
Chapman University
Chapman University Digital Commons

Pharmacy Faculty Articles and Research School of Pharmacy

3-2008

Insights into Morphological Nature of Precipitation
of Cholesterol
Vuk Uskoković
Chapman University, uskokovi@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/pharmacy_articles

Part of the Cardiovascular Diseases Commons, and the Medical Biochemistry Commons

This Article is brought to you for free and open access by the School of Pharmacy at Chapman University Digital Commons. It has been accepted for
inclusion in Pharmacy Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information,
please contact laughtin@chapman.edu.

Recommended Citation
Uskoković V. Insights into morphological nature of precipitation of cholesterol. Steroids. 2008;73(3):356-369. doi: 10.1016/
j.steroids.2007.12.005

http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/pharmacy_articles?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/cusp?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/pharmacy_articles?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/929?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/666?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Insights into Morphological Nature of Precipitation of Cholesterol

Comments
NOTICE: this is the author’s version of a work that was accepted for publication in Steroids. Changes resulting
from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. Changes may have been made to this work since it
was submitted for publication. A definitive version was subsequently published in Steroids, volume 73, issue 3,
in 2008. DOI: 10.1016/j.steroids.2007.12.005

The Creative Commons license below applies only to this version of the article.

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

Copyright
Elsevier

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/pharmacy_articles/344

http://dx.doi.org/10.1016/j.steroids.2007.12.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://digitalcommons.chapman.edu/pharmacy_articles/344?utm_source=digitalcommons.chapman.edu%2Fpharmacy_articles%2F344&utm_medium=PDF&utm_campaign=PDFCoverPages


Insights into Morphological Nature of Precipitation of 
Cholesterol 

 
Vuk Uskoković 

 
                   Center for Advanced Materials Processing, Clarkson University, Potsdam, NY, USA 

 
Abstract 
 Additional effects on the previously reported procedure of precipitation of 
narrowly dispersed and well-defined, brick-shaped cholesterol particles, including non-
solvent addition rate, temperature, solvent purity, aging treatments, ultrasound agitation 
and fine mechanical effects were investigated. Based on the presented results, significant 
morphological sensitivity of cholesterol precipitation processes upon variations from the 
standard established procedure of crystallization is induced. However, the tendency of 
cholesterol to crystallize in form of biaxially grown particles was evidenced as 
dominating the precipitation processes, irrespective of any modifications of experimental 
parameters involved in the preparation procedure investigated hereby. Prolonged aging 
time and temperature effects lead to “face-to-face” aggregation of particles, promoted by 
the discrepancy in surface charges between particle sides and faces. In light of these 
observations, the mechanism of precipitation of cholesterol is further discussed.  
 
1. Introduction 
 

Cholesterol presents one of the essential biochemical compounds in the animal 
world, and the actual interest in its physico-chemical and biological characteristics is in 
large extent instigated by numerous evidenced unbalanced metabolic occurrences that 
involve its undesired in vivo precipitation. Cholesterol is involved in many biofunctional 
tasks, including its most notable roles as the precursor for in vivo synthesis of bile acids 
and steriod hormones1, and a regular component of cellular membranes that maintains 
their flexibility and proper transport properties2. However, its pathological crystallization 
within an organism, supported by a discrepancy between the levels of cholesterol intake 
and internal production and the rate of its solubilization through the action of micellar, 
vesicular and bilayer cleansing agents in bile and specific lipoprotein complexes in blood, 
relates to a wide array of problematic health issues that range from gallstone formation to 
chronic intestinal lumen deposits to atherosclerotic plaque. Because of the potential 
development of reversible control, morphological studies of crystallization of cholesterol 
in simple environments may provide significant relationships for both the areas of 
biomedicine and chemotherapeutics, and the fundamental understanding of the complex 
biochemistry of life.  

