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Experimental Violation of Two-Party Leggett-Garg Inequalities with Semiweak Measurements

J. Dressel, C. J. Broadbent, J. C. Howell, and A.N. Jordan

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
(Received 2 July 2010; published 24 January 2011)

We generalize the derivation of Leggett-Garg inequalities to systematically treat a larger class of

experimental situations by allowing multiparticle correlations, invasive detection, and ambiguous detector

results. Furthermore, we show how many such inequalities may be tested simultaneously with a single

setup. As a proof of principle, we violate several such two-particle inequalities with data obtained from a

polarization-entangled biphoton state and a semiweak polarization measurement based on Fresnel

reflection. We also point out a nontrivial connection between specific two-party Leggett-Garg inequality

violations and convex sums of strange weak values.

DOI: 10.1103/PhysRevLett.106.040402 PACS numbers: 03.65.Ta, 42.50.Dv, 42.50.Xa

To better understand and identify the apparent division
between macroscopic and microscopic behavior, Leggett
and Garg have distilled common implicit assumptions
about the macroscopic world into a set of explicit postu-
lates that they dub macrorealism (MR) [1]. From these
postulates, they construct inequalities analogous to Bell
inequalities [2] but involving multiple correlations in time.
Such Leggett-Garg inequalities (LGIs) must be satisfied by
any theory compatible with MR, but may be violated by
quantummechanics. As such, LGI violations have received
increasing interest as signatures of distinctly quantum
behavior in qubit implementations [3–5], and have been
recently confirmed experimentally in both solid-state [6]
and optical systems [7].

In this Letter, we demonstrate a technique for system-
atically deriving generalized LGIs that admit multiple
parties, invasive detection, and/or ambiguous detector re-
sults by considering a specific two-particle experimental
setup with three measurements. We proceed to experimen-
tally violate several such two-party LGIs simultaneously
with a single data set produced from a setup using a semi-
weak polarization measurement on an entangled biphoton
state. The contextual values (CV) analysis of quantum
measurement [8] suggests a direct comparison between
the classical and quantum treatments. Finally, we show
that specific two-party LGIs are equivalent to constraints
on convex sums of conditioned averages (CA), which are
the generalizations of the quantum weak value to an arbi-
trary measurement setup [8,9]. The technique may be
easily extended to check data from a setup with any
number of measurements and parties.

Generalized LGIs.—A MR theory consists of three key
postulates: (i) if an object has several distinguishable states
available to it, then at any given time it is in only one of
those states; (ii) one can, in principle, determine which state
it is in without disturbing that state or its subsequent dy-
namics; and (iii) its future state is determined causally by
prior events [1]. Furthermore, we acknowledge that physical
detectors may be imperfect by being (a) invasive by altering

the object state during the interaction or (b) ambiguous by
reporting results that only correlate probabilistically with
the object state due to inherent detector inefficiencies or
errors.
For convenience we consider dichotomic properties in

what follows, though the discussion can be easily extended.
Unambiguous detector outcomes will be assigned the (arbi-
trary) values f�1; 1g corresponding to the two possible
states of the property being measured. Ambiguous detectors
will be calibrated to report the same ensemble average as an
unambiguous detector for the same property. To do so, their
outcomes must be assigned generalized values � 2 S from
an expanded set S, with minS � �1 and maxS � 1, to
compensate for the imperfect state correlation of the out-
comes. Such generalized values are the classical equivalent
of quantum CV [8] and may be determined by measuring
pure ensembles of either �1.
We now derive a specific two-party generalized LGI for

a particular experimental setup, keeping in mind that the
method may be extended to any setup. Consider a pair of
MR objects that interacts with a sequence of detectors as
shown in Fig. 1. At time t0 the pair is picked from a known
ensemble � . At time t1 object 1 of the pair interacts with an
imperfect detector for the dichotomic property A1, which

FIG. 1. MR measurement schematic. An object pair is picked
from an ensemble � at time t0. At t1 object 1 of the pair interacts
with an imperfect detector for the property A1, which reports a
generalized value �1. At t2 both objects interact with unambig-
uous detectors for the properties B1 and B2 that report values b1
and b2. The two-party LG correlation C is constructed from the
measured results.
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reports a generalized value �1 2 S1. Finally, at time t2
objects 1 and 2 interact with unambiguous detectors for the
dichotomic properties B1 and B2, respectively, which re-
port the values b1; b2 2 f�1; 1g.

