve the expected maximum information of ηI(ϕ) =
n2/4.

For the second case (i.e., increasing the weak value Aw with the post-selection probability fixed), we can obtain the
results simply by rescaling Aw →

√
nAw to produce p2 ∝ n, as shown in the main text. This produces,

|φ′〉2 ≈
(

1̂− i
√
nAw

ϕ

2
σ̂z

)
|φ〉, (21)

and

p2 ≈
n2

4
|
√
nAw|−2 =

n

4
|Aw|−2, (22)

and yields the Fisher information

I2(ϕ) ≈ n2

4

(
1− n

∣∣∣∣ϕAw2

∣∣∣∣2
)
≤ n2

4
. (23)

The increase of the amplification factor |Aw| correspondingly decreases the remaining Fisher information, as expected
from (20). However, since nϕ� 1 and ϕ|Aw| � 1 in the linear response regime, this decrease is still small.

Alternatively, this second case can be computed explicitly as follows. For a fixed post-selection probability p, the
post-selected state must be |Ψf 〉 =

√
p|Ψi〉 +

√
1− p|Ψ⊥i 〉, where the optimal |Ψ⊥i 〉 is parallel to the component of

Â|Ψi〉 in the complementary subspace orthogonal to |Ψi〉. Computing this yields

|Ψf 〉 =
√
p|Ψi〉+

√
1− pÂ|Ψi〉 − |Ψi〉〈Ψi|Â|Ψi〉√

Var(Â)|Ψi〉

=

(√
p

2
−
√

1− p
2

)
|0〉⊗n +

(√
p

2
+

√
1− p

2

)
|1〉⊗n.

(24)

Thus, computing the post-selected meter state yields

|φ′〉2 ∝

((√
p

2
−
√

1− p
2

)
1̂ +

(√
p

2
+

√
1− p

2

)
e−inϕσ̂z/2

)
|φ〉 ≈

(
1̂− i|Aw|

ϕ

2
σ̂z

)
|φ〉, (25)
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where we have defined the effective weak value factor

|Aw| =
n

2

(
1 +

√
1− p
p

)
≈ n

2
p−1/2, (26)

and have used the linear response approximations nϕ� 1 and ϕ|Aw| � 1, as well as the small probability assumption
p� 1. Computing the quantum Fisher information from (5) with the state √p |φ′〉2 then produces

I2(ϕ) ≈ p|Aw|2
(

1−
[
ϕ|Aw|

2

]2
)

=
n2

4

(
1−

[
nϕ

4
√
p

]2
)
≤ n2

4
(27)

using the definition (26). This result precisely matches the form of (12). It is now clear that for quadratic scaling
p = n2p0 we recover (20) with the effective reference weak value |Aw| = 1/(2

√
p0), while for linear scaling p = np0 we

recover (23).

2. Ancilla Z-operators

For contrast, an optimal choice of ancilla observable is â = σ̂z, as used in the main text. From the optimal initial
state given by Eq. (10) in the main text, we have 〈Â2〉 = n2 and 〈Â〉 = 0. Therefore, the maximum quantum Fisher
information from (7) that we can expect for estimating ϕ is

I(ϕ) = n2, (28)

which is a factor of 2 larger than (15). The corresponding quantum Cramér-Rao bound is 1/n. From (14), we expect
that the reduction factor is

η =
Var(Â)|Ψi〉

〈Â2〉|Ψi〉
= 1. (29)

Thus, it is possible to saturate the optimal bound with this choice of â.
In the first case considered in the main text (i.e., increasing the post-selection probability with the weak value Aw

fixed), the optimal post-selected state is

|Ψf 〉 ∝ (n+A∗w)|1〉⊗n + (n−A∗w)|0〉⊗n. (30)

Computing the post-selected meter state then produces

|φ′〉1 =

[
n cos(nϕ/2)1̂− iAw sin(nϕ/2)σ̂z

]
|φ〉(

n2 cos2(nϕ/2) + |Aw|2 sin2(nϕ/2)
)1/2 ≈ (1̂− iAw

ϕ

2
σ̂z

)
|φ〉, (31)

where we have used 〈φ|σ̂z|φ〉 = 0, and then have made the small parameter approximation nϕ � 1. This again
recovers the expected linear response result in (8). This state is post-selected with probability

p1 =
n2 cos2(nϕ/2) + |Aw|2 sin2(nϕ/2)

n2 + [Aw|2
≈ n2

n2 + |Aw|2
≈ n2|Aw|−2, (32)

where we have made the small parameter approximation nϕ� 1, and then the large weak value assumption n� |Aw|.
Now computing the quantum Fisher information (5) with the post-selected meter state √p1 |φ′〉1 yields the simple

expression

I1(ϕ) ≈ n2

(
1−

∣∣∣∣ϕAw2

∣∣∣∣2
)
≤ n2, (33)

in agreement with (14). The maximum saturates the upper bound of n2 in (28), as expected.
For the second case (i.e., increasing the weak value Aw with the post-selection probability fixed), we can again

obtain the results simply by rescaling Aw →
√
nAw to produce

|φ′〉2 ≈
(

1̂− i
√
nAw

ϕ

2
σ̂z

)
|φ〉, (34)

p2 ≈ n2|
√
nAw|−2 = n|Aw|−2, (35)
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and the Fisher information

I2(ϕ) ≈ n2

(
1− n

∣∣∣∣ϕAw2

∣∣∣∣2
)
≤ n2. (36)

Alternatively, computing the optimal post-selection state for a fixed post-selection probability p yields the same
state as (24). Hence, computing the post-selected meter state yields

|φ′〉2 ∝

((√
p

2
−
√

1− p
2

)
einϕσ̂z/2 +

(√
p

2
+

√
1− p

2

)
e−inϕσ̂z/2

)
|φ〉 ≈

(
1̂− i|Aw|

ϕ

2
σ̂z

)
|φ〉, (37)

where we have defined the effective weak value factor

|Aw| = n

√
1− p
p
≈ np−1/2, (38)

in contrast to (26). Computing the quantum Fisher information from (5) with the state √p |φ′〉2 then produces

I2(ϕ) ≈ p|Aw|2
(

1−
[
ϕ|Aw|

2

]2
)

= n2

(
1−

[
nϕ
√
p

]2
)
≤ n2, (39)

using the definition (38). As before, this result precisely matches the form of (12). It is now clear that for quadratic
scaling p = n2p0 we recover (33) with the effective reference weak value |Aw| = 1/

√
p0, while for linear scaling p = np0

we recover (36). Therefore, in both post-selected qubit examples considered in the main text we can nearly saturate
the expected maximum of I(ϕ) = n2 when the linear response conditions nϕ � 1, ϕ|Aw| � 1, and the large weak
value condition n� |Aw| are met, despite the loss of data incurred by the post-selection.
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