Similar to other 3-hydroxy steroids and their hydrates, cholesterol crystallizes in 
form of a double-layer structure with an end-for-end arrangement of approximately 
parallel molecules3. Biaxial growth of cholesterol crystals, moreover, results from a faster 
growth within the bilayer plane comparing to the growth between bilayers, induced by 
stronger molecular interactions between neighboring molecules in the same bilayer 
plane4. Cholesterol molecules in both in vivo and in vitro conditions, therefore, typically 



crystallize in form of either plate- or needle-shaped particles. Despite the fact that the 
effects of solvent type5,6,7, non-solvent phases8, temperature5, pH9, electrolytes10, the 
dynamics of solvent systems11, magnetic field12, mineral13 and polypeptide14 substrates 
and co-existing phases15,16 (such as hydroxyapatite deposits, often found interspersed 
within cholesterol layers in atherosclerotic plaques17,18), model bile composition19,20,21, 
various medicinal plants22 and synthetic biochemical compounds (including 
phospholipids23, cholic acid24 and other sterols25) on the processes of crystallization and 
dissolution of cholesterol were previously acknowledged, structural and functional 
flexibility of cholesterol, respectively reflected on the observed variations in crystal 
surface polarity depending on the solvent character23 and the biological role that includes 
cell membrane flexibility mediation and transmembrane signal messaging2, seems to defy 
all the imposed environmental effects and force the formation of biaxially grown, platelet 
and needle-type morphologies.  
 
2. Experimental part 
 
 The procedure of synthesis of narrowly dispersed and well-defined cholesterol 
particles proceeded as follows26. Twenty milligrams of commercial cholesterol were 
dissolved in 10 ml of 1-propanol. Upon the addition of 10 ml of water, white precipitate 
forms, but dissolves upon mild shaking. The following 5 ml of water is abruptly poured 
into the solution, resulting in the formation of a bluish white dispersion, which after one 
minute of aging turns completely white. After 10 minutes of aging, a few drops of the 
suspension were deposited onto an SEM sample carrier, dried in air and analyzed. 
Throughout the whole procedure, the beaker was kept still, without any stirring or 
ultrasound treatment applied. Morphologies of the prepared cholesterol particles were 
examined with using scanning electron microscopy (SEM; JEOL JSM-6300) and field-
emission scanning electron microscopy (FE-SEM; JEOL JSM-7400F). Crystallinity of 
cholesterol powders was investigated with using X-ray diffractometry (XRD; Bruker 
D8). Vibrational spectra of cholesterol particles were evaluated by means of Fourier-
Transformed Infrared (FT-IR; Mattson Galaxy 2020) spectrometric analysis. Differential 
scanning calorimetry (DSC; Perkin Elmer DSC 7) measurements were performed in air, 
applying the scanning rate of 5 oC/min.  
 
3. Results and discussion 
 
 A drastic morphological difference between the commercial cholesterol sample 
and cholesterol particles re-crystallized in accordance with the procedure described in the 
experimental section, may be distinguished from Fig.1. Whereby the commercial sample 
comprises rod- and needle-shaped cholesterol crystals, extending over 100 microns in 
length, the recrystallized sample consists of narrowly dispersed, brick-shaped particles.  
   



 

 
Fig.1. FE-SEM images of the commercial cholesterol (top), and of uniform cholesterol particles 
precipitated from 1-propanol/water solution, with (bottom left) and without (bottom right) the gold-
sputtering treatment prior to SEM observations. 
 

DSC, XRD and FT-IR diagrams of both the commercial cholesterol and narrowly 
dispersed cholesterol powders prepared in 1-propanol/water solutions are successively 