For each object pair, we can keep all three results to
construct the correlation product �1b1b2, or we can ignore
some results as nonselective measurements [10] to con-
struct the alternate quantities �1, b1, b2, �1b1, �1b2, or
b1b2. Since the latter terms involve voluntary loss of
information after the measurement has been performed,
we can compute them all from the same data set.
Exploiting this freedom, we construct the correlation C ¼
�1 þ �1b1b2 � b1b2 for each measured pair, which lies in
the range �j1� 2minS1j � C � j2maxS1 � 1j.

We repeat this procedure many times and average
the results of C to obtain hCi ¼ P

�1;b1;b2
Pð�1j�Þ�

Pðb1; b2j�; �1Þð�1 þ �1b1b2 � b1b2Þ, where Pð�1j�Þ is
the probability of detecting �1 given the initial ensemble
� , and Pðb1; b2j�; �1Þ is the probability of detecting b1 and
b2 given the initial ensemble � and the possibly invasive
detection of �1.

Generally, we cannot separate the sums due to the �1

dependence of Pðb1; b2j�; �1Þ, so the best guaranteed
bounds are �j1� 2minS1j � hCi � j2maxS1 � 1j. As a
special case, if the detector for A1 is unambiguous, then
minS1 ¼ �1, maxS1 ¼ 1, and we find the LGI,

� 3 � hA1 þ A1B1B2 � B1B2i � 1: (1)

Alternatively, if the detector is noninvasive so that
Pðb1; b2j�; �1Þ ¼ Pðb1; b2j�Þ, then the sums do separate
and we can average A1 first to find hCi ¼ P

b1;b2
�

Pðb1; b2j�ÞðhA1ið1þ b1b2Þ � b1b2Þ. Since �1�hA1i�1,
each term can take only three possible values f�3;�1; 1g
and we again recover (1). Therefore, any violation of (1)
will imply that at least one of the postulates (i)–(iii) of MR
does not hold, or that the detector for A1 is both invasive
and ambiguous.

We can construct many such LGIs from the same data.
For example, the three detectors in Fig. 1 allow the con-
struction of the 23 � 1 nontrivial correlation terms listed
earlier, which can be combined with the three coefficients
f�1; 0; 1g [11]. Ignoring an overall sign, we can construct

ð323�1 � 1Þ=2 ¼ 1093 nonzero LGI correlations bounded

in a similar manner to (1). The subset of ð322�1�1Þ=2¼13
single-object LGIs can be obtained by ignoring the B2

detector. Furthermore, if a fourth detector for A2 were

added before the detector for B2, we could test ð324�1�1Þ=
2¼7174453 such LGIs. One is formally identical to the
CHSH-Bell inequality [2] (see also [13]), but tests MR and
not Bell locality.

For contrast, the original approach in [1] combines
separate experiments for each correlation between ideal
detectors to form a single LGI. Our approach uses a single
experimental setup to determine all 2M � 1 correlations
between M general detectors to form a large number of

LGIs. Hence we obtain an exponential improvement in
experimental complexity for large M.
Conditioned averages.—A single-object LGI, �3 �

hA1 þ A1B1 � B1i � 1, was considered in [4] and shown
to have a one-to-one correspondence with an upper bound
to the average of A1 conditioned on the positive value of
B1: 1hAi � 1. Three other LGIs similarly correspond to the
bounds 1hAi � �1 and �1 � �1hAi � 1, as checked ex-
perimentally in [7].
We now extend these results to the two-object case using

(1). First we define a marginal probability of measuring b1
and b2 given any result of A1 as Pðb1; b2j�; A1Þ ¼P

�1
Pð�1j�ÞPðb1; b2j�; �1Þ. Then we define a conditional

probability of measuring �1 given the measurement of
b1 and b2 as Pð�1j�; b1; b2Þ ¼ Pð�1j�ÞPðb1; b2j�; �1Þ=
Pðb1; b2j�; A1Þ. Therefore, the average of A1 conditioned
on the measurements of b1 and b2 is b1;b2

hA1i ¼P
�1
Pð�1j�; b1; b2Þ�1.