shown in Figs.2-4. Anhydrous modification of the commercial cholesterol may be 
confirmed through evaluation of the corresponding DSC diagram. Namely, non-existence 
of the reversible endothermic phase transitions at ~ 85 and 120 oC (which respectively 
correspond to dehydration effects and the transition from crystalline to liquid crystalline 
form, typical for cholesterol monohydrate), and the presence of the polymorphic phase 
transition at 39 oC are characteristic of anhydrous modification of cholesterol. 
Furthermore, anhydrous cholesterol typically adopts needle-shaped morphologies, 
whereas monohydrate modification crystallizes in form of platelets25. Elongated 
morphologies of the crystals that comprise the commercial cholesterol present, therefore, 
another indication of anhydrous modification of the precursor compound. Previously, it 
has been detected that the anhydrous form of cholesterol is relatively stable at 
atmospheric conditions, and that only in the presence of a sufficient amount of water the 
transition to monohydrate form could be initiated27. The polymorphic transition at 39 oC 
was detected in case of the re-crystallized sample as well, although with significantly 
weaker intensity, which might be expected from the fact that mixed polar/non-polar, non-
solvent/solvent system was applied as re-crystallization medium. Whereas cholesterol 
crystals precipitated in purely alcoholic media are typically characterized by their 
anhydrous nature, the ones formed in aqueous media are usually monohydrate 
modification. As a matter of fact, it has been evidenced that 3-hydroxyl groups terminate 
monohydrate plate faces grown in aqueous environments, whereas alkyl groups 
predominantly terminate surface of cholesterol crystals grown in anhydrous, alcoholic 
solutions4. Therefore, the pronounced uniaxial growth in case of the crystals grown in 
anhydrous conditions may be explained by the lack of attachment of water molecules at –
OH ends of molecules along (002) plane, that otherwise blocks crystals from growth 
beyond certain limits in the most favorable direction, which is the one that links (001) 
and (002) planes and corresponds to the growth along the longest axis of cholesterol 
molecules. However, similar to the correspondence between plate-shaped crystals and 
monohydrate form, and needle-shaped crystals and anhydrous modification, respectively, 
this rule also presents the one with verified exceptions6. The most intensive, reversible 
endothermic peak at ~ 150 oC detected in both samples presents the melting point of 
cholesterol. 

There were no significant differences detected between the XRD patterns of the 
commercial and re-crystallized sample. Both XRD patterns exhibit a pair of characteristic 
peaks for cholesterol crystals at 2θ = 2.6 and 5.2 o, corresponding to interfacial, Bragg 
distances of d = 33.4 and 16.7 Å, as derived from bilayer and monolayer reflections, 
respectively. The following peaks were detected on both of the cholesterol FT-IR 
spectra22. The peaks at 650, 800 and 1060 cm-1 are respectively ascribed to C-OH 
vibration in plane, methylene rock, and C-O stretching vibrations. The peaks at 1260 and 
1300 cm-1 respectively correspond to C-H out-of-plane and C-H in-plane bends, whereby 
the symmetric and asymmetric bends of CH group are detected at 1370 and 1490 cm-1, 
respectively. The peak at 1700 cm-1 derives from C=C stretching vibration. The peaks in 
the range of 2600 – 2900 cm-1 belong to olefinic C-H and alkyl C-H stretching region, 
whereby the broad absorption band that corresponds to OH stretching range of 
frequencies is detected in the range of 3100 – 3700 cm-1. The only obvious difference 
between the two cholesterol samples lies in the shape of this broad band. Namely, singlet-
to-doublet transition in the structure of this band is observed as a result of the 



morphological transition from widely dispersed needle-shaped particles of commercial 
sample to more refined, narrowly dispersed and individual nature of the particles 
precipitated in 1-propanol. This transition may reflect the increase in structural ordering 
that corresponds to the formation of monodisperse particles. Because hydrogen bonds 
provide intermolecular ordering at single-layer structural levels, any increase in structural 
and morphological symmetry would be reflected on the spatial distribution of OH bonds 
and the corresponding distribution of OH vibrations in IR spectra. The observed 
symmetry breaking and single-to-doublet transition may, therefore, correspond to an 
increased symmetry and directional character of the inherent hydrogen bonds (comparing 
to their more randomly oriented character within the commercial sample) that follows the 
transition from widely to narrowly dispersed cholesterol particles in terms of their shapes 
and sizes. 

                    
Fig.2. DSC diagrams of the commercial cholesterol (bottom), and of uniform cholesterol particles prepared 
in 1-propanol/water solution (top). 

              
Fig.3. XRD patterns of the commercial cholesterol (bottom), and of uniform cholesterol particles prepared 
in 1-propanol/water solution (top). 



       
Fig.4. FT-IR spectra of the commercial cholesterol (bottom) and of uniform cholesterol particles prepared 
in 1-propanol/water solution (top). 
 
 In addition to previously reported findings26 wherein the effects of pH, ionic 
strength, cholesterol concentration, solvent/non-solvent ratio, temperature and aging 
treatment were all evidenced as significant in the process of formation of uniform 
cholesterol platelets, the effects of various other experimental parameters on the 
morphology of uniform cholesterol particles were investigated. For example, 
centrifugation treatment and agitation with magnetically coupled stir bar do not change 
the morphology, but mildly distort the size uniformity of the particles, whereby the 
ultrasound treatment almost negligibly improves the smoothness of the particle surfaces. 
The particles are shown as sensitive to mild mechanical effects, as the slightest amount of 
manual grinding with pestle (cca. 5 – 10 sec) induces deviations in terms of uniformity, 
whereby the mere process of vacuum-assisted filtering initiates partial stacking and midly 
disrupts refined and well-defined character of the shape of the particles, as is shown in 
Fig.5. Decreasing the rate of solvent addition to 1 ml/min does not produce significant 
discrepancies in terms of distribution of particle shapes and sizes, although leads to 
occasional disruptness of the particles smoothness, which, however, becomes restored 
when the preparation process turns to be coupled with ultrasound agitation, as is shown in 
Fig.6.  
 



   
Fig.5. Cholesterol particles prepared by the procedure described in the experimental section, filtered (left), 
and additionally ground in mortar (right). 
 

   
Fig.6. Cholesterol particles prepared by the procedure described in the experimental section, with the rate 
of non-solvent addition decreased to 1 ml/min, with (right) and without (left) the influence of ultrasound. 
 



The following example may neatly illustrate a remarkable sensitivity of 
cholesterol precipitation processes on the slightest modifications introduced in the initial 
experimental conditions. Namely, when 2-propanol of reagent grade (99 % purity) is used 
as the solvent instead of 1-propanol in the described method of precipitation, slightly 
smaller brick-shaped particles with less pronounced edge sharpness are obtained (as a 
result of the increase in solubility of cholesterol with the chain length of alkanols used as 
solvents7), whereas the use of 2-propanol of technical grade (90 % purity) results in the 
formation of mostly needle-shaped particles, as can be seen from Fig.7.  

  
Fig.7. Cholesterol particles prepared by the procedure described in the experimental section, wherein 1-
propanol is substituted with 2-propanol of laboratory grade (left) and technical grade (right). 
 

The crystallization processes were also sensitive to variations in temperature. For 
example, due to significant increases in solubility of cholesterol in organic solvents with 
temperature7, the sample prepared at 70 oC with the addition of 25 % more water in 
comparison with the procedure described in the experimental section, yields much thinner 
platelets, whereas the precipitation at 31 oC with the 10-minute aging in temperature-
oscillating conditions yields partially hollow and pickered brick-shaped particles, as is 
shown in Fig.8. The former result coincides with similar morphologies obtained with the 
addition of specific additives, such as CTAB and SDS surfactants, that in the reaction 
medium increase the supersaturation limit of the cholesterol solutions. On the other hand, 
despite significant increase in solubility of cholesterol at higher salt contents (e.g. 
additional 5 ml of water had to be introduced in the procedure described in the 
experimental section in order to induce the precipitation of cholesterol), lower 
electrostatic repulsion as the effect of the contracted layers of charged species around 
each of the dispersed particles, promotes aggregation of individual particles in the course 
of aging time, resulting in the formation of larger multilayered particles composed of 
stacked original platelets, as is shown in Fig.9. The evidenced instability of the 