Using this definition, we rewrite the upper bound of (1)
as

P
b1;b2

Pðb1; b2j�; A1Þðb1;b2hA1ið1þ b1b2Þ � b1b2Þ � 1

and insert the possible values for b1 and b2 to find the
CA constraint,

1;1hA1ipþ þ �1;�1hA1ip� � 1; (2)

where p� ¼ Pð�1; �1Þ=½Pð1; 1Þ þ Pð�1; �1Þ� and
Pði;jÞ¼Pði;jj�;A1Þ. The degeneracy of the product value
b1b2 results in an upper bound for a convex sum of CAs, in
contrast to the single-object result in [4]. A sufficient
condition for violating (2) is for both CAs to exceed 1
simultaneously. Conversely, if all CAs were bounded by 1,
then it would be impossible to violate (2) or (1).
Quantum formulation.—Projective quantum measure-

ments produce averages of eigenvalues analogous to the
results of an unambiguous detector, but nonprojective
quantum measurements produce averages of contextual
values [8] which need not lie in the eigenvalue range and
are therefore analogous to the results of an ambiguous
detector. By measuring A1 weakly we can find quantum
mechanical violations of (1) and (2).
Specifically, if we start with a two-object density

operator �̂ and measure A1 generally such that Â1 ¼P
a1
a1�̂a1 ¼

P
�1
�1Ê�1

(where fa1g are the eigenvalues

corresponding to the projections f�̂a1g and f�1g are the CV
corresponding to the positive operator-valued measure

(POVM) fÊ�1
¼ M̂y

�1
M̂�1

g), and then measure B1B2 pro-

jectively such that B̂1 � B̂2 ¼ P
b1;b2

b1b2�̂b1 � �̂b2 , we

will find that the average correlation hCi ¼ hA1 þ
A1B1B2 � B1B2i has the form

hCi ¼ X

�1;b1;b2

Pð�1; b1; b2j�̂Þð�1 þ �1b1b2 � b1b2Þ; (3)

where Pð�1; b1; b2j�̂Þ ¼ Tr½ðM̂y
�1
�̂b1M̂�1

� �̂b2Þ�̂� is

the probability of measuring outcome �1 of the general
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measurement of A, followed by a joint projection of b1b2.
The appearance of the CV instead of the eigenvalues of

Â in (3) combined with the nonseparable probability
Pð�1;b1; b2j�̂Þ allows violations of the LGI (1).

The left-hand side of (2) follows from (3), where
Pðb1; b2j�̂; A1Þ ¼ P

�1
Pð�1;b1; b2j�̂Þ and b1;b2

hA1i ¼P
�1
�1Pð�1;b1; b2j�̂Þ=Pðb1; b2j�̂; A1Þ is a quantum CA

as defined in [8] that converges to a weak value [9] in the
limit of minimal measurement disturbance.

Experimental setup.—To implement Fig. 1 we use the
polarization of an entangled biphoton with the setup shown
in Fig. 2. A glass microscope coverslip measures a Stokes
observable A1 semiweakly as described below, and polar-
izers measure Stokes observables B1 and B2 projectively.
We produce degenerate noncollinear type-II down-
conversion by pumping a 2 mm walk-off-compensated
BBO crystal [14] with a narrow band 488 nm laser. The
down-converted light passes through automated polariza-
tion analyzers and 3 nm bandpass filters at 976 nm in each
arm before being coupled into multimode fibers connected
to single photon avalanche photodiodes (SPAD). We detect
coincidences using a 3 ns window. We perform state to-
mography with maximum likelihood estimation [15],
which gives the state shown in Fig. 3 with concurrence
C ¼ 0:794, and purity Tr½�̂2� ¼ 0:815, and which resem-

bles the pure state jc i ¼ ðjhvi þ ijvhiÞ= ffiffiffi
2

p
.