dispersions of cholesterol at higher ionic strengths may be particularly interesting in the 
context of pathological cardiovascular states that combine high blood pressure, increased 
content of electrolytes in the diet and blood, and the occurence of atherosclerotic deposits 
of cholesterol. The effect of salt on the thickening of cholesterol particles in the 
precipitation stage was excluded both by unchanged particle thickness after the standard, 
10 min aging time (Fig.10), and by performing the experiment that involved the same 
concentration of the salt, but a post-precipitation addition thereof. The latter experiment 
resulted in similarly pronounced aggregation during the aging stage as in the cases based 
on the initial addition of electrolyte, as can be evidenced from Fig.10. As a comparison, 
despite the fact that they also slowly undergo the process of stacking aggregation of 
primary platelets, the dispersions prepared in accordance with the procedure described in 
the experimental section remain stable and well-dispersed for extended periods of time, 
as is illustrated in Fig.11. In accordance with the Schulze-Hardy rule and the hydrophobic 
nature of cholesterol particles, the addition of electrolytes in the dispersion medium 
increased the rate of aggregation of individual platelets during the aging treatment, in 
direct proportion with concentration and valence of the introduced ionic species. Aging at 
increased temperatures similarly leads to an increased level of sintering of individual 
particles that eventually gives rise to large cholesterol blocks, which although maintain 
their typical rectangular morphological character. The general trend is that the larger the 
difference between the precipitation temperature and the aging temperature, the less time 
is required for the particle aggregates to attain the same level of aggregation. However, 
with increases in temperature during the aging treatment, the effect of dissolution of 
particles due to temperature-induced increases in solubility and the effect of their 
aggregation due to increased level of thermal movement compete and exactly at the 
body-temperature (37 oC) produce the most optimal conditions for comparatively fast 
aggregation and sintering of particles. Lower temperatures than this decrease the rate of 
aggregation, whereas it takes half an hour for the solid phase to get completely dissolved 
during aging at 40 oC. Furthermore, precipitation via cooling cholesterol solutions 
previously heated above the supersaturation point proceeds through metastable states. 
This has been evidenced on numerous occasions. For example, in spite of the solution 
being cooled down to room temperature, precipitation processes in terms of visible 
formation of millisized and transparent crystals begin only after a few hours in a still 
system, whereas mild mixing of the mixture can induce earlier precipitation in form of 
smaller particles. Moreover, precipitation in accordance with the already described 
procedure at 31 oC yields precipitate, whereas precipitation at 34 oC does not. Parallel 
aging of these two dispersions at 37 oC leads to the formation of permanent precipitate in 
the former and, expectedly, no precipitate at all in the latter. After restoring the both 
suspensions to room temperature conditions, a couple of hours is required for the 
comprising amounts of precipitate in the two systems to equalize. On the other hand, in 
spite of the observed inclination of the actual processes towards metastable states, the 
final morphology is confirmed as independent on the solvent/non-solvent ratio prior to 
the addition of precipitating non-solvent, as long as the final solvent/non-solvent ratio 
and cholesterol concentration remain the same.   



 
Fig.8. Cholesterol particles precipitated at 70 oC with the addition of 25 % more water in comparison with 
the procedure described in the experimental section (left), and precipitated at 31 oC with the subsequent 10-
minute aging at the temperature-oscillating conditions in the range of 36 – 42 oC (right). 
 

 



Fig.9. Cholesterol particles precipitated in accordance with the procedure described in the experimental 
section, but including 0.4 M NaCl in the reaction medium and 2.5 h aging (left), and 0.05 M BaCl2 with 5 h 
aging (right). 
 

 
Fig.10. Cholesterol particles precipitated in accordance with the procedure described in the experimental 
section, but including 0.4 M NaCl in the reaction medium and 10 min aging (left), and including the late 
(after 10 min aging) addition of NaCl (resulting in 0.4 M concentration of the salt) and 2.5 h aging (right). 
 

Based on the results presented so far, it may be induced that cholesterol 
precipitation in simple aqueous-alcoholic environment as the one used within this work 
presents a process of significant sensitivity to modifications of experimental parameters 
of crystallization. However, on the other hand, the tendency of cholesterol crystals to 
adopt plate-shaped morphologies inevitably dominates the precipitation processes. This 
tendency is explained by the existence of stronger, H-bond intermolecular forces that link 
individual molecules along layers in comparison with weaker, van der Waals forces that 
link individual layers in the final, brick-shaped crystalline forms4. However, whereas the 
first stages of crystallization favor the diffusional growth of thin platelets, comparatively 
slow subsequent aggregation of individual platelets takes place during prolonged aging 
and the sedimentation phase. This proposition is supported by the visual observation of 
color changes in the first minute after the precipitation is initiated and the corresponding 
increase in thickness of individual particles, from thin leaflets to brick-shaped ones 
within the first 5 minutes of aging, whereby the striped cross-sections and significantly 
increased thickness of particles aged for longer times (up to a month) support the 
aggregational mechanism of the continuing growth in particle size, as is shown in Fig.11.  

 



 
Fig.11. Cholesterol particles prepared by the procedure described in the experimental section, sampled out 
after 10 sec (upper left), 2 days (upper right) and one month (bottom) of aging time in an open vessel (and 
500 ml of the overall volume) at atmospheric conditions, i.e. until 95 %vol. of the liquid component has 
evaporated. 
 



On one hand, the possibility of dissolution/recrystallization mechanisms 
(including Ostwald ripening) that might have yielded thicker particles in this case can be 
excluded on the basis of high uniformity of particle sizes and shapes observed in all 
stages of the investigated process. On the other hand, smoothness and highly refined 
morphological character of thick cholesterol cuboids imply an inevitable existence of 
mass transfer effects in the processes of particle aggregation. Because of the biological 
role of cholesterol as a cell membrane component, it is natural to expect its high 
selectivity of positioning within self-assembled structures and significant molecular 
recognition properties, typical of all amphiphilic biochemical compounds. Planar 
biomolecules with sufficiently extended π-systems that cholesterol belongs to, have, in 
fact, found a wide use in controlled interfacial self-assembly processes, because they tend 
to bond to surfaces in a flat-lying geometry28. Also, due to its relatively small head-group 
size (comparing to other amphiphilic components of biological membranes), a cholesterol 
molecule is highly movable and has the ability to quickly fill interstitial spaces, which 
implies its participation in increasing the order of lipid biomembranes and playing the 
second messenger role in signal transduction mechanisms. High selectivity of active 
groups within cholesterol molecules and quick rearrangements of energetically 
unfavorably positioned layers that come to protrude the cross-sections of stacked platelets 
may, therefore, explain the smoothness of the final morphologies of cholesterol particles 
and sediments formed by aggregation at higher temperatures or crystallization by 
employing complete or partial evaporation of solvent/non-solvent medium, as is shown in 
Fig.12. However, in contrast with the aging at room conditions, which results in stable 
dispersions consisting of well-defined cholesterol cuboids formed through aggregation of 
primary platelets grown by diffusion (Fig.11), higher aging temperatures do trigger 
Ostwald ripening effects and lead to significant deviations from narrow dispersity in 
terms of particle sizes and shapes, as can be seen from Fig.12. 

 



 
Fig.12. Cholesterol particles precipitated by the procedure described in the experimental section, but aged  
in a closed container for 2 days at 34 oC in an isothermal bath (left), and particles precipitated by the 
procedure described in the experimental section at 31 oC, and aged under the same conditions as the former 
sample for 5 h at 37 oC (right).  
 

  



Fig.13. Cholesterol sample prepared by evaporation of solvent/non-solvent before the final 5 ml of water 
was introduced in the procedure; the sample was deposited in form of droplets on a watch glass, and 
collected upon the complete evaporation of the liquid component.  

 
Anhydrous form is presumed to be metastable, readily transforming into 

monohydrate form4, whereby the action of water seems to be necessary to transform the 
corresponding elongated particles into plate-shaped ones. Polar 3-hydroxyl ends of 
cholesterol molecules form hydrogen bonds with each other and with water molecules, 
while each oxygen atom additionally forms three hydrogen bonds. Hydrogen-bonded 
network is in this case weak with water molecules having an important role in stabilizing 
the structure during the growth. Migration of water molecules along the tunnels that 
stretch in the direction of the shortest, c axis was suggested as an explanation for the ease 
with which crystals may change their modifications16. Water molecules and hydrogen 
bonds that involve inner and surface atoms may provide the crucial role in molecular 
recognition stages that lead to aggregation of thinner platelets into the thicker ones. 
Hydrogen bonds are known as strong attraction forces that vary quickly in space, 
enabling fast reorganization of bonded entities and remarkable molecular recognition 
effects29. The fact that hydrogen bonds and van der Waals forces are involved in linking 
individual molecules and molecular layers in both anhydrous and monohydrate 
cholesterol crystal structure, as well as in interactions among individual particles, may 
explain high specificity of particle-particle interactions provided by the active surface 
groups of platelet crystals in the process of stacking and bonding aggregated platelets into 
precisely matching, thicker and multilayered structures. 