After the state tomography, we remove the half wave
and quarter wave plates from the lower arm and insert
either a mirror or a coverslip using a computer-controlled
translation stage. The reflected light passes though a po-
larization analyzer and couples into a third fiber and SPAD.
We align the coverslip and the mirror to be parallel with an
incidence angle of 40� relative to the incoming beam.
Finally, we optimize the fiber incoupling and balance
the collection efficiencies with attenuators so that the

coincidences between the upper arm and either of the lower
arms differ by only a few percent when the mirror is taken
in and out of the beam path.
The coverslip acts as a polarization-dependent beam

splitter measuring A1 ¼ �̂z. Averaging over the 3 nm
bandwidth and the thickness variation (	 150� 0:6 �m)
produces an average Fresnel reflection similar to that of a
single interface, with horizontal (h) polarization relative to
the table exhibiting zero reflection near Brewster’s angle
and vertical (v) polarization exhibiting increasing reflec-
tion with incident angle.
For a pure state of polarization jc i ¼ �jhi þ �jvi with

j�j2 þ j�j2 ¼ 1, the resulting state after passing through
the coverslip is jc 0i ¼ ð��jhi þ ���jviÞjri � ð ���jhi þ
��jviÞjti, where jji, j 2 ft; rg, specify the transmitted
and reflected spatial modes of the coverslip, and the re-
flection and transmission probabilities for h- and
v-polarized light are Rh ¼ �2, Rv ¼ ��2, Th ¼ ��2, and
Tv ¼ �2, such that Ri þ Ti ¼ 1. Written this way, the
coverslip reflection can be viewed as a generalization of
the weak measurement in [16] and discussed in [8].
From jc 0i, we find the measurement operators for the

backaction of the coverslip outcomes to be M̂r ¼ ��̂h þ
���̂v and M̂t ¼ ���̂h þ ��̂v, where �̂i, i 2 fh; vg, are
polarization projectors. The corresponding POVM ele-

ments are Êr ¼ Rh�̂h þ Rv�̂v and Êt ¼ Th�̂h þ
Tv�̂v, with which we can expand the polarization Stokes

operator as �̂z ¼ �̂h � �̂v ¼ �rÊr þ �tÊt, as discussed
before (3), where �r ¼ ðTh þ TvÞ=ðRh � RvÞ and �t ¼
�ðRh þ RvÞ=ðRh � RvÞ are the CV.
We determine the values of Rh and Rv with calibration

polarizers before the coverslip, yielding Rh ¼ 0:0390�
0:0007 and Rv ¼ 0:175� 0:001. The reflected arm is

λ/2

λ/4

pol.-θ

attn.

λ/2

λ/4coverslip

SPDC pol.

mirror

λ/2 pol.-θ

FIG. 2 (color online). Experimental setup. A 488 nm laser
produces degenerate down-converted photon pairs. The polariza-
tion of the photon in the lower arm is rotated by 45� with a half
wave plate, then undergoes semiweak polarization measurement
in the fh; vg basis using Fresnel reflection (A1) that encodes the
information in the resulting spatial modes, and is finally projected
into the f	; 	?g basis with polarizers (pol.-	) set at angle 	 (B1).
The attenuators (attn.) balance any remaining losses. The polar-
ization of the photon in the upper arm is projected into the fh; vg
basis with another polarizer (B2). The half and quarter wave plates
are used for tomography of the input state; during data collection
they are removed from the lower arm and used to switch betweenh
and v polarization in the upper arm.

|hh>
|hv>

|vh>
|vv>

<hh| <hv| <vh| <vv|

FIG. 3 (color online). Real (left) and imaginary (right) parts of
the reconstructed density matrix in the fh; vg basis. Light gray
(yellow) and dark gray (red) represent positive and negative
values, respectively.
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FIG. 4 (color online). In all data plots, solid lines indicate

theory and points indicate experimental data. (a) h�̂ð1Þ
z i (green,

flat), 	h�̂ð1Þ
z i (red, decreasing), and 	?h�̂ð1Þ

z i (blue, increasing).

(b) 	;hh�̂ð1Þ
z i (red, bottom right), and 	?;vh�̂ð1Þ

z i (blue, bottom left),

violating negative bounds, unlike 	?;hh�̂ð1Þ
z i (orange, increasing),

and 	;vh�̂ð1Þ
z i (green, decreasing).

PRL 106, 040402 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 JANUARY 2011

040402-3



largely projected to v, while the transmitted arm is only
weakly perturbed, making the total coverslip effect a semi-
weak measurement. The CV, �r ¼ �13:1� 0:1 and �t ¼
1:57� 0:01, are correspondingly amplified from the eigen-
values of �̂z.