Whereas abrupt isotropic nucleation in solution led to the formation of 
monodisperse platelets with 1–2 μm in size, solvent/non-solvent evaporation from 
cholesterol solutions with concentrations below the supersaturation limit under specific 
conditions resulted in the formation of millisized, flat and multilayered deposits, shown 
in Fig.13. Different mechanisms of crystallization are obviously present in these two 
approaches to precipitation of cholesterol. In contrast with the surface specificity of 
evaporation-induced crystallization mechanism, presumably involving gradual deposition 
of layers with nuclei formed in vicinity of the air-solvent interface of the drying droplet 
surface where the supersaturation limit becomes first exceeded, in the former approach 
nuclei are isotropically formed, evidently resulting in smaller and more numerous, 
narrowly dispersed platelets. Cholesterol is, in fact, known as an amphiphilic compound 
that readily positions at polar/non-polar interfaces, which is the property inherent to its 
major biological function as a component of cellular membranes. On the other hand, 
comparing to other membrane lipids, a series of fused rings provides cholesterol 
molecules with certain rigidity, apparently reflected on its overwhelming tendency to 
adopt plate-shaped crystalline morphologies. Nevertheless, selective orientation of 
cholesterol molecules in relatively slow crystallizing conditions and correspondingly 
increased diffusion path may present the reasons for the formation of fine and smooth 
deposits in the evaporation-induced crystallization. Whereas the precipitation induced by 
solvent evaporation obviously presents the evidence in favor of the reaction-limited 
crystal growth, the precipitation involving abrupt isotropic nucleation presents the case of 
diffusion-limited molecular aggregation. Comparison of the case of preparation of 
uniform cholesterol particles by the abrupt addition of non-solvent (described in the 
experimental section) and the preparation of comparatively larger, millisized cholesterol 



crystals by either evaporation of solvent/non-solvent medium or cooling of cholesterol 
solutions can promote the conclusion that rapid nucleation under the basic conditions 
used in these experiments presents an essential factor in ensuring the precipitation of 
monodisperse cholesterol particles.  
 

  
Fig.14. Cholesterol particles prepared in accordance with the procedure described in the experimental 
section, aged at atmospheric conditions until 95 %vol. of the solvent mixture has evaporated (one month), 
and then sealed and kept for additional 3 months at the same conditions.  

 



 
Fig.15. Cholesterol particles prepared by employing 33 % more non-solvent in comparison with the 
procedure described in the experimental section and: 25 times larger batch size, aged for 2 days in an open 
container (left); aged for 2 days at 70 oC in an open container (right). 
 
 As far as the stability of cholesterol dispersions prepared herein is concerned, it 
may be noticed that the addition of foreign agents is not necessary to prevent permanent 
aggregation of well-defined platelets into large-scale multilayered deposits. The example 
presented in Fig.11 displays well-defined particles, formed by aggregation of smaller 
platelet subunits through aging for one month in an open vessel in atmospheric 
conditions. Evaporation of the solvent and the corresponding shift of the supersaturation 
limit presumably induced subtle “edification” of the existing platelets until perfectly 
smooth particles of partly rounded edges were obtained. These dispersed particles were 
stable and morphologically unchanged for months when kept in a closed vessel at 
atmospheric conditions, as can be seen from Fig.14. In the experiment that in addition 
employed 33 % more non-solvent and an increased batch size, the combination of 
aggregation effect and solvent evaporation-induced formation of large deposits after only 
two days yielded large segregated deposits attached to the bottom of the vessel (Fig.15). 
However, increase in the aging temperature up to 70 oC upon the complete evaporation of 
the solvent yields not smooth, millisized deposits, but brick-shaped particles linked with 
the material formed by solvent evaporation (Fig.15), which is consistent with the 
aforementioned effects of increased temperature during the aging treatments. In this case, 
the evaporation process although proceeds with such a high rate that there is not enough 
time for aggregation processes to yield fine and smooth multilayered deposits through 
thermal movement and molecular recognition effects, but instead the partially aggregated 
platelets become linked by additionally precipitated material deposited by evaporation of 
the solvent at high rate. Kinetic effects, therefore, play a significant role in the processes 



of aggregation and stabilization of cholesterol suspensions. The batch and vessel size are 
shown to play an important role in a sense that significantly larger and smoother deposits 
were obtained after aging of larger batches with 25 – 100 times multiplied quantities 
described in the experimental procedure. This observation may be explained by both 
gravity effects (i.e. different pressure of the solvent column upon the multi-layered 
deposits formed by aggregation of primary platelets and segregating at the bottom of the 
vessel), and the slower rate of the shift of the supersaturation limit due to solvent 
evaporation and a consequently slower rate of additional precipitation of cholesterol over 
the course of the aging time. In addition, sensitivity of the stability of cholesterol 
dispersions to compositional, structural and surface charge features of the walls of the 
vessels that contained these colloids can be acknowledged as well. Compositionally 
identical dispersions may during aging result in different types of segregational behavior, 
depending on the surface properties of the respective containers. Epitaxial relationships 
and the structural co-existence of solid cholesterol phases with other crystalline materials, 
including phytosterols, phytostanols30, hydroxyapatite16 and other calcite phases13,14, have 
been previously acknowledged. Different morphological features of cholesterol deposits 
obtained by complete evaporation of the liquid component of the respective dispersions 
have correspondingly depended on the chemical nature of employed substrates (glass, 
Cu, Si). Accordingly, the stability and segregational mechanism (creaming or 
sedimentation) of cholesterol dispersions can be largely influenced by the surface 
features of the applied containers. Closely related to this observation and most important 
of all, charge effects may be disclosed as a crucial feature of cholesterol aggregation 
processes and a parameter that might be applied in control of the stability and segregation 
of cholesterol dispersions. In accordance with the crystallographic data, the intrinsic 
hydroxyl groups are expected to protrude primarily particle sides rather than their 
faces4,16,31. This effect was evidenced by more pronounced charging of the particle sides 
by the influence of electron beam during the SEM measurements. Cholesterol platelets 
were also observed to aggregate in “face-to-face” manner in course of the aging time, 
which presents another indication of weaker electrostatic repulsion between particle faces 
comparing to their cross-sections. The previously reported study has correspondingly 
witnessed an increased level of aggregation effects at pH values that correspond to the 
isoelectric point of cholesterol particles26. Being responsible for “face-to-face” 
aggregation of well-defined cholesterol particles in simple solutions, electrostatic charge 
effects might be consequently considered as an important physicochemical factor in 
potential prevention of in vivo segregation and deposition of fine cholesterol particles. 
  
4. Conclusions 
 
 As a complementary continuation of the previous report on the investigation of 
cholesterol precipitation processes, additional subtle effects, including non-solvent 
addition rate, temperature, solvent purity, aging treatments, ultrasound agitation and fine 
mechanical effects, altogether with a comprehensive discussion of the mechanisms of 
cholesterol precipitation, are presented in this work. Morphological sensitivity of 
cholesterol precipitates in relation to all of the mentioned effects can be acknowledged, 
although biaxially-grown particles were formed in each of the imposed experimental 
conditions of precipitation. Each of the aforementioned observations of sensitivity of the 



dispersed cholesterol particles upon the conditions of their formation and aging may 
present a starting point for more comprehensive and refined studies of the structural and 
aggregational nature of solid cholesterol. Nevertheless, it has been shown that the long-
term stability of suspensions of well-defined and uniform cholesterol particles in simple 
aqueous-alcoholic environment can be achieved, without the presence of any additives. 
The promotion of enormously simple and eco-friendly method for the preparation of 
uniform and well-defined cholesterol particles such as the one presented in this work may 
provide improved understanding of the behavior of solid cholesterol in liquid 
environments and, thereupon, present a step forward towards a simpler and more elegant 
manipulation of the biological discrepancies that involve its presence.   
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