Results.—To complete the state preparation, we place a
half wave plate before the coverslip in the lower arm and
rotate the polarization by 45� to produce a state similar to

jc 00i ¼ ðjhai þ ijvdiÞ= ffiffiffi
2

p
. We then measure (1) by choos-

ing the observables A1, B1, and B2 to be the Stokes ob-

servables �̂ð1Þ
z , �̂ð1Þ

	 , and �̂ð2Þ
z , respectively, where �̂	 is the

�̂z operator rotated to the f	; 	?g basis (e.g., �̂0� ¼ �̂z and
�̂45� ¼ �̂x). By changing the single parameter, 	, we can
explore a range of observables.

Figure 4 shows the various averages of �̂ð1Þ
z . Averaging

all results for orthogonal settings on �̂ð1Þ
	 and �̂ð2Þ

z gives the

expectation value h�̂ð1Þ
z i, which is properly constant and

near zero for all 	 since the reduced density operator is
almost fully mixed. Averaging only the results for the

orthogonal settings of �̂ð2Þ
z gives the single CAs 	h�̂ð1Þ

z i
and 	?h�̂ð1Þ

z i, which are also well behaved. Finally, averag-
ing only the results for specific settings gives the double

CAs 	;vh�̂ð1Þ
z i, 	?;hh�̂ð1Þ

z i, 	;vh�̂ð1Þ
z i, and 	?;vh�̂ð1Þ

z i, which can
exceed the eigenvalue range for some range of 	 due to the
nonlocal correlations in the entangled biphoton state.

Using the same set of data, Fig. 5 shows the upper bound

of the LGI �3 � h��ð1Þ
z � �ð1Þ

z �ð1Þ
	 �ð2Þ

z � �ð1Þ
	 �ð2Þ

z i � 1
being violated in the same range of 	 that the appropriate

convex sum of 	;hh��̂ð1Þ
z i and 	?;vh��̂ð1Þ

z i violates its upper
bound according to (2).

We can violate several more LGIs using the same set of
data as well. Figure 6 shows two such correlations,

h�ð1Þ
z �ð2Þ

z þ�ð2Þ
z �ð1Þ

	 ��ð1Þ
z �ð1Þ

	 i and h��ð1Þ
z �ð2Þ

z þ�ð2Þ
z �ð1Þ

	 þ
�ð1Þ

z �ð1Þ
	 i, that between them violate an upper bound over

nearly the whole range of 	, for illustration.
All solid curves in Figs. 4–6 are quantum predictions

analogous to (3) using the measurement operators, CV, and
the reconstructed initial state. They also include compen-
sation for a few percent deviation in the thickness of the
half wave plate in the upper arm. The points indicate

experimental data and include Poissonian error bars. The
small discrepancies between theory and data can be ex-
plained by sensitivity to the state reconstruction and addi-
tional equipment imperfections. The violations indicate
either that MR is inconsistent with experiment or that the
semiweak measurement device is both invasive and am-
biguous in the MR sense.
Conclusion.—We have illustrated the derivation of gen-

eralized single-setup LGIs allowing for multiple particles
and measurements with more realistic detectors by consid-
ering a two-particle example and have demonstrated si-
multaneous violations of several such two-party LGIs
using the same data set from a biphoton polarization
experiment. Because of the single setup, any data set
may be similarly examined for inherent LGI violations.
This work was supported by the NSF Grant No. DMR-

0844899, ARO Grant No. W911NF-09-1-0417, and a
DARPA DSO Slow Light grant.
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FIG. 5 (color online). LGI correlation h��ð1Þ
z � �ð1Þ

z �ð1Þ
	 �ð2Þ

z �
�ð1Þ

	 �ð2Þ
z i (red, squares) and the corresponding convex sum of the

CAs 	;hh��̂ð1Þ
z i and 	?;vh��̂ð1Þ

z i (blue, circles), both violating

their upper bounds of 1 in the same domain of 	. Compare to
Fig. 4(b) and note that the LGI violation includes the region
where the two CAs both exceed their bounds.
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FIG. 6 (color online). LGI correlations h�ð1Þ
z �ð2Þ

z þ �ð2Þ
z �ð1Þ

	 �
�ð1Þ

z �ð1Þ
	 i (red, circles) and h��ð1Þ

z �ð2Þ
z þ �ð2Þ

z �ð1Þ
	 þ �ð1Þ

z �ð1Þ
	 i

(blue, squares) violating their upper bounds of 1 for nearly the
entire 	 domain.